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    Abstract— This paper reports work done to improve the modeling 

of complex processes when only small experimental data sets are 

available. Neural networks are used to capture the nonlinear 

underlying phenomena contained in the data set and to partly 

eliminate the burden of having to specify completely the structure of 

the model. Two different types of neural networks were used for the 

application of pulping problem. A three layer feed forward neural 

networks, using the Preconditioned Conjugate Gradient (PCG) 

methods were used in this investigation. Preconditioning is a method 

to improve convergence by lowering the condition number and 

increasing the eigenvalues clustering. The idea is to solve the 

modified problem bMAxM 11  where M is a positive-definite 

preconditioner that is closely related to A. We mainly focused on 

Preconditioned Conjugate Gradient- based training methods which 

originated from optimization theory, namely Preconditioned 

Conjugate Gradient with Fletcher-Reeves Update (PCGF), 

Preconditioned Conjugate Gradient with Polak-Ribiere Update 

(PCGP) and Preconditioned Conjugate Gradient with Powell-Beale 

Restarts (PCGB). The behavior of the PCG methods in the 

simulations proved to be robust against phenomenon such as 

oscillations due to large step size. 

Keywords—Convergence, Pulping Modeling, Neural Networks, 

Preconditioned Conjugate Gradient 

I. INTRODUCTION

   Pulping is  a process that liberates fibers from the wood 

matrix which can be used for the production of paper.  This 

can be done via mechanical, chemical or a combination of the 

two processes. This paper deals with the later process where 

wood chips are digested in closed vessel filled with a solution 

of sodium hydroxide and (or) sodium sulfite at a particular 

temperature. After for a period of time, the pressure from the 

vessel is relieved, the partially cooked chips are removed and 

subjected to a mechanical process in a refiner to obtain the 

final pulp which was used to make laboratory paper sheets, 
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followed by evaluation using the Canadian Pulp and Paper 

Association Standards (CPPA).   

Because of the highly competitive nature of the pulp and 

paper industry, it is important that all processes are operated 

as close as possible to the optimal conditions.  In this respect, 

a reliable mechanistic or empirical model is required. 

Compounding the problem is the fact that it is usually very 

expensive to derive a comprehensive model and hence one has 

to rely only on a limited number of experiments.  The 

challenge is thus to derive a good model out of this small 

number of data sets [1].  One methodology to circumvent this 

problem is to use neural network.  

Neural networks are most widely used to solve problems 

because it resembles more closely to what scientists are used 

to manipulate since it is simply a nonlinear model that maps 

the input vector onto an output vector. Neural networks are 

more flexible. It can be manipulated using standard analysis 

tools such as post-training analysis (postreg) to test the 

generalization capability. Furthermore, neural networks can be 

developed using software packages compared with other 

models which are developed using mathematical analysis 

mainly.  

II. ALGORITHMS

The backpropagation method consists of three main layers-

input layers, output layers and hidden layers. The input nodes 

constitute the first layer and the output nodes constitute the 

output layer while the remaining nodes constitute hidden 

layers of the network. The input vector is presented to the 

input layer and the signals are propagated forward to the first 

hidden layer; the resulting outputs of the first hidden layer are 

in turn applied to the next hidden layer and the same 

procedure continues for the rest of the network. 

 The error signal ej(n) at the output of neuron j at iteration n

is defined by 

)()()( nyndne jjj         (1) 

where dj(n) and yj(n) is the desired and the actual response of 

neuron j at iteration n respectively. 

 Hence the instantaneous value (n) of the sum of squared 

error over all neurons can be written as 

2

1
)(n )(

2
ne

Cj

j         (2) 

where C indicates all the neurons in the output layer of the 

network. The average squared error over the total number of 

patterns N is given 
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The objective of the learning process is to adjust the free 

parameters (i.e. synaptic weights and thresholds) of the 

network so as to minimize av [2]. 

A. Conjugate Gradient (CG) Methods 

In optimization theory, the conjugate gradient method has 

been known since Fletcher and Reeves [3]. Leonard and 

Kramer [4] introduced the original Fletcher – Reeves 

algorithm in the field of neural network research. The 

conjugate direction is very effective. We can minimize a 

quadratic function exactly by searching along the eigenvectors 

of the Hessian matrix, since they form the principal axes of 

the function contours.  

Let us assume that the error function is quadratic in w, that 

is, it can be approximated to a quadratic function as  

Awwwbw
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where A is a symmetric positive definite matrix. Let p(n)

denotes the direction vector at iteration n of the algorithm. 

Then the weight vector of the network is updated in 

accordance with the rule 

)()()()1( nnnn pww        (5) 

where (n) is the learning-rate parameter.  

                Suppose the initial direction of minimization, which 

is started at w(0) is p(0) which is set equal to the negative 

gradient vector g(n) at the initial point n=0; that is, 

)0()0( gp           (6) 

A line minimization in the direction of p(0) results in a 

gradient at w(1) perpendicular to p(0).  In general,  

0)1()( nn gp
T          (7) 

Because we do not want to spoil this minimization step in 

subsequent minimizations, the gradient of subsequent points 

of minimization must also be perpendicular to p(n): 

0)2()( nn gp
T          (8) 

Therefore, with Eq. (7) and Eq. (8), 

0))1()2()(( nnn ggp
T        (9) 

Now, g(n+2) – g(n+1) is the change in the gradient as we 

move from w(n+1) to w(n+2). From Eq. (7), the gradient of E

at w(n) can be found to be 

bAwg )()( nn          (10) 

Therefore, 

)1()1()(0 nnnT
App        (11) 

or 

0)1()( nnT
App         (12) 

When Eq. (11) holds for two vectors p(n) and p(n+1), these 

vectors are said to be conjugate. 

There are various rules to determine (n) in order to ensure 

conjugacy of p(n) and p(n+1); two alternate rules are the 

following: 

The Fletcher-Reeves formula [3] 
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The Polak-Ribiere formula [5]: 
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B. Powell-Beale Restart Procedure 

The CG method can be improved by periodically resetting 

the search direction to the negative of the gradient. Since this 

procedure is ineffective, a restarting method that does not 

abandon the second derivative information is needed. One 

such reset method has been proposed by [6]. For this 

technique, we will restart if there is very little orthogonality 

left between the current gradient and the previous gradient. 

This is tested with the following inequality 

2
)(2.0)()1( nnnT

ggg        (15) 

If this condition is satisfied, the search direction is reset to 

the negative of the gradient. 

III. PRECONDITIONED CONJUGATE GRADIENT (PCG)

METHODS

Performance of the CG method is generally very sensitive 

to round off in the computations that may destroy the mutual 

conjugacy property.  Preconditioning is a technique for 

improving the condition number of a matrix. Intuitively, 

preconditioning is an attempt to stretch the quadratic form to 

make it appear more spherical so that the eigenvalues are 

closer to each other. If the eigenvalues are clustered, the 

condition number of a matrix will be less than 1[7]. Suppose 

that M  is a symmetric, positive-definite matrix that 

approximates A . We can solve bAx  indirectly by solving 

bMAxM
11          (16) 

If the eigenvalues of M-1
A are better clustered than those of 

A, we can iteratively solve equation (16) more quickly than 

the original problem. Due to the fact that most of the data sets 

are rectangular matrices, the QR factorization has been chosen 

to define the preconditioner. 

A preconditioned Conjugate Gradient algorithm consists of 

following steps: 

1. Select the first search direction to be the negative of the 

gradient, 

)0()0( 1
gMp         (17) 

2. Take a step selected learning rate n  to minimize the 

function along the search direction. 

)()()()1( nnnn pww       (18) 

3. Select the next search direction according to 

)()()]1([*)1( 1 nnnn pgMp    (19) 

where 
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due to Preconditioned Fletcher and Reeves, and 
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due to Preconditioned Polak Ribiere. 

4. If the algorithm has not converged, return to step (2) 

Preconditioned Powell-Beale Restart Procedure 

The Preconditioned Conjugate Gradient method can be 

improved by periodically resetting the search direction to the 

negative of the gradient. 

For this technique, we will restart if there is very little 

orthogonality left between the current gradient and the 

previous gradient. This is tested with the following inequality 
2

1-1 )(2.0)(*)1( nnnT
g*Mg*Mg     (22) 

If this condition is satisfied, the search direction is reset to the 

negative of the gradient. 

IV. APPLICATION TO THE PULPING PROBLEM

The Neural Network Toolbox in Matlab R12 version 6 [8] 

was used to simulate the training of this data set. The number 

of hidden nodes is determined by using the Blum’s “rules of 

thumb” [9]. Due to the very limited number of experimental 

data points, the choice of the architecture of the network 

becomes important. Two different types of neural networks 

were used for modeling this problem: 

4-6-5 network with 15 training vectors, 10 testing vectors 

5-6-4 network with 15 training vectors, 10 testing vectors 

Four inputs/outputs correspond to temperature, sodium 

hydroxide change, sodium sulfite change and plate gap. The 

five output / input nodes correspond to specific energy, 

freeness, breaking length, tear index and ISO brightness [1]. 

The training has been continued until 30,000 epochs reached 

within 0.01. This is because pulping is actually a functional 

approximation problem. Due to this, the network needs more 

time to learn and adapt to the data sets. 

Discussion of Results 

As can be observed, the PCG algorithms were able to 

provide enhanced convergence and accelerated training. From 

the experimental results for network I from Table I, it can be 

seen that an improvement of over 90% was observed for the 

PCG methods when compared with the BP, which is 

significantly better than the CG methods. Conversely, for 

network II (Table II), we observed that the PCG methods 

improved the convergence rate by a speed-up of between 75% 

and 94% compared with the BP method. Evaluating the 

performance of the network with new data from the testing 

set, that were not used in the training, the correlation 

coefficient, R, between the network output and the 

corresponding targets (Table III and Table IV), is near to 1 for 

the PCG methods, indicating good correlation of the data.   

This indicates that the corresponding targets explain the 

variation in the network outputs very well.  

Significant improvements over BP method are provided by 

CG and PCG methods. It is observed that the convergence of 

CG is smaller than PCG, even after 30,000 of the learning 

iterations, which takes nearly the same computation time. It 

appears that, when only a few points (15 training vectors) are 

available to model the network, the solution seems to get stuck 

at local minima values for the CG algorithms. This implies 

that, the choice of weights for the CG methods, are not 

appropriate. 

V. CONCLUSIONS

The fast and robust convergence of PCG, and the failure of 

CG methods to converge within 30,000 epochs, demonstrates 

the ability of the preconditioner to solve very complex 

learning tasks in large networks, where a suitable solution in 

weight space is difficult to find. 

Extensive computer simulations and performance 

comparisons with BP algorithm and CG methods have 

demonstrated the fast learning speed and high convergence 

accuracy of the considered learning algorithms. The 

corresponding targets explain the variation in the network 

outputs very well. The generalization properties using PCG 

methods for all trained neural networks have been found to be 

satisfactory from the application point of view. Overall, it can 

be concluded that modeling with neural networks can greatly 

improve the study of pulping problem for which experimental 

data sets are too expensive to obtain.
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TABLE  I

THE SIMULATION RESULTS FOR THE PULPING OF SUGAR MAPLE USING CONJUGATE GRADIENT, PRECONDITIONED CONJUGATE GRADIENT AND 

BACKPROPAGATION (BP) FOR NETWORK I

Algorithm  No. of iterations Mean squared error 

(MSE) 

% improvement 

over BP (%) 

No. of cases not 

converged 

Backpropagation TRAINGD 387,000 0.105507 - 0

  593,000 0.0780839 0

  471,000 0.0860886 0

  407,000 0.0927855 0

  303,000 0.132488 0

  439,000 0.0902982 0

Conjugate Gradient TRAINCGF 30,000 0.105507 92.25 3 

 TRAINCGP 30,000 0.0780839 94.94 3 

 TRAINCGB 30,000 0.0860886 93.63 0 

Preconditioned 

Conjugate Gradient 

TRAINPCGF 30,000 0.0927855 92.63 0 

 TRAINPCGP 30,000 0.132488 90.10 0 

 TRAINPCGB 30,000 0.0902982 93.17 0 

TABLE  II

THE SIMULATION RESULTS FOR THE PULPING OF SUGAR MAPLE USING CONJUGATE GRADIENT, PRECONDITIONED CONJUGATE GRADIENT AND 

BACKPROPAGATION (BP) FOR NETWORK II

Algorithm  No. of iterations Mean squared error 

(MSE) 

% improvement 

over BP (%) 

No. of cases not 

converged 

Backpropagation TRAINGD 281,000 0.150492 - 0 

  139,000 0.242895  0 

  317,000 0.137458  0 

  379,000 0.133812  0 

  121,000 0.275036  0 

  490,000 0.117163  0 

Conjugate Gradient TRAINCGF 30,000 0.150492 89.32 4 

 TRAINCGP 30,000 0.242895 78.42 7 

 TRAINCGB 30,000 0.137458 90.53 0 

Preconditioned 

Conjugate Gradient 

TRAINPCGF 30,000 0.133812 92.08 0 

 TRAINPCGP 30,000 0.275036 75.21 0 

 TRAINPCGB 30,000 0.117163 93.68 0 

TABLE  III

THE REGRESSION RESULTS FOR THE PULPING OF SUGAR MAPLE PROBLEM (NETWORK I)

Algorithm m b R 

Fletcher Reeves 0.72 0.103 0.849 

Polak Ribiere 0.795 -0.0178 0.917 

Powell Beale 0.802 0.00738 0.954 

Preconditioned Fletcher Reeves 0.786 -0.0527 0.949 

Preconditioned Polak Ribiere 0.744 -0.0319 0.945 

Preconditioned Powell Beale 0.73 -0.0336 0.966 

TABLE  IV

THE REGRESSION RESULTS FOR THE PULPING OF SUGAR MAPLE PROBLEM (NETWORK II)

Algorithm m b R 

Fletcher Reeves 0.00046 0.999 0.85 

Polak Ribiere 0.567 0.267 0.71 

Powell Beale 0.741 0.133 0.903 

Preconditioned Fletcher Reeves 1.87 -0.873 0.918 

Preconditioned Polak Ribiere 0.714 -0.00576 0.885 

Preconditioned Powell Beale 0.0666 0.756 0.946 


