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Advances on LuGre Friction Model
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Abstract— LuGre friction model is an ordinary differential
equation that is widely used in describing the friction phenomenon
for mechanical systems. The importance of this model comes from
the fact that it captures most of the friction behavior that has been
observed including hysteresis. In this paper, we study some aspects
related to the hysteresis behavior induced by the LuGre friction
model.

tency.

I. INTRODUCTION

Friction is a nonlinear phenomenon that originates from
the contact of two bodies. As early as 1699, Amonton
discovered that the friction force that resists relative motion
between two bodies in contact is independent of the area
of apparent contact surface [20]. It is only in recent times
that this paradox has been solved, showing that the friction
force is proportional to the true contact area [9]. As a
matter of fact, friction depends on many parameters, such
as surface topography, presence and type of lubrication and
relative motion. The friction phenomenon is usually divided
into two operating regimes, presliding friction and sliding
friction. Presliding friction refers to the elastic and plastic
deformations of asperities (roughness features). Sliding
friction is due to the shearing resistance of the asperities. An
important characteristic of presliding friction is the existence
of hysteresis between the presliding friction force input and
the displacement output [2], [26], [22].

The friction is decomposed into two types depending upon
the nature of the two surfaces in contact, static friction and
dynamic friction. The static characteristics of friction include
the stiction friction, the kinetic force (the Coulomb force),
the viscous force, and the Stribeck effect which are functions
of steady state velocity. Therefore, static friction models
are symmetric, discontinuous at zero velocity [17], with a
dependence on the sign of velocity [29]. Dynamic friction
models capture properties that cannot be captured by typical
static friction models; for instance, presliding displacement,
frictional lag (the delay in the change of friction force as
a function of a change of velocity), and stick-slip motion,
which is the spontaneous jerking motion that can occur while
two objects are sliding over each other [6].

Dahl friction model [7] is a generalization of the Coulomb
friction [8]. The steady state of the Dahl model is precisely
the Coulomb friction. However, it does not capture the
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versitària d´Enginyeria Tècnica Industrial de Barcelona, Departament de
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Stribeck effect [8]. An improvement of this model is
implemented in the LuGre model [5]. This model captures
the essential properties of friction such as hysteresis and
Stribeck effect (and thus can describe stick-slip motion) [3],
[22]. Therefore, it has been widely used to describe the
friction phenomenon for mechanical systems [19], [3]. The
LuGre model behaves like a linear spring/damper pair when
it is linearized near zero relative velocity [5]. Necessary
and sufficient conditions for the dissipativity to hold for
the LuGre model are given in [4]. The model is very
popular for friction compensation [11], [24], [14], [27], and
its parameter identification has been studied in [31], [21], [25].

In this paper, we focus on the hysteresis behavior of the
LuGre model. Following the recent research carried out in
[12], this model is seen as an operator H that associates to
an input u and initial condition x0 an output H(u, x0), all
belonging to some appropriate spaces. The class of operators
H that are considered in [12] are the causal ones, with the
additional condition that a constant input leads to a constant
output. For this class of operators, two properties have been
defined: consistency and strong consistency. Since the LuGre
model falls within the framework of [12], it is of interest to
analyze its consistency and strong consistency, which is the
aim of this paper.

The paper is organized as follows. Section II presents the
needed mathematical background. The problem statement is
introduced in Section III. The main results of this paper are
presented in Section IV. Conclusions are given in Section V.

II. BACKGROUND RESULTS

This section summarizes the results obtained in [12].

A. Class of inputs

A real number x is said positive when x > 0, negative
when x < 0, nonpositive when x ≤ 0, and nonnegative
when x ≥ 0. A function h : R → R is said increasing
when t1 < t2 ⇒ h(t1) < h(t2), decreasing when
t1 < t2 ⇒ h(t1) > h(t2), nonincreasing when
t1 < t2 ⇒ h(t1) ≥ h(t2), and nondecreasing when
t1 < t2 ⇒ h(t1) ≤ h(t2).

The Lebesgue measure on R is denoted μ. A subset of R is
said measurable when it is Lebesgue measurable. Consider
a function p : I ⊂ R+ = [0,∞) → R

m where I is some
interval and m a positive integer; the function p is said
measurable when p is (M,B)-measurable where B is the
class of Borel sets of R

m and M is the class of measurable
sets of R+. For a measurable function p : I ⊂ R+ → R

m,
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‖p‖∞,I denotes the essential supremum of the function |p|
on I where | · | is the Euclidean norm on R

m. When I = R+,
it is denoted simply ‖p‖∞.

Consider the Sobolev space W 1,∞(R+,R
n) of absolutely

continuous functions u : R+ → R
n, where n is a positive

integer. For this class of functions, the derivative u̇ is defined
a.e, and we have ‖u‖∞ < ∞, ‖u̇‖∞ < ∞. Endowed with
the norm ‖u‖1,∞ = max (‖u‖∞, ‖u̇‖∞), W 1,∞(R+,R

n) is
a Banach space [1].

For u ∈ W 1,∞(R+,R
n), let ρu : R+ → R+ be the total

variation of u on [0, t], that is ρu(t) =
∫ t

0
|u̇(τ)| dτ ∈ R+.

The function ρu is well defined as u̇ ∈ L1
loc(R+,R

n)1. It is
nondecreasing and absolutely continuous. Denote ρu,max =
lim
t→∞ ρu(t) and let

• Iu = [0, ρu,max] if ρu,max = ρu(t) for some t ∈ R+ (in
this case, ρu,max is necessarily finite).

• Iu = [0, ρu,max) if ρu,max > ρu(t) for all t ∈ R+ (in
this case, ρu,max may be finite or infinite).

Lemma 1. Let u ∈ W 1,∞(R+,R
n) be non-constant so that

the interval Iu is not reduced to a single point. Then there
exists a unique function ψu ∈ W 1,∞(Iu,R

n) that satisfies
ψu ◦ ρu = u. The function ψu satisfies

∥∥∥ψ̇u

∥∥∥
∞,Iu

= 1 and

μ
[{
� ∈ Iu/ψ̇u(�) is not defined or |ψ̇u(�)| �= 1

}]
= 0.

Consider the linear time scale change sγ(t) = t/γ, for any
γ > 0 and t ≥ 0.

Lemma 2. For all γ > 0, we have Iu◦sγ = Iu and ψu◦sγ =
ψu.

B. Class of operators

Let Ξ be a set of initial conditions. Let H be an operator
that maps the input function u ∈ W 1,∞(R+,R

n) and
initial condition ξ0 ∈ Ξ to an output in L∞(R+,R

m).
That is H : W 1,∞(R+,R

n) × Ξ → L∞(R+,R
m). The

operator H is said to be causal if the following holds
[30, p.60]: ∀ (u1, ξ0) , (u2, ξ0) ∈ W 1,∞(R+,R

n) × Ξ, if
u1 = u2 in [0, τ ], then H (

u1, ξ
0
)
= H (

u2, ξ
0
)

in [0, τ ].

Let (u, ξ0) ∈ W 1,∞(R+,R
n) × Ξ and let y = H (

u, ξ0
) ∈

L∞(R+,R
m). In the rest of this work, only causal operators

are considered.
Additionally, we consider that the operator H satisfies the
following.

Assumption 1. Let (u, ξ0) ∈ W 1,∞(R+,R
n) × Ξ; if there

exists a time instant θ ∈ R+ such that u is constant in [θ,∞),
then the corresponding output H(u, ξ0) is constant in [θ,∞).

Assumption 1 is verified by all causal and rate-independent
hysteresis operators (see for example [15, Proposition 2.1]
for a proof). This includes relay hysteresis, Ishlinskii model,
Preisach model, Krasnosel’skii and Pokrovskii hysteron and
generalized play [16]. Assumption 1 is also verified by some

1L1
loc(R+,Rn) is the space of locally integrable functions R+ → R

n.

causal and rate-dependent hysteresis models like the general-
ized Duhem model [18].

Lemma 3. There exists a unique function ϕu ∈ L∞(Iu,R
m)

that satisfies ϕu ◦ ρu = y. Moreover, we have ‖ϕu‖∞,Iu ≤
‖y‖∞. If y is continuous on R+, then ϕu is continuous on Iu
and we have ‖ϕu‖∞,Iu = ‖y‖∞.

C. Definition of consistency and strong consistency

Definition 1. Let u ∈ W 1,∞(R+,R
n) and initial condition

ξ0 ∈ Ξ be given. Consider an operator H :W 1,∞(R+,R
n)×

Ξ → L∞(R+,R
m) that is causal and that satisfies Assumption

1. The operator H is said to be consistent with respect to
input u and initial condition ξ0 if and only if the sequence of
functions {ϕu◦sγ}γ>0 converges in L∞(Iu,R

m) as γ → ∞.

Let T > 0. In what follows we consider that the input u is
T -periodic.

Definition 2. A T -periodic function w : R+ → R is said to
be wave periodic if there exists some T+ ∈ (0, T ) such that

• The function w is continuous on R+

• The function w is continuously differentiable on (0, T+)
and on (T+, T )

• The function w is increasing on (0, T+) and is decreasing
on (T+, T )

Lemma 4. If the input u ∈ W 1,∞(R+,R
n) is non-constant

and T -periodic, then Iu = R+ and ψu ∈ W 1,∞(R+,R
n) is

ρu (T )-periodic. Furthermore, if n = 1 and u is wave periodic,
then ψu is also wave periodic and ψ̇u (�) = 1 for almost
all � ∈ (0, ρu (T

+)) and ψ̇u (�) = −1 for almost all � ∈
(ρu (T

+) , ρu (T )).

For any positive integer k, define ϕ∗
u,k ∈ L∞ ([0, ρu (T )] ,R

m)
as

ϕ∗
u,k (�) = ϕ∗

u (ρu (T ) k + �) , ∀� ∈ [0, ρu (T )] .

Definition 3. The operator H is said to be strongly consistent
with respect to input u and initial condition ξ0 if and only if
it is consistent with respect to u and ξ0, and the sequence of
functions ϕ∗

u,k converges in L∞ ([0, ρu (T )] ,R
m) as k → ∞.

If the operator H is strongly consistent with respect
to input u and initial condition ξ0, then the graph
{(ϕ◦

u (�) , ψu (�)) , � ∈ [0, ρu (T )]} represents the so-called
hysteresis loop, where ϕ◦

u = limk→∞ ϕ∗
u,k.

III. PROBLEM STATEMENT

The LuGre model is given by [3]:

ẋ (t) = −σ0 |u̇ (t)|
g (u̇ (t))

x (t) + u̇ (t) , (1)

x(0) = x0, (2)
F (t) = σ0x (t) + σ1ẋ (t) + f (u̇ (t)) . (3)

where t ≥ 0 denotes time; the parameters σ0 > 0 and σ1 > 0
are respectively the stiffness and the microscopic damping
friction coefficients; the function g ∈ C0 (R,R) 2 represents

2C0(R,R) is the Banach space of continuous functions defined from R to
R, endowed with the norm ‖·‖∞ .
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the macrodamping friction with g (ϑ) > 0, ∀ϑ ∈ R; x(t) ∈ R

is the average deflection of the bristles; x0 ∈ R is the initial
state; u ∈ W 1,∞(R+,R) is the relative displacement and is
the input of the system; F (t) is the friction force and is the
output of the system; and f ∈ C0 (R,R) is a memoryless
function.

In Equation (1), the function g(u̇) is measurable [23, Theorem
1.12(d)]. Thus, the differential equation (1) can be seen as
a linear time-varying system that satisfies all assumptions
of [10, Theorem 3]. This implies that a unique absolutely
continuous solution of (1) exists on R+.

In equations (1)-(3), consider the following operators:
• The operator Hs : W 1,∞(R+,R) × R → L∞(R+,R)

such that Hs(u, x0) = x
• The operator Ho : W 1,∞(R+,R) × R → L∞(R+,R)

such that Ho(u, x0) = F

Now consider the following system.

ẋ (t) = −σ0 |v (t)|
g (v (t))

x (t) + v (t) , (4)

x(0) = x0, (5)
F (t) = σ0x (t) + σ1ẋ (t) + f (v (t)) . (6)

in which v ∈ L∞(R+,R). In equations (4)-(6), consider the
following operators:

• The operator H ′
s : L∞(R+,R)× R → L∞(R+,R) such

that H ′
s(v, x0) = x

• The operator H ′
o : L∞(R+,R)× R → L∞(R+,R) such

that H ′
o(v, x0) = F

Observe that the operators H ′
s and H ′

o are causal due to the
uniqueness of the solutions of Equation (1).
Consider the left-derivative operator Δ− defined on
W 1,∞(R+,R) by

[Δ−(u)](t) = lim
τ↑t

u(τ)− u(t)

τ − t

The operator Δ− is causal as [Δ−(u)](t) depends only on
values of u(τ) for τ ≤ t, and we have Δ−(u) = u̇ a.e. as
u ∈W 1,∞(R+,R) so that Δ−(u) ∈ L∞(R+,R).
Note that Hs = H ′

s ◦ Δ− and Ho = H ′
o ◦ Δ− so that the

operators Hs and Ho are causal. Observe also that Hs and
Ho satisfy Assumption 1.

Proposition 1. Let u ∈W 1,∞(R+,R). There exists a unique
function vu ∈ L∞ (Iu,R) that is defined by vu ◦ ρu = u̇.
Moreover, ‖vu‖∞,Iu ≤ ‖u̇‖∞. Assume that u̇ is nonzero on a
set A ⊆ R that satisfies μ (ρu(R\A)) = 0. Then, vu is nonzero
almost everywhere.

Proof. The operator Δ− : W 1,∞(R+,R) → L∞(R+,R) is
causal and satisfies Assumption 1. The first part of Proposition
1 follows immediately from Lemma 3. Now, let B = {� ∈
Iu/vu(�) = 0}, then B ⊆ ρu(R\A) which implies that
μ(B) = 0.

Remark 1. Observe that if u̇ is nonzero almost everywhere,
then μ (R\A) = 0 so that by [28] we have μ (ρu(R\A)) = 0

as ρu is absolutely continuous. An example in which u̇ does not
need to be nonzero almost everywhere, is when u is constant
on some interval, or on a finite number of intervals, or an
infinite number of intervals such that this infinite number has
measure zero (for example countable).

In the rest of the paper, we consider that the input u satisfies
the conditions of Proposition 1. Consider the time scale change
sγ(t) = t/γ, γ > 0, t ≥ 0. When the input u ◦ sγ is used
instead of u, system (1)-(3) becomes

ẋγ (t) = −σ0

∣∣∣ u̇◦sγ(t)γ

∣∣∣
g
(

u̇◦sγ(t)
γ

)xγ (t) + u̇ ◦ sγ (t)
γ

, (7)

xγ(0) = x0, (8)

Fγ (t) = σ0xγ (t) + σ1ẋγ (t) + f

(
u̇ ◦ sγ (t)

γ

)
. (9)

When γ = 1, system (7)-(9) reduces to (1)-(3).

Lemma 3 shows that for any γ > 0, there exists a unique
function xu◦sγ ∈ L∞ (Iu,R) such that xu◦sγ ◦ ρu◦sγ = xγ ,
and a unique function ϕu◦sγ ∈ L∞ (Iu,R) such that ϕu◦sγ ◦
ρu◦sγ = Fγ . Using the change of variables � = ρu◦sγ (t), it
follows from Equations (7)-(9), Lemma 2 and Proposition 1
that

ẋu◦sγ (�) = − σ0

g
(

vu(�)
γ

)xu◦sγ (�) + ψ̇u (�) , (10)

xu◦sγ (0) = x0, (11)

ϕu◦sγ (�) = σ0xu◦sγ (�) +
σ1
γ

|vu (�)| ẋu◦sγ (�)

+f

(
vu (�)

γ

)
, (12)

for all γ > 0 and for almost all � ∈ Iu.

Problem statement: The aim of this paper is to analyze the
convergence properties of the sequence of functions ϕu◦sγ in
order to study the consistency and strong consistency of the
operator Ho.

IV. MAIN RESULTS

This section presents the main result of the paper, which is
Lemma 6.

The following lemma generalizes Theorem 4.18 in [13,
p.172]. Indeed, in [13], continuous differentiability is needed,
while in Lemma 5, we only need absolute continuity. Also,
in [13], the inequality on the derivative of the Lyapunov
function is needed everywhere, while in Lemma 5 it is needed
only almost everywhere.

Lemma 5. Consider a function z : [0, ω) ⊆ R+ → R+, where
ω > 0 is finite or infinite. Assume the following

1) The function z is absolutely continuous on each compact
interval of [0, ω).
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2) There exist z1 ≥ 0 and z2 > 0 such that z1 < z2,
z (0) < z2 and{

ż (t) ≤ 0 for almost all t ∈ [0, ω)

that satisfy z1 < z (t) < z2.
(13)

Then, z (t) ≤ max (z (0) , z1) , ∀t ∈ [0, ω).

Example 1. We want to study the stability of the following
system

ẋ (t) = −x3 (t) + u (t) , (14)
x(0) = x0, (15)

where x0 and state x take values in R, and input
u ∈ W 1,∞(R+,R). System (14)-(15) has an absolutely
continuous solution that is defined on an interval of the form
[0, ω) [10, p.4].

Let z : [0, ω) → R+ be such that z (t) = x2 (t) , ∀t ∈ [0, ω).
The function z is absolutely continuous on each compact
subset of [0, ω) because x is absolutely continuous. Thus,
Condition 1 in Lemma 5 is satisfied.

We have for almost all t ∈ [0, ω) that{
ż (t) = 2x (t) · ẋ (t) = 2x (t)

(−x3 (t) + u (t)
)

≤ −2z2 (t) + 2 ‖u‖∞
√
z (t).

Thus,

ż (t) ≤ 0 for almost all t ∈ [0, ω) that satisfy ‖u‖2/3∞ < z (t) .

Therefore, Condition 2 in Lemma 5 is satisfied with
z1 = ‖u‖2/3∞ and z2 can be any positive real number
such that z2 > max (z (0) , z1) = max

(
x20, ‖u‖2/3∞

)
.

Thus, we deduce from Lemma 5 that z (t) ≤
max

(
z (0) , ‖u‖2/3∞

)
= max

(
x20, ‖u‖2/3∞

)
, ∀t ∈ [0, ω),

and hence |x (t)| ≤ max
(|x0| , 3

√‖u‖∞
)
, ∀t ∈ [0, ω).

Lemma 6. Let u ∈ W 1,∞(R+,R) be such that u̇ is nonzero
on a set A ⊆ R that satisfies μ (ρu(R\A)) = 0. Then the
following holds:

• There exist E, γ1 > 0 such that ‖Fγ‖∞ ≤ E, ∀γ > γ1.
3

• The operator Ho is consistent with respect to input u and
initial condition x0, that is there exists a unique function
ϕ∗
u ∈W 1,∞ (Iu,R) such that

lim
γ→∞

∥∥ϕu◦sγ − ϕ∗
u

∥∥
∞,Iu

= 0,

where

ϕ∗
u (�) = σ0e

−σ0�

g(0)

⎡
⎣x0 +

�∫
0

eσ0τ/g(0)ψ̇u (τ) dτ

⎤
⎦

+f (0) , ∀� ∈ Iu. (16)

Moreover, if u is T -periodic, then the operator Ho is strongly
consistent with respect to input u and initial condition x0. That

3Fγ is given in (9).

is, there exists a unique function ϕ◦
u ∈W 1,∞ ([0, ρu (T )] ,R)

such that

lim
γ→∞

∥∥ϕ∗
u,k − ϕ◦

u

∥∥
∞,[0,ρu(T )]

= 0,

where

ϕ◦
u (�) = σ0 h∞ (�) + f (0) , ∀� ∈ [0, ρu (T )] ,

ḣ∞ (�) =
−σ0
g (0)

h∞ (�)+ψ̇u (�) , for almost all � ∈ [0, ρu (T )] .

In this case, h∞ (0) may be different than x0.
Additionally, if the input u is wave periodic (see Definition 2),
then we have

ϕ◦
u (0) =

g (0)

e
σ0ρu(T )

g(0) − 1
·
(
2e

σ0ρu(T+)
g(0) − 1− e

σ0ρu(T )

g(0)

)
+f (0) ,

(17)
and

ϕ◦
u (�) =

⎧⎪⎪⎨
⎪⎪⎩
Q1e

−σ0�

g(0) + g (0) +Q (�) ∀� ∈ [0, ρu (T
+)]

Q2e
−σ0�

g(0) − g (0) +Q (�) ∀� ∈ [ρu (T
+) , ρu (T )]

where

Q1 = ϕ◦
u (0)− g (0) ,

Q2 = ϕ◦
u (0) + g (0)

(
2e

σ0ρu(T+)
g(0) − 1

)
,

Q (�) = f (0)
(
1− e

−σ0�

g(0)

)
, ∀� ∈ [0, ρu (T )] .

Example 2. Consider the LuGre model (1)-(3) with f (ϑ)
taking the form f (ϑ) = σ2ϑ, ∀ϑ ∈ R, where the parameter σ2
is the viscous friction coefficient. A possible choice for g (ϑ)
that leads to a reasonable approximation of the Stribeck effect
is [5]:

g (ϑ) = FC + (FS − FC) e
−|ϑ/vs|α , ∀ϑ ∈ R, (18)

where FC > 0 is the Coulomb friction force, FS > 0 is the
stiction force, vs > 0 is the Stribeck velocity, and α is a
positive constant.

Take σ0 = 4 N/m, vS = 0.001 m/s, FS = 3 N, FC = 1
N, σ1 = 1 Ns/m, σ2 = 1 Ns/m, and x (0) = 0 m. Let
u ∈ W 1,∞ (R+,R) be the wave periodic function of period
T = 2 s and with T+ = 1 s, such that u (t) = t (in meters),
∀t ∈ [0, 1] s, and u (t) = 2 − t, ∀t ∈ [1, 2] s. Then ρu is the
identity mapping and hence Iu = R+, ψu = u and vu = u̇
a.e. Note that T = ρu (T ) = 2 and T+ = ρu (T

+) = 1. The
functions u and g are plotted respectively in Fig. 1a and Fig.
1b.

Lemma 6 implies that the operator Ho is consistent
with respect to input u and initial condition x0; that is
limγ→∞

∥∥ϕu◦sγ − ϕ∗
u

∥∥
∞,Iu

= 0, where ϕ∗
u ∈ W 1,∞ (Iu,R)

is defined as

ϕ∗
u (�) = 4e−

4
3�

�∫
0

e4τ/3ψ̇u (τ) dτ, ∀� ∈ Iu = R+.
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(d) ϕu◦sγ (�) versus ψu (�) for different values of γ.
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Fig. 1: Simulations of Example 2.
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Moreover, the operator Ho is strongly consistent with respect
to input u and initial condition x0; that is

lim
γ→∞

∥∥ϕ∗
u,k − ϕ◦

u

∥∥
∞,[0,2]

= 0,

where ϕ◦ (0) = 3

e
8
3 −1

(
2e

4
3 − 1− e

8
3

)
≈ −1.7483488, and

ϕ◦ (�) =

{
e

−4�
3 [ϕ◦ (0)− 3] + 3 � ∈ [0, 1]

e
−4�
3

[
ϕ◦ (0) + 6e

4
3 − 3

]
− 3 � ∈ [1, 2]

Fig. 1c shows the uniform convergence of ϕu◦sγ to
ϕ∗
u as γ → ∞. Fig. 1d shows that the graphs{(
ϕu◦sγ (�) , ψu (�)

)
, � ∈ Iu = R+

}
converge to the set

{(ϕ∗
u (�) , ψu (�)) , � ∈ Iu = R+} as γ → ∞. The hysteresis

loop {(ϕ◦
u (�) , ψu (�)) , � ∈ [0, ρu (T )] = [0, 2]} in presented

in Fig. 1f. Fig. 1e shows the function ϕ◦
u (�) versus �. Observe

that ϕ◦
u (0) ≈ −1.7483488 is different than ϕ∗

u (0) = 0.

V. CONCLUSION

In this paper, the LuGre model is seen as an operator H
that associates to an input u and initial condition x0 an output
H(u, x0), all belonging to some appropriate spaces. Following
the research carried out in [12], the consistency and strong
consistency of the operator are analyzed. The main result of the
paper is given in Lemma 6. To illustrate this result, numerical
simulations are carried out in Example 2.
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