
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:1, 2008

174

Addressing Scalability Issues of Named Entity Recognition
Using Multi-Class Support Vector Machines

Mona Soliman Habib

Abstract—This paper explores the scalability issues associated

with solving the Named Entity Recognition (NER) problem using
Support Vector Machines (SVM) and high-dimensional features. The
performance results of a set of experiments conducted using binary
and multi-class SVM with increasing training data sizes are
examined. The NER domain chosen for these experiments is the
biomedical publications domain, especially selected due to its
importance and inherent challenges. A simple machine learning
approach is used that eliminates prior language knowledge such as
part-of-speech or noun phrase tagging thereby allowing for its
applicability across languages. No domain-specific knowledge is
included. The accuracy measures achieved are comparable to those
obtained using more complex approaches, which constitutes a
motivation to investigate ways to improve the scalability of multi-
class SVM in order to make the solution more practical and useable.
Improving training time of multi-class SVM would make support
vector machines a more viable and practical machine learning
solution for real-world problems with large datasets. An initial
prototype results in great improvement of the training time at the
expense of memory requirements.

Keywords—Named entity recognition, support vector machines,

language independence, bioinformatics.

I. INTRODUCTION

AMED entity recognition (NER) is one of the important
tasks in information extraction, which involves the

identification and classification of words or sequences of
words denoting a concept or entity. Examples of named
entities in general text are names of persons, locations, or
organizations. Domain-specific named entities are those terms
or phrases that denote concepts relevant to one particular
domain. For example, protein and gene names are named
entities which are of interest to the domain of molecular
biology and medicine. The massive growth of textual
information available in the literature and on the Web
necessitates the automation of identification and management
of named entities in text.

The task of identifying named entities in a particular
language is often accomplished by incorporating knowledge
about the language taxonomy in the method used. In the
English language, such knowledge may include capitalization
of proper names, known titles, common prefixes or suffixes,
part of speech tagging, and/or identification of noun phrases
in text. Techniques that rely on language-specific knowledge
may not be suitable for porting to other languages. Moreover,
the composition of named entities in literature pertaining to
specific domains follows different rules in each, which may or
may not benefit from those relevant to general NER.

In previous work [11], a simple architecture that eliminates
language and domain-specific knowledge from the named
entity recognition process is applied to the English biomedical
entity recognition task, as a baseline for other languages and
domains. The biomedical field NER remains a challenging
task due to growing nomenclature, ambiguity in the left
boundary of entities caused by descriptive naming, difficulty
of manually annotating large sets of training data, strong
overlap among different entities, to cite a few of the NER
challenges in this domain. The approach used reduces the pre-
and post-processing of the textual data to a minimum and
capitalizes on SVM’s strong generalization ability to classify
the named entities. The accuracy measures achieved are
comparable to those obtained using more complex techniques,
which encourage us to explore ways to improve the scalability
of multi-class support vector machines. In this paper, the
results of a set of scalability experiments are reported. These
experiments use binary and multi-class SVM with a large set
of real-world data from the biomedical literature.

In Section II, the theory of binary and multi-class support
vector machines is briefly introduced. Section III describes the
experiments’ design and summarizes the results of a baseline
experiment conducted during the previous work [11] in order
to assess the feasibility of our language and domain-
independent machine learning NER approach using SVM and
high-dimensional features. The baseline experiment design
reduces pre-processing to feature extraction and eliminates the
use of prior language or domain knowledge. The results of the
baseline experiment are a motivation to explore ways to
address the scalability issues of the All-Together multi-class
SVM approach. Improving scalability of multi-class SVM
would provide the research community with a practical and
powerful machine learning solution for named entity
recognition that promotes the use of high-dimensional features
in place of more complex labor and time expensive pre- and
post-processing tasks, and simplifies the NER process while
achieving good accuracy and performance measures. In
Section IV, the results of several sets of single-class and
multi-class scalability tests using SVM and increasing training
data size are reported and their impact on training time is
examined. A sample of preliminary results using a prototype
multi-class implementation based on SVM-Perf is also
presented.

II. SUPPORT VECTOR MACHINES

The Support Vector Machine (SVM) is a powerful machine
learning tool based on firm statistical and mathematical
foundations concerning generalization and optimization

N

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:1, 2008

175

theory. SVM is based on Vapnik’s statistical learning theory
[32] and falls at the intersection of kernel methods and
maximum margin classifiers. Support vector machines have
been successfully applied to many real-world problems such
as face detection, intrusion detection, handwriting recognition,
information extraction, and others.

Support Vector Machine is an attractive method due to its
high generalization capability and its ability to handle high-
dimensional input data. Compared to neural networks or
decision trees, SVM does not suffer from the local minima
problem, it has fewer learning parameters to select, and it
produces stable and reproducible results. However, SVM
suffers from slow training especially with non-linear kernels
and with large input data size. Support vector machines are
primarily binary classifiers. Extensions to multi-class
problems are most often performed by combining several
binary machines in order to produce the final multi-
classification results. The more difficult problem of training
one SVM to classify all classes uses much more complex
optimization algorithms and are much slower to train than
binary classifiers.

A. Binary Support Vector Classification

Binary classification is the task of classifying the members
of a given set of objects into two groups on the basis of
whether they have some property or not. Many applications
take advantage of binary classification tasks, where the
answer to some question is either a yes or no. For example,
product quality control, automated medical diagnosis, face
detection, intrusion detection, or finding matches to a specific
class of objects. The mathematical foundation of Support
Vector Machines and the underlying Vapnik-Chervonenkis
dimension (VC Dimension) is described in details in the
literature covering the statistical learning theory [1, 2, 15, 18,
24, 32] and many other sources.

The main objective of support vector machines is to find the
optimal hyperplane separating positive and negative examples
by maximizing the margin between the two classes. In
mathematical terms, the problem is to find)()(bf i

T += xwx
with maximal margin, such that:

1=+ bi
T xw for data points that are support vectors

1>+ bi
T xw for other data points

Assuming a linearly separable dataset, the task of learning
coefficients w and b of support vector machine

)()(bf i
T += xwx reduces to solving the following

constrained optimization problem:
find w and b that minimize: 2

2
1 w

subject to: iby i
T

i ∀≥+ ,1)(xw

The original optimization problem can be rewritten as its
equivalent dual problem which finds α that maximizes

∑∑∑ αα−α
i j

j
T

ijiji
i

i yy xx2
1

subject to iy i
N
i ii ∀≥α=α∑ =

,0,01

In the non-linearly separable case, the margin maximization
technique may be relaxed by a degree of error in the
separation. Slack Variables ξi are introduced to represent the
error degree for each input data point. The optimization goal
in this case is to maximize the margin while minimizing the
slack variables, i.e., to find w and b that minimize:

∑ξ+
i

iC 22
2

1 w

subject to: iby iii
T

i ∀≥ξξ−≥+ ,0,1)(xw

In order to solve the non-linearly separable case, SVM
introduces the use of a mapping function Φ: RM → F to
translate the non-linear input space into a higher dimension
feature space where the data is linearly separable. The dual
formulation of the optimization problem in feature space is to
find α that maximizes:

∑∑∑ ΦΦ−
i j

j
T

ijiji
i

i yy)()(2
1 xxααα

subject to
iC

y

i

N
i ii

∀≤α≤

=α∑ =

,0

,01

The resulting SVM is of the form:

 bybf
N

i

T
iiii

T +ΦΦα=+Φ= ∑
=1

)()()()(xxxwx

B. Multi-class Support Vector Classification

For classification problems with multiple classes, different
approaches are developed in order to decide whether a given
data point belongs to one of the classes or not. The most
common approaches are those that combine several binary
classifiers and use a voting technique to make the final
classification decision. These include: One-Against-All [32],
One-Against-One [21], Directed Acyclic Graph (DAG) [26],
and Half-against-half method [23]. A more complex approach
is one that attempts to build one Support Vector Machine that
separates all classes at the same time. In this section, these
multi-class SVM approaches are briefly introduced. Fig. 1
compares the decision boundaries for three classes using a
One-Against-All SVM, a One-Against-One SVM, and an All-
Together SVM [1]. The interpretation of these decision
boundaries will be discussed the training and classification
techniques using each approach are defined.

1) One-Against-All Multi-Class SVM

One-Against-All [32] is the earliest and simplest multi-class
SVM. For a k-class problem, One-Against-All maximizes k
hyperplanes separating each class from all the rest by
constructing k binary SVMs. The ith SVM is trained with all

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:1, 2008

176

the samples from the ith class against all the samples from the
other classes. To classify a sample x, x is evaluated by all of
the k SVMs and the label of the class that has the largest value
of the decision function is selected.

Since all other classes are considered negative examples
during training of each binary classifier, the hyperplane is
optimized for one class only. As illustrated in Fig. 1,
unclassifiable regions exist when more than one classifier
returns a positive classification for an example x or when all
classifiers evaluate x as negative [1].

Fig. 1 Comparison of Multi-Class Boundaries

2) One-Against-One or Pairwise SVM

One-Against-One [21] constructs one binary machine
between pairs of classes. For a k-class problem, it constructs

2)1(−kk binary classifiers. To classify a sample x, the
sample is evaluated by each of the 2)1(−kk machines. The
class that gets the largest value of the decision function by
most machines is chosen as the classification of x.

Since One-Against-One separates two classes at a time, the
separating hyperplanes identified by this approach are tuned
better than those found with One-Against-All (Fig. 1).
Unclassifiable regions exist only when all classifiers evaluate
a sample x as negative.

3) Directed Acyclic Graph SVM

Similar to One-Against-One SVM, Directly Acyclic Graph
(DAG) [26] trains 2)1(−kk binary classifiers for pairwise
classes. To evaluate a sample x, this technique builds a DAG
ordering the classes 1 through k to make a decision. The
sample x is first evaluated by the first and the last classifier on
the DAG and eliminates the lower vote from the DAG. The
process is repeated until only one class remains and its label is
chosen [12]. Therefore, a decision is reached after (k – 1)
binary SVM evaluations. Unclassifiable regions are eliminated
by excluding one class at a time.

4) Half-Against-Half SVM

Half-Against-Half multi-class SVM [23] is useful for
problems where there is a close similarity between groups of
classes. Using Half-Against-Half SVM, a binary classifier is
built that evaluates one group of classes against another
group. The trained model consists of at most ⎡ ⎤k2log2 binary
SVMs. To classify a sample x, this technique identifies the
group of classes where the sample x belongs, than continues to
evaluate x with a subgroup, and so on, until the final class

label is found. The classification process is similar to a
decision tree that requires ⎡ ⎤k2log evaluations at most.

5) All-Together or All-At-Once SVM

An All-Together multi-classification approach is
computationally more expensive yet usually more accurate
than all other multi-classification methods. Hsu and Lin [12]
note that “as it is computationally more expensive to solve
multi-class problems, comparisons of these methods using
large-scale problems have not been seriously conducted.” The
experiments reported in this paper are an attempt to classify a
large-scale problem using this approach.

The All-Together approach builds one SVM that maximizes
all separating hyperplanes at the same time. Training data
representing all classes is used to generate the trained model.
With this approach, there are no unclassifiable regions as each
data point belongs to some class represented in the training
dataset. Fig. 1 illustrates the elimination of unclassifiable
regions in this case.

The All-together multi-class SVM poses a complex
optimization problem as it maximizes all decision functions at
the same time [9]. The idea is similar to the One-Against-All
approach. It constructs k two-class rules where the mth
function bxwT

m +)(φ separates training vectors of the class
m from the other vectors. There are k decision functions but
all are obtained by solving one problem. The primal
formulation of the optimization problem [1, 12] is to find:

∑ ∑
= =

+
k

m

l

i
im

T
mw

Cww
im 1 1, 2
1min ξ

ξ

such that,

myemye

liexwxw

i
m
ii

m
i

i
i
mi

T
mi

T
yi

≠≡=≡

=−≥−

 if ,1 and , if ,0 where

,...,1,)()(ξφφ

and the decision function is)(argmax k 1,...,m xwT
mφ=

.

Like binary SVM, it is easier to solve the dual problem,

∑∑ ∑
= = =

+=
l

i

l

j

l

i
i

T
ij

T
iji eKf

1 1 1
,2

1)(min αααα
α

such that,

 if, and if ,0

,...,1,,...1,0
1

myCmy

kmli

i
m
ii

m
i

k

i

m
i

=≠≠≤

===∑
=

αα

α

where)()(, j
T

iji xxK φφ=

The final decision function is ∑
=

=

l

i
i

m
i xxK

1
k 1,...,m),(argmax α .

Algorithms to decompose the problem [12] and to solve the
optimization problem [30] have been developed, however, the
All-Together multi-class SVM approach remains a daunting
task. The training time is very slow which makes the approach
so far unusable for real-world problems with a large data set
and/or a high number of classes. In this paper, an attempt to
use this approach with a large set of real-world data is
presented and its scalability issues are examined.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:1, 2008

177

C. SVM Scalability Challenges

Bennett and Campbell [5] discuss the common usability and
scalability issues of support vector machines. In this section
we summarize the SVM scalability challenges noted in the
literature and in practice, which include:
• Optimization requires O(n3) time and O(n2) memory for

single class training, where n is input size (depending on
algorithm used). To address this issue, new optimization
algorithms continue to be introduced [7, 8, 17, 28].

• Multi-class training time is much higher, especially for
All-Together optimization. The experimental results using
this approach are reported later in this paper.

• Multi-class performance depends on approach used and
deteriorates with more classes.

• Slow training, especially with large input datasets and/or
non-linear kernels, which may be addressed by reducing
the input data size (pruning [10], chunking [3], clustering
[4]), reducing the number of support vectors (model
decomposition and shrinking [14]), or reducing feature
dimensionality (using a priori clustering [4] or adaptive
clustering [6]).

In addition to the scalability issues, tuning support vector
machines requires the selection of a suitable kernel function
and model parameters. Model parameters are often selected
using a grid search, cross-validation, or heuristic-based
methods. Selection of a suitable kernel function for the
problem at hand is another designer-determined factor. Using
grid search and cross-validation to select the best model may
not be feasible with large datasets. The scalability and
performance experiments presented later show that smaller
data sets may be used instead.

III. BASELINE EXPERIMENTS

The baseline experiments [11] aim to identify biomedical
named entities using Support Vector Machines (SVM) [32],
due to their generalization capability and their ability to
handle high-dimensional feature and input space. The training
and testing data use the JNLPBA-04 shared task [20] data,
which is a subset of the GENIA annotated corpus [19] of
MEDLINE articles. The names of proteins, cell lines, cell
types, DNA and RNA entities are previously labeled. The
named entities are often composed of a sequence of words.
The training data includes 2,000 annotated abstracts
(consisting of 492,551 tokens). The testing data includes 404
abstracts (consisting of 101,039 tokens) annotated for the
same classes of entities. The fraction of positive examples
with respect to the total number of tokens in the training set
varies from about 0.2% to about 6%. Basic statistics about the
data sets as well as the absolute and relative frequencies for
named entities within each set can be found in [20].

The systems participating in the JNLPBA-04 task employ a
variety of machine learning techniques such as Support Vector
Machines (SVM), Hidden Markov Models (HMM),
Maximum Entropy Markov Models (MEMM) and

Conditional Random Fields (CRF). Five systems adopted
SVMs either in isolation [22, 25], or in conjunction with other
model [27, 29, 34]. The results of our baseline experiment
[11] are compared to the five systems using SVM listed
above, in addition to those reported in [10]. TABLE I
summarizes the performance comparison results in terms of
recall, precision, and Fβ=1-score.

The training and test data pre-processing involves
morphological and contextual features extraction only. No
language-specific pre-processing such as part-of-speech or
noun phrases tagging is used. No dictionaries, gazetteers, or
other domain-specific knowledge are used.

A. Features Selection

The training and testing data is preprocessed using the
JFEX software [10] in order to extract morphological and
contextual features. The generated feature space is very large,
including over a million different features in the complete
training dataset. All features are binary, i.e., each feature
denotes whether the current token possesses this feature (one)
or not (zero).

The morphological features extracted are:
• Capitalization: token begins with a capital letter.
• Numeric: token is a numeric value.
• Punctuation: token is a punctuation.
• Uppercase: token is all in uppercase.
• Lowercase: token is all in lowercase.
• Single character: token length is equal to one.
• Symbol: token is a special character.
• Includes hyphen: one of the characters is a hyphen.
• Includes slash: one of the characters is a slash.
• Letters and Digits: token is alphanumeric.
• Capitals and digits: token contains caps and digits.
• Includes caps: some characters are in uppercase.
• General regular expression summarizing word shape.
In addition to the morphological features, a contextual

collocation of tokens active over three positions around the
token itself is used in order to provide a moving window of
consecutive tokens which describes the context of the token
relative to its surrounding.

B. Baseline Performance Results

A comparison of the performance of the baseline multi-
class experiment [11] to other systems using SVM for
biomedical NER is presented in TABLE I. It is important to
note that the baseline experiment represents a worse-case
scenario for the potential performance of the system as it
focuses on assessing the feasibility of the simplified approach
only and no tuning is performed. The overall recall measure
achieved in this case is 62.43%, with a precision measure of
64.50%, and a final F-score of 63.45%.

The language-independent approach used in this experiment
performed very close to [25] and better than [22] which both
used SVM as the only learning model. Park et al. [25] used
character n-grams, orthographic information, word shapes,

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:1, 2008

178

gene sequences prior knowledge, word variations, part-of-
speech tags, noun phrase tags, and word triggers. Lee et al.
[22] used lexical features, character n-grams, and part-of-
speech tags in a two-phased model based on SVMs. Rössler
[27] adapted a NER-system for German to the biomedical
field. The system used character n-grams, orthographic
information, gene sequences prior knowledge, and word
length as features.

TABLE I

BASELINE MULTI-CLASS EXPERIMENT RESULTS
VS. SYSTEMS USING JNLPBA-04 DATA

System Overall Performance
Recall/Precision/F-Score

Zhou [34] 76.0 / 69.4 / 72.6
Giuliano [10] 64.4 / 69.8 / 67.0
Song [29] 67.8 / 64.8 / 66.3
Rössler [27] 67.4 / 61.0 / 64.0
Habib [11] 62.4 / 64.5 / 63.5
Park [25] 66.5 / 59.8 / 63.0
Lee [22] 50.8 / 47.6 / 49.1
Baseline [20] 52.6 / 43.6 / 47.7

Song et al. [29] used SVM in combination with Conditional

Random Fields (CRF) and included character n-grams,
orthographic information, and other lexical features in
addition to part-of-speech and noun phrase tagging. Giuliano
et al. [10] also incorporated part-of-speech tagging and word
features of tokens surrounding each analyzed token in
addition to features similar to those used in this experiment. In
addition, Giuliano et al. [10] pruned the data instances in order
to reduce the dataset size by filtering out frequent words from
the corpora because they are less likely to be relevant than
rare words.

Zhou and Su [34] developed the system that performed best
in the JNLPBA-04 task. Zhou and Su [34] used SVM in
conjunction with Hidden Markov Models in a more complex
learning method. The systems made use of many language-
specific and domain-specific knowledge such as character n-
grams, orthographic information, gene sequences, gazetteers,
part-of-speech tags, word triggers, abbreviations, and
cascaded entities. While this system performed better than the
baseline multi-class experiment, its heavy use of language and
domain-specific prior knowledge contradicts the promise of
the language and domain-independent approach [11].

Different machine configurations were tried during the
course of the baseline experiments. Due to the CPU-intensive
nature of the classification process, especially for the All-
Together multi-class case, the first successful multi-class
experiment ran on a Pentium IV quad-processor Linux-based
machine and completed in 17 days. The experiment was
repeated on a Xeon quad-processor 3.6 GHz machine and
completed in 4 days. The promising accuracy measures of the
language and domain-independent, yet simplified machine
learning approach, are a motivation to explore the scalability
issues and investigate ways to improve training time of multi-
class SVM. The following section reports the results of a

series of scalability experiments using single-class and multi-
class SVMs and examines the impact of training data size on
the training time using different SVM implementations.

IV. SVM SCALABILITY EXPERIMENTS

In this section, the results of several sets of scalability
experiments using single-class and multi-class SVM are
examined. These experiments use the same training and test
datasets described in Section III. The datasets represent a real-
world problem, namely the biomedical named entity
recognition, to identify the names of proteins, DNA, RNA,
cell lines, and cell types in biomedical abstracts. The approach
used promotes language and domain independence by
eliminating the use of prior language-specific and domain-
specific knowledge. Pre-processing of the training and test
datasets is limited to extracting morphological and contextual
features describing words in the biomedical abstracts and
representing each vector with a high-dimensional binary
vector. The input dimensionality of the training data exceeds a
million features. The training data is composed of 492,551
examples and the test data includes 101,039 tokens.

The scalability experiments train single-class and multi-
class support vector machines using chunks of the training
dataset with increasing size. The trained model is then used to
classify named entities in the complete test dataset. The
training time is noted in each experiment as well as the
number of support vectors and the accuracy measures
achieved. Several sets of experiments are conducted, which
include:
• Single-class experiments identifying protein names using

the popular SVM implementation by Thorsten Joachims,
SVM-Light [13-15], and different training data sizes.

• Multi-class experiments identifying all five named
entities (protein, DNA, RNA, cell line, and cell type)
using Joachims’ All-Together multi-class implementation,
SVM-Multiclass [9, 30], and different training data sizes.

• Single-class experiments identifying protein names only
using the new SVM implementation, SVM-Perf [16, 17,
30, 31], and different training data sizes.

• The training data chunks range from 1,000 examples to
492,551 examples (the complete training dataset). Each
set of experiments consists of 51 tests.

• Single-class experiments using SVM-Perf [16, 17, 30, 31]
and varying values of the training error vs. margin error
trade-off factor C. The training data size used for this
round is fixed at 150,000 examples. The C-Factor values
are reported in their SVM-Light equivalent for easier
comparison and range from 0.01 to 1.0 in increments of
0.01. This set of experiments consists of 100 tests.

• All experiments use a linear kernel and a margin error of
0.1. The tests run on an Intel Core 2 quad-processor 2.66
GHz machine and a Xeon quad-processor 3.6 GHz
machine. Running the same test on both machines
completed in similar training time.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:1, 2008

179

A. Single-Class Results

Using SVM-Light [13-15], a single-class support vector
machine is trained to recognize protein name sequences. The
trained machine is then used to classify proteins in the test
data. Since no pre-processing was performed on the training
and testing data besides features extraction, the positive
examples in the data sets remained scarce. Training the SVM-
Light machine with the complete training dataset and a trade-
off value of 0.01 completed in about 28.5 minutes. The recall,
precision, and F-score achieved in this case are 62.72, 56.12,
and 59.23 respectively. Increasing the trade-off value to 1.0
raised the training time to about 269 minutes, and improved
the accuracy measures to 68.92, 58.58, and 63.33 respectively.
The SVM-Light curve in Fig. 2 summarizes the training time
versus increased training data size. The training time is found
to be polynomial O(n2) w.r.t. the training data size.

The same set of experiments is repeated using SVM-Perf
[16, 17, 30, 31], which improves training time of linear
machines to be linear w.r.t. the training data size. The training
time improvement using SVM-Perf is several orders of
magnitude as compared to that using SVM-Light, with the
same classification results when trained with the same
learning parameters. Fig. 2 compares the training time using
both SVM-Light and SVM-Perf with the same data and
learning parameters.

y = 6E-09x2 + 0.0003x

y = 0.0006x

0

200

400

600

800

1,000

1,200

1,400

1,600

1,800

0 50,000 100,000 150,000 200,000 250,000 300,000 350,000 400,000 450,000 500,000

of Training Examples

Tr
ai

ni
ng

 T
im

e
(s

ec
)

SVM-Perf

SVM-Light

Fig. 2 Comparison of SVM-Light and SVM-Perf

Training Time vs. Training Data Size

Training time is clearly enhanced to linear time using SVM-
Perf. This is a major improvement in the field of support
vector machines which makes training linear binary SVM and
linear multi-class SVM approaches that are based on
combining binary machines much more feasible and practical
for real-world applications. This is particularly useful for text
applications such as named entity recognition which have
been shown to be mostly linear [33]. Using different learning
parameters with both SVM-Light and SVM-Perf leads to the
same conclusion, as the training time using SVM-Light
remains polynomial O(n2) while being linear using SVM-Perf.

As a result of the observation of the enhanced accuracy
measures with different training error vs. margin error trade-
off factor values, and the associated impact on training time, a
series of experiments investigating the effect of the trade-off

factor C on training time is conducted using SVM-Perf. Since
the training time is consistently longer with SVM-Light than it
is with SVM-Perf, one can easily extrapolate the impact of the
trade-off factor C on SVM-Light training time. The variation
of training time w.r.t. the variation of the trade-off factor C is
presented in Fig. 3. The training time scales in O(C).

0

100

200

300

400

500

600

700

800

900

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

SVM-Light C Factor

Tr
ai

ni
ng

 T
im

e
(s

ec
)

Fig. 3 SVM-Perf Training Time vs. Variation of C-Factor

As the variation of C clearly impacts the training time, its
impact on various accuracy measures is investigated to assess
whether it is possible to perform a grid search for tuning the
learning parameters using a subset of the training dataset. A
set of experiments using different training data sizes and a
range of C values is conducted and the accuracy measures
achieved are noted. TABLE II presents a sample of these results
at training data size of 25,000, 250,000, and the complete set
and some values of C. These experiments show that the
accuracy improvement with varying C is consistent with
different training data sizes, where the accuracy measures
reach their best values within a very close range of C values.
Using the same learning parameter for multi-class training
reflects the same consistency in accuracy enhancement.

TABLE II

CONSISTENT PERFORMANCE CHANGE WITH VARYING C-FACTOR
Training
Data Size

Trade-Off
Factor C

Performance
Recall/Precision/F-Score

C=0.01 32.72 / 38.55 / 35.40
C=0.12 53.74 / 48.87 / 51.19
C=0.14 53.51 / 48.66 / 50.97
C=0.20 53.58 / 48.28 / 50.79

25,000

C=1.00 52.29 / 47.54 / 49.80
C=0.01 58.32 / 53.68 / 55.90
C=0.12 69.11 / 60.09 / 64.29
C=0.14 69.05 / 60.01 / 64.21
C=0.20 68.11 / 59.11 / 63.29

250,000

C=1.00 65.03 / 56.88 / 60.69
C=0.01 62.72 / 56.12 / 59.23
C=0.12 73.04 / 62.48 / 67.34
C=0.14 72.72 / 62.16 / 67.03
C=0.20 72.52 / 61.81 / 66.74

492,551

C=1.00 68.06 / 59.29 / 63.37

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:1, 2008

180

This observation is very useful for tuning the learning
parameters with a subset of the training dataset in order to
achieve better accuracy with larger training data size during
the final learning phase. Note that the F-score for protein
single-class classification improved considerably using a C
value of 0.12, with an eight points improvement over that
achieved with C value of 0.01. Increasing the trade-off factor
C any further led to a decline in the F-score measure, as
observed in TABLE II. This shows that one can reach a
reasonable trade-off between training time and the final
accuracy measures by tuning the support vector machine with
a fraction of the training dataset.

Comparing the accuracy measures improvement in the
single-class training case (an F-score increase from 59.23 to
67.34), combined with the All-Together multi-class improved
F-score of protein names from 59.23 to 65.90 using a C factor
of 0.01 [11], leads one to believe that the potential accuracy
improvement using All-Together multi-class training and a
tuned value of the C factor would be a substantial motivation
to use this technique with the proposed simplified machine
learning technique for named entity recognition. The main
prohibiting consideration in the time being is the extremely
slow training time. An SVM-multiclass experiment with
C=0.12 is currently being conducted to prove the potential
enhancement of accuracy measures.

As part of the scalability experiments, the impact of the
number of support vectors on training time is also observed as
well as its relation to the training data size using both
implementations. Fig. 4 and Fig. 5 depict the variation of the
number of support vectors with the training data size using
SVM-Light and SVM-Perf, respectively.

y = 0.8356x0.8727

0

10,000

20,000

30,000

40,000

50,000

60,000

70,000

80,000

90,000

0 50,000 100,000 150,000 200,000 250,000 300,000 350,000 400,000 450,000 500,000

of Training Examples

of

 S
up

po
rt

Ve
ct

or
s

Fig. 4 SVM-Light Number of Support Vectors

vs. Training Data Size

The number of support vectors using SVM-Light is O(n0.8)
w.r.t. the training data size. However, using SVM-Perf, the
number of support vectors was only a very small fraction of
the training data size and increased slightly with increased
data size. The reduced number of support vectors is the main
basis for the improved training time of SVM-Perf. The
relationship between the number of support vectors and the
training time is observed to be the same as that of the training
data size, i.e., training time is polynomial w.r.t. the number of
support vectors with SVM-Light, and linear with SVM-Perf.

0

5

10

15

20

25

30

35

40

45

0 50,000 100,000 150,000 200,000 250,000 300,000 350,000 400,000 450,000 500,000

of Training Examples

of

 S
up

po
rt

V
ec

to
rs

Fig. 5 SVM-Perf Number of Support Vectors

vs. Training Data Size

B. Multi-Class Results

The SVM-Multiclass implementation by T. Joachims is
based on [9] and uses a different quadratic optimization
algorithm described in [30]. The SVM-Multiclass
implementation uses an All-Together multi-classification
approach, which is computationally more expensive yet
usually more accurate than One-Against-All or One-Against-
One multi-classification methods. Hsu and Lin [12] note that
“as it is computationally more expensive to solve multi-class
problems, comparisons of these methods using large-scale
problems have not been seriously conducted. Especially for
methods solving multi-class SVM in one step, a much larger
optimization problem is required so up to now experiments are
limited to small data sets.” The multi-class experiments
presented herein attempt to solve a real-world large-scale
problem using an All-Together classification method. The
training data is composed of 11 classes where each named
entity is represented by two classes – one denoting the
beginning of an entity and the other denoting a continuation
token within the same entity – in addition to one class
denoting non-named entity tokens.

Initial experiments for multi-class classification were
unsuccessful, mostly due to hitting the processing power
limits of the testing machines. The same experiments were
attempted on different machine configurations, and
unreasonably long processing time was needed to finally
complete training using the complete training dataset. The first
successful experiment required a total learning and
classification time of 17 days in order to complete using a
serial algorithm on a quad-processor Pentium IV machine.
The same experiment was repeated on a Linux machine with
four Xeon 3.6 GHz processors and completed in 97 hours or
four days and one hour.

To explore the scalability issues of the All-Together multi-
class SVM implementation, a series of experiments using
different training data sizes is conducted with a low value for
the C learning parameter equal to 0.01. The training time with
1,000 examples was 3.187 seconds and it increased
considerably with increased data size to reach 416,264.251
seconds (6,937.738 minutes or 4.8 days) on the same machine.

The SVM-Multiclass [9, 30] implementation is based on the
learning implementation in SVM-Light [13-15]. Fig. 6 reports

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:1, 2008

181

the variation of the multi-class training time w.r.t. the training
data size. The relationship remains polynomial O(n2) w.r.t. the
training data size and a factor of O(k2) increase in time as
compared to the single-class SVM-Light time, where k is the
number of classes. Fig. 7 compares the training time of single-
class training time using SVM-Light or SVM-Perf as
compared to that of the multi-class implementation. It is clear
that the training time required for All-Together multi-class
training is prohibiting to using this approach with large
datasets, unless new implementations are developed to address
this issue.

y = 2E-06x2 + 0.1166x

0

50,000

100,000

150,000

200,000

250,000

300,000

350,000

400,000

450,000

0 50,000 100,000 150,000 200,000 250,000 300,000 350,000 400,000 450,000 500,000

of Training Examples

Tr
ai

ni
ng

 T
im

e
(s

ec
)

Fig. 6 SVM-Multiclass Training Time

vs. Training Data Size

0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

16,000

18,000

20,000

0 50,000 100,000 150,000 200,000 250,000 300,000 350,000 400,000 450,000 500,000

of Training Examples

Tr
ai

ni
ng

 T
im

e
(s

ec
)

SVM-Multiclass

SVM-Light

SVM-Perf

Fig. 7 Single and Multi-Class Training Time

vs. Training Data Size

The observation of the number of support vectors (SV)

produced by SVM-Multiclass in relationship to the training
data size (Fig. 8) shows that the number of SVs is O(n0.8)
w.r.t. the training data size. This is the same relationship
observed with the number of SVs produced in the single-class
case using SVM-Light. Since SVM-Multiclass uses the same
learning modules of SVM-Light, one may anticipate a
potential scalability improvement by developing a new All-
Together multi-class implementation based on the improved
learning time of SVM-Perf.

y = 4.6094x0.7977

0

20,000

40,000

60,000

80,000

100,000

120,000

140,000

160,000

0 50,000 100,000 150,000 200,000 250,000 300,000 350,000 400,000 450,000 500,000

of Training Examples

of

 S
up

po
rt

 V
ec

to
rs

Fig. 8 SVM-Multiclass Number of Support Vectors

vs. Training Data Size

Fig. 9 presents the impact of the training data size on the
multi-class classification performance measures in terms of
precision, recall, and Fβ=1-score. It is noted that the
performance measures improve sharply with increased
training data size in the low range of sizes, while only slight
improvement, if any, is achieved with further increase in
training data size. The trade-off between the potential
performance enhancement vs. the cost of training in terms of
computational time and memory needs may need to be
considered when applying the All-Together multi-
classification technique to large datasets.

10

20

30

40

50

60

70

0 50,000 100,000 150,000 200,000 250,000 300,000 350,000 400,000 450,000 500,000

of Training Examples

Pe
rfo

rm
an

ce
 %

Fig. 9 SVM-Multiclass Overall Performance vs. Training Data Size
From Top to Bottom: Precision, F-Score, and Recall

Finally, a comparison of the training time of the All-

Together experimental results to estimates of the training time
using approaches based on combining binary SVM classifiers
– namely One-Against-All, One-Against-One, and Half-
Against-Half approaches – is presented. Fig. 10 compares the
experimental multi-class experimental results to estimates of
the training time using the other approaches based on SVM-
Light single-class results with the same learning parameters.
The comparison weighs against using the All-Together
approach despite the potential accuracy enhancement, until a
new implementation is available to improve its scalability.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:1, 2008

182

0

50,000

100,000

150,000

200,000

250,000

300,000

350,000

400,000

450,000

0 50,000 100,000 150,000 200,000 250,000 300,000 350,000 400,000 450,000 500,000

of Training Examples

Tr
ai

ni
ng

 T
im

e
(s

ec
)

All-Together
Experimental

One-vs-One
Estimate

One-vs-All
Estimate

Half-vs-Half
Estimate

Fig. 10 Multi-Class Training Time Using Various Approaches

Estimates Based on SVM-Light Binary Training Time

In order to investigate the potential improvement in training

for multi-class learning using the learning algorithms
implemented in SVM-Perf [17] for training linear machines,
an initial prototype is developed and the preliminary
experiments using this prototype resulted in a tremendous
improvement of the training time while achieving the same
accuracy measures as SVM-Multiclass. The new prototype
implementation is referred to as SVM-PerfMulti. A sample of
the training time results is reported in TABLE III. These initial
scalability improvement results are very promising and a
complete analysis is currently undergoing in order to
implement the full multi-class learning solution for linear
machines. The initial prototype improves the training time at
the expense of increased memory needs. Further investigation
is needed in order to improve the memory consumption.

TABLE III

COMPARISON OF SVM-PERFMULTI AND SVM-MULTICLASS
TRAINING TIME VS. TRAINING DATA SIZE

Training
Data Size

SVM-Multiclass
Training Time

(seconds)

SVM-PerfMulti
Training Time

(seconds)

5,000 94.213 3.028
10,000 355.101 10.232
20,000 1,453.887 39.689
50,000 7,784.148 175.413
100,000 23,531.920 518.839
200,000 91,632.975 1,624.452
300,000 165,178.301 3,522.994

V. CONCLUSION AND FUTURE WORK

In this paper, a series of experiments is presented in order to
explore the scalability issues associated with solving the
named entity recognition problem using multi-class support
vector machines and high-dimensional features. Baseline
experiment results have shown that the proposed language and
domain-independent approach is capable of successfully
recognizing and classifying named entities with reasonable
accuracy measures. These measures are further improved by

tuning the learning parameters at the expense of longer
training time. The potential improvement in the classification
accuracy measures using an All-Together multi-class training
and tuned parameters constitute a motivation to investigate
ways to improve the scalability of this technique.

The new implementation of binary SVM classifiers, SVM-
Perf, offers a great improvement in training time with
consistent accuracy performance measures compared to those
obtained using the currently popular SVM-Light
implementation. We strongly recommend switching to SVM-
Perf for training linear SVM machines. An initial prototype
focused on improving scalability of the All-Together multi-
class technique using the learning algorithms of SVM-Perf
results in a tremendous improvement in the training time but
increases the memory needs. The preliminary results are
encouraging and further analysis and implementation of the
improved All-Together multi-class learning and classification
is currently undergoing.

REFERENCES
[1] S. Abe, Support Vector Machines for Pattern Classification. London:

Springer-Verlag, 2005.
[2] E. Alpaydin, Introduction to Machine Learning. Cambridge, MA: The

MIT Press, 2004.
[3] T. Ban and S. Abe, "Spatially Chunking Support Vector Clustering

Algorithm," in Proc. of the IEEE International Joint Conference on
Neural Networks, Grenoble, France, 2004.

[4] M. Barros de Almeida, A. de Padua Braga, et al., "SVM-KM: Speeding
SVMs Learning with A Priori Cluster Selection and K-Means," in Proc.
of the 6th Brazilian Symposium on Neural Networks, 2000.

[5] K. P. Bennett and C. Campbell, "Support Vector Machines: Hype or
Hallelujah?," SIGKDD Explor. Newsl., vol. 2, pp. 1-13, 2000.

[6] D. Boley and D. Cao, "Training Support Vector Machine using Adaptive
Clustering," in Proc. of the 4th SIAM International Conference on Data
Mining, Lake Buena Vista, Florida, 2004.

[7] R. Collobert, F. Sinz, et al., "Large Scale Transductive SVMs," Journal
of Machine Learning Research, pp. 1687-1712, 2006.

[8] R. Collobert, F. Sinz, et al., "Trading Convexity for Scalability," in Proc.
of the 23rd international conference on Machine learning, Pittsburgh,
PA, 2006.

[9] K. Crammer and Y. Singer, "On the Algorithmic Implementation of
Multi-class SVMs," Journal of Machine Learning Research, vol. 2, pp.
265–292, 2001.

[10] C. Giuliano, A. Lavelli, et al., "Simple Information Extraction (SIE),"
ITC-irst, Istituto per la Ricerca Scientifica e Tecnologica, 2005.

[11] M. S. Habib and J. Kalita, "Language and Domain-Independent Named
Entity Recognition: Experiment using SVM and High-Dimensional
Features," in Proc. of the 4th Biotechnology and Bioinformatics
Symposium (BIOT-2007), Colorado Springs, CO, 2007.

[12] C.-W. Hsu and C.-C. Lin, "A Comparison of Methods for Multi-Class
Support Vector Machines," IEEE Transactions on Neural Networks, vol.
13, pp. 415-425, 2002.

[13] T. Joachims, "Text Categorization with Support Vector Machines:
Learning with Many Relevant Features," in Proc. of the European
Conference on Machine Learning, 1998.

[14] T. Joachims, "Making Large-Scale SVM Learning Practical," in
Advances in Kernel Methods - Support Vector Learning, B. Schölkopf,
C. Burges, and A. Smola, Eds.: MIT-Press, 1999.

[15] T. Joachims, Learning to Classify Text Using Support Vector Machine.
Norwell, MA: Kluwer Academic, 2002.

[16] T. Joachims, "A Support Vector Method for Multivariate Performance
Measures," in Proc. of the International Conference on Machine
Learning (ICML), 2005.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:1, 2008

183

[17] T. Joachims, "Training Linear SVMs in Linear Time," in Proc. of the
ACM Conference on Knowledge Discovery and Data Mining (KDD),
2006.

[18] V. Kecman, Learning and Soft Computing. London, UK: The MIT
Press, 2001.

[19] J. D. Kim, T. Ohta, et al., "GENIA Corpus--Semantically Annotated
Corpus for Bio-Textmining," Bioinformatics, vol. 19 Suppl 1, pp. 180-
182, 2003.

[20] J.-D. Kim, T. Ohta, et al., "Introduction to the Bio-Entity Recognition
Task at JNLPBA," in Proc. of the 2004 Joint Workshop on Natural
Language Processing in Biomedicine and its Applications
(JNLPBA'2004), Geneva, Switzerland, 2004.

[21] U. H.-G. Kreßel, "Pairwise Classification and Support Vector
Machines," in Advances in Kernel Methods: Support Vector Learning.
Cambridge, MA: MIT Press, 1999, pp. 255-268.

[22] K.-J. Lee, Y.-S. Hwang, et al., "Biomedical Named Entity Recognition
using Two-Phase Model Based on SVMs," Journal of Biomedical
Informatics, vol. 37, pp. 436-447, 2004.

[23] H. Lei and V. Govindaraju, "Half-Against-Half Multi-class Support
Vector Machines," in Proc. of the 6th International Workshop on
Multiple Classifier Systems, Seaside, CA, USA, 2005.

[24] K.-R. Müller, S. Mika, et al., "An Introduction to Kernel-Based Learning
Algorithms," IEEE Transactions on Neural Networks, vol. 12, pp. 181-
120, 2001.

[25] K.-M. Park, S.-H. Kim, et al., "Incorporating Lexical Knowledge into
Biomedical NE Recognition," in Proc. of the 2004 Joint Workshop on
Natural Language Processing in Biomedicine and its Applications
(JNLPBA'2004), Geneva, Switzerland, 2004.

[26] J. C. Platt, N. Cristianini, et al., "Large Margin DAGs for Multiclass
Classification," in Advances in Neural Information Processing Systems,
vol. 12, S. A. Solla, T. K. Leen, and K.-R. M¨uller, Eds. Cambridge,
MA: MIT Press, 2000, pp. 547-553.

[27] M. Rössler, "Adapting an NER-System for German to the Biomedical
Domain," in Proc. of the 2004 Joint Workshop on Natural Language
Processing in Biomedicine and its Applications (JNLPBA'2004),
Geneva, Switzerland, 2004.

[28] T. Serafini and L. Zanni, "On the Working Set Selection in Gradient
Projection-based Decomposition Techniques for Support Vector
Machines," Optimization Methods and Software, pp. 583-596, 2005.

[29] Y. Song, E. Kim, et al., "POSBIOTM-NER in the Shared Task of
BioNLP/NLPBA 2004," in Proc. of the 2004 Joint Workshop on Natural
Language Processing in Biomedicine and its Applications
(JNLPBA'2004), Geneva, Switzerland, 2004.

[30] I. Tsochantaridis, T. Hofmann, et al., "Support Vector Learning for
Interdependent and Structured Output Spaces," in Proc. of the 21st
International Conference on Machine Learning (ICML), Alberta,
Canada, 2004.

[31] I. Tsochantaridis, T. Joachims, et al., "Large Margin Methods for
Structured and Interdependent Output Variables," Journal of Machine
Learning Research (JMLR), vol. 6, pp. 1453-1484, 2005.

[32] V. N. Vapnik, Statistical Learning Theory. New York, NY: John Wiley
& Sons, 1998.

[33] Y. Wong and H. T. Ng, "One Class per Named Entity: Exploiting
Unlabeled Text for Named Entity Recognition," in Proc. of the 20th
International Joint Conference on Artificial Intelligence (IJCAI-07),
Hyderabad, India, 2007.

[34] G. Zhou and J. Su, "Exploring Deep Knowledge Resources in
Biomedical Name Recognition," in Proc. of the 2004 Joint Workshop on
Natural Language Processing in Biomedicine and its Applications
(JNLPBA'2004), Geneva, Switzerland, 2004.

