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Abstract—This paper explores the scalability issues associated 

with solving the Named Entity Recognition (NER) problem using 
Support Vector Machines (SVM) and high-dimensional features. The 
performance results of a set of experiments conducted using binary 
and multi-class SVM with increasing training data sizes are 
examined. The NER domain chosen for these experiments is the 
biomedical publications domain, especially selected due to its 
importance and inherent challenges. A simple machine learning 
approach is used that eliminates prior language knowledge such as 
part-of-speech or noun phrase tagging thereby allowing for its 
applicability across languages. No domain-specific knowledge is 
included. The accuracy measures achieved are comparable to those 
obtained using more complex approaches, which constitutes a 
motivation to investigate ways to improve the scalability of multi-
class SVM in order to make the solution more practical and useable. 
Improving training time of multi-class SVM would make support 
vector machines a more viable and practical machine learning 
solution for real-world problems with large datasets. An initial 
prototype results in great improvement of the training time at the 
expense of memory requirements. 
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I. INTRODUCTION 

AMED entity recognition (NER) is one of the important 
tasks in information extraction, which involves the 

identification and classification of words or sequences of 
words denoting a concept or entity. Examples of named 
entities in general text are names of persons, locations, or 
organizations. Domain-specific named entities are those terms 
or phrases that denote concepts relevant to one particular 
domain. For example, protein and gene names are named 
entities which are of interest to the domain of molecular 
biology and medicine. The massive growth of textual 
information available in the literature and on the Web 
necessitates the automation of identification and management 
of named entities in text. 

The task of identifying named entities in a particular 
language is often accomplished by incorporating knowledge 
about the language taxonomy in the method used. In the 
English language, such knowledge may include capitalization 
of proper names, known titles, common prefixes or suffixes, 
part of speech tagging, and/or identification of noun phrases 
in text. Techniques that rely on language-specific knowledge 
may not be suitable for porting to other languages. Moreover, 
the composition of named entities in literature pertaining to 
specific domains follows different rules in each, which may or 
may not benefit from those relevant to general NER. 

In previous work [11], a simple architecture that eliminates 
language and domain-specific knowledge from the named 
entity recognition process is applied to the English biomedical 
entity recognition task, as a baseline for other languages and 
domains. The biomedical field NER remains a challenging 
task due to growing nomenclature, ambiguity in the left 
boundary of entities caused by descriptive naming, difficulty 
of manually annotating large sets of training data, strong 
overlap among different entities, to cite a few of the NER 
challenges in this domain. The approach used reduces the pre- 
and post-processing of the textual data to a minimum and 
capitalizes on SVM’s strong generalization ability to classify 
the named entities. The accuracy measures achieved are 
comparable to those obtained using more complex techniques, 
which encourage us to explore ways to improve the scalability 
of multi-class support vector machines. In this paper, the 
results of a set of scalability experiments are reported. These 
experiments use binary and multi-class SVM with a large set 
of real-world data from the biomedical literature.  

In Section II, the theory of binary and multi-class support 
vector machines is briefly introduced. Section III describes the 
experiments’ design and summarizes the results of a baseline 
experiment conducted during the previous work [11] in order 
to assess the feasibility of our language and domain-
independent machine learning NER approach using SVM and 
high-dimensional features. The baseline experiment design 
reduces pre-processing to feature extraction and eliminates the 
use of prior language or domain knowledge. The results of the 
baseline experiment are a motivation to explore ways to 
address the scalability issues of the All-Together multi-class 
SVM approach. Improving scalability of multi-class SVM 
would provide the research community with a practical and 
powerful machine learning solution for named entity 
recognition that promotes the use of high-dimensional features 
in place of more complex labor and time expensive pre- and 
post-processing tasks, and simplifies the NER process while 
achieving good accuracy and performance measures. In 
Section IV, the results of several sets of single-class and 
multi-class scalability tests using SVM and increasing training 
data size are reported and their impact on training time is 
examined. A sample of preliminary results using a prototype 
multi-class implementation based on SVM-Perf is also 
presented. 

II. SUPPORT VECTOR MACHINES 

The Support Vector Machine (SVM) is a powerful machine 
learning tool based on firm statistical and mathematical 
foundations concerning generalization and optimization 
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theory. SVM is based on Vapnik’s statistical learning theory 
[32] and falls at the intersection of kernel methods and 
maximum margin classifiers. Support vector machines have 
been successfully applied to many real-world problems such 
as face detection, intrusion detection, handwriting recognition, 
information extraction, and others. 

Support Vector Machine is an attractive method due to its 
high generalization capability and its ability to handle high-
dimensional input data. Compared to neural networks or 
decision trees, SVM does not suffer from the local minima 
problem, it has fewer learning parameters to select, and it 
produces stable and reproducible results. However, SVM 
suffers from slow training especially with non-linear kernels 
and with large input data size. Support vector machines are 
primarily binary classifiers. Extensions to multi-class 
problems are most often performed by combining several 
binary machines in order to produce the final multi-
classification results. The more difficult problem of training 
one SVM to classify all classes uses much more complex 
optimization algorithms and are much slower to train than 
binary classifiers. 

A. Binary Support Vector Classification 

Binary classification is the task of classifying the members 
of a given set of objects into two groups on the basis of 
whether they have some property or not. Many applications 
take advantage of binary classification tasks, where the 
answer to some question is either a yes or no. For example, 
product quality control, automated medical diagnosis, face 
detection, intrusion detection, or finding matches to a specific 
class of objects. The mathematical foundation of Support 
Vector Machines and the underlying Vapnik-Chervonenkis 
dimension (VC Dimension) is described in details in the 
literature covering the statistical learning theory [1, 2, 15, 18, 
24, 32] and many other sources. 

The main objective of support vector machines is to find the 
optimal hyperplane separating positive and negative examples 
by maximizing the margin between the two classes. In 
mathematical terms, the problem is to find )()( bf i

T += xwx  
with maximal margin, such that: 

1=+ bi
T xw for data points that are support vectors 

1>+ bi
T xw for other data points 

Assuming a linearly separable dataset, the task of learning 
coefficients w and b of support vector machine 

)()( bf i
T += xwx  reduces to solving the following 

constrained optimization problem: 
find w and b that minimize:  2

2
1 w  
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The original optimization problem can be rewritten as its 
equivalent dual problem which finds α that maximizes 
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In the non-linearly separable case, the margin maximization 
technique may be relaxed by a degree of error in the 
separation. Slack Variables ξi are introduced to represent the 
error degree for each input data point. The optimization goal 
in this case is to maximize the margin while minimizing the 
slack variables, i.e., to find w and b that minimize:  

∑ξ+
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In order to solve the non-linearly separable case, SVM 
introduces the use of a mapping function Φ: RM → F to 
translate the non-linear input space into a higher dimension 
feature space where the data is linearly separable. The dual 
formulation of the optimization problem in feature space is to 
find α that maximizes: 
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The resulting SVM is of the form: 
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B. Multi-class Support Vector Classification 

For classification problems with multiple classes, different 
approaches are developed in order to decide whether a given 
data point belongs to one of the classes or not. The most 
common approaches are those that combine several binary 
classifiers and use a voting technique to make the final 
classification decision. These include:  One-Against-All [32], 
One-Against-One [21], Directed Acyclic Graph (DAG) [26], 
and Half-against-half method [23]. A more complex approach 
is one that attempts to build one Support Vector Machine that 
separates all classes at the same time. In this section, these 
multi-class SVM approaches are briefly introduced. Fig. 1 
compares the decision boundaries for three classes using a 
One-Against-All SVM, a One-Against-One SVM, and an All-
Together SVM [1]. The interpretation of these decision 
boundaries will be discussed the training and classification 
techniques using each approach are defined. 

1) One-Against-All Multi-Class SVM 

One-Against-All [32] is the earliest and simplest multi-class 
SVM. For a k-class problem, One-Against-All maximizes k 
hyperplanes separating each class from all the rest by 
constructing k binary SVMs. The ith SVM is trained with all 
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the samples from the ith class against all the samples from the 
other classes. To classify a sample x, x is evaluated by all of 
the k SVMs and the label of the class that has the largest value 
of the decision function is selected. 

Since all other classes are considered negative examples 
during training of each binary classifier, the hyperplane is 
optimized for one class only. As illustrated in Fig. 1, 
unclassifiable regions exist when more than one classifier 
returns a positive classification for an example x or when all 
classifiers evaluate x as negative [1].  

 

 
Fig. 1 Comparison of Multi-Class Boundaries 

2) One-Against-One or Pairwise SVM 

One-Against-One [21] constructs one binary machine 
between pairs of classes. For a k-class problem, it constructs 

2)1( −kk  binary classifiers. To classify a sample x, the 
sample is evaluated by each of the 2)1( −kk  machines. The 
class that gets the largest value of the decision function by 
most machines is chosen as the classification of x. 

Since One-Against-One separates two classes at a time, the 
separating hyperplanes identified by this approach are tuned 
better than those found with One-Against-All (Fig. 1). 
Unclassifiable regions exist only when all classifiers evaluate 
a sample x as negative. 

3) Directed Acyclic Graph SVM 

Similar to One-Against-One SVM, Directly Acyclic Graph 
(DAG) [26] trains 2)1( −kk binary classifiers for pairwise 
classes. To evaluate a sample x, this technique builds a DAG 
ordering the classes 1 through k to make a decision. The 
sample x is first evaluated by the first and the last classifier on 
the DAG and eliminates the lower vote from the DAG. The 
process is repeated until only one class remains and its label is 
chosen [12]. Therefore, a decision is reached after (k – 1) 
binary SVM evaluations. Unclassifiable regions are eliminated 
by excluding one class at a time. 

4) Half-Against-Half SVM 

Half-Against-Half multi-class SVM [23] is useful for 
problems where there is a close similarity between groups of 
classes. Using Half-Against-Half SVM, a binary classifier is 
built that evaluates one group of classes against another 
group. The trained model consists of at most ⎡ ⎤k2log2 binary 
SVMs. To classify a sample x, this technique identifies the 
group of classes where the sample x belongs, than continues to 
evaluate x with a subgroup, and so on, until the final class 

label is found. The classification process is similar to a 
decision tree that requires ⎡ ⎤k2log  evaluations at most. 

5) All-Together or All-At-Once SVM 

An All-Together multi-classification approach is 
computationally more expensive yet usually more accurate 
than all other multi-classification methods. Hsu and Lin [12] 
note that “as it is computationally more expensive to solve 
multi-class problems, comparisons of these methods using 
large-scale problems have not been seriously conducted.” The 
experiments reported in this paper are an attempt to classify a 
large-scale problem using this approach. 

The All-Together approach builds one SVM that maximizes 
all separating hyperplanes at the same time. Training data 
representing all classes is used to generate the trained model. 
With this approach, there are no unclassifiable regions as each 
data point belongs to some class represented in the training 
dataset. Fig. 1 illustrates the elimination of unclassifiable 
regions in this case. 

The All-together multi-class SVM poses a complex 
optimization problem as it maximizes all decision functions at 
the same time [9]. The idea is similar to the One-Against-All 
approach. It constructs k two-class rules where the mth 
function bxwT

m +)(φ  separates training vectors of the class 
m from the other vectors. There are k decision functions but 
all are obtained by solving one problem. The primal 
formulation of the optimization problem [1, 12] is to find: 

∑ ∑
= =

+
k

m

l

i
im

T
mw

Cww
im 1 1, 2
1min ξ

ξ
 

such that, 

myemye

liexwxw

i
m
ii

m
i

i
i
mi

T
mi

T
yi

≠≡=≡

=−≥−

 if ,1 and , if ,0  where

,...,1,)()( ξφφ
 

and the decision function is )(argmax k 1,...,m xwT
mφ=

. 

Like binary SVM, it is easier to solve the dual problem, 
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Algorithms to decompose the problem [12] and to solve the 
optimization problem [30] have been developed, however, the 
All-Together multi-class SVM approach remains a daunting 
task. The training time is very slow which makes the approach 
so far unusable for real-world problems with a large data set 
and/or a high number of classes. In this paper, an attempt to 
use this approach with a large set of real-world data is 
presented and its scalability issues are examined. 
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C. SVM Scalability Challenges 

Bennett and Campbell [5] discuss the common usability and 
scalability issues of support vector machines. In this section 
we summarize the SVM scalability challenges noted in the 
literature and in practice, which include: 
• Optimization requires O(n3) time and O(n2) memory for 

single class training, where n is input size (depending on 
algorithm used). To address this issue, new optimization 
algorithms continue to be introduced [7, 8, 17, 28]. 

• Multi-class training time is much higher, especially for 
All-Together optimization. The experimental results using 
this approach are reported later in this paper. 

• Multi-class performance depends on approach used and 
deteriorates with more classes. 

• Slow training, especially with large input datasets and/or 
non-linear kernels, which may be addressed by reducing 
the input data size (pruning [10], chunking [3], clustering 
[4]), reducing the number of support vectors (model 
decomposition and shrinking [14]), or reducing feature 
dimensionality (using a priori clustering [4] or adaptive 
clustering [6]). 

In addition to the scalability issues, tuning support vector 
machines requires the selection of a suitable kernel function 
and model parameters. Model parameters are often selected 
using a grid search, cross-validation, or heuristic-based 
methods. Selection of a suitable kernel function for the 
problem at hand is another designer-determined factor. Using 
grid search and cross-validation to select the best model may 
not be feasible with large datasets. The scalability and 
performance experiments presented later show that smaller 
data sets may be used instead. 

III. BASELINE EXPERIMENTS 

The baseline experiments [11] aim to identify biomedical 
named entities using Support Vector Machines (SVM) [32], 
due to their generalization capability and their ability to 
handle high-dimensional feature and input space. The training 
and testing data use the JNLPBA-04 shared task [20] data, 
which is a subset of the GENIA annotated corpus [19] of 
MEDLINE articles. The names of proteins, cell lines, cell 
types, DNA and RNA entities are previously labeled. The 
named entities are often composed of a sequence of words. 
The training data includes 2,000 annotated abstracts 
(consisting of 492,551 tokens). The testing data includes 404 
abstracts (consisting of 101,039 tokens)  annotated for the 
same classes of entities. The fraction of positive examples 
with respect to the total number of tokens in the training set 
varies from about 0.2% to about 6%. Basic statistics about the 
data sets as well as the absolute and relative frequencies for 
named entities within each set can be found in [20]. 

The systems participating in the JNLPBA-04 task employ a 
variety of machine learning techniques such as Support Vector 
Machines (SVM), Hidden Markov Models (HMM), 
Maximum Entropy Markov Models (MEMM) and 

Conditional Random Fields (CRF). Five systems adopted 
SVMs either in isolation [22, 25], or in conjunction with other  
model [27, 29, 34]. The results of our baseline experiment 
[11] are compared to the five systems using SVM listed 
above, in addition to those reported in [10]. TABLE I 
summarizes the performance comparison results in terms of 
recall, precision, and Fβ=1-score.  

The training and test data pre-processing involves 
morphological and contextual features extraction only. No 
language-specific pre-processing such as part-of-speech or 
noun phrases tagging is used. No dictionaries, gazetteers, or 
other domain-specific knowledge are used. 

A. Features Selection 

The training and testing data is preprocessed using the 
JFEX software [10] in order to extract morphological and 
contextual features. The generated feature space is very large, 
including over a million different features in the complete 
training dataset. All features are binary, i.e., each feature 
denotes whether the current token possesses this feature (one) 
or not (zero). 

The morphological features extracted are: 
• Capitalization: token begins with a capital letter. 
• Numeric: token is a numeric value. 
• Punctuation: token is a punctuation. 
• Uppercase: token is all in uppercase. 
• Lowercase: token is all in lowercase. 
• Single character: token length is equal to one. 
• Symbol: token is a special character. 
• Includes hyphen: one of the characters is a hyphen. 
• Includes slash: one of the characters is a slash. 
• Letters and Digits: token is alphanumeric. 
• Capitals and digits: token contains caps and digits. 
• Includes caps: some characters are in uppercase. 
• General regular expression summarizing word shape. 
In addition to the morphological features, a contextual 

collocation of tokens active over three positions around the 
token itself is used in order to provide a moving window of 
consecutive tokens which describes the context of the token 
relative to its surrounding. 

B. Baseline Performance Results 

A comparison of the performance of the baseline multi-
class experiment [11] to other systems using SVM for 
biomedical NER is presented in TABLE I. It is important to 
note that the baseline experiment represents a worse-case 
scenario for the potential performance of the system as it 
focuses on assessing the feasibility of the simplified approach 
only and no tuning is performed. The overall recall measure 
achieved in this case is 62.43%, with a precision measure of 
64.50%, and a final F-score of 63.45%.  

The language-independent approach used in this experiment 
performed very close to [25] and better than [22] which both 
used SVM as the only learning model. Park et al. [25] used 
character n-grams, orthographic information, word shapes, 
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gene sequences prior knowledge, word variations, part-of-
speech tags, noun phrase tags,  and word triggers. Lee et al. 
[22] used lexical features, character n-grams, and part-of-
speech tags in a two-phased model based on SVMs. Rössler 
[27] adapted a NER-system for German to the biomedical 
field. The system used character n-grams, orthographic 
information, gene sequences prior knowledge, and word 
length as features. 

 
TABLE I 

BASELINE MULTI-CLASS EXPERIMENT RESULTS 
VS. SYSTEMS USING JNLPBA-04 DATA 

System Overall Performance 
Recall/Precision/F-Score 

Zhou [34] 76.0 / 69.4 / 72.6 
Giuliano [10] 64.4 / 69.8 / 67.0 
Song [29] 67.8 / 64.8 / 66.3 
Rössler [27] 67.4 / 61.0 / 64.0 
Habib [11] 62.4 / 64.5 / 63.5 
Park [25] 66.5 / 59.8 / 63.0 
Lee [22] 50.8 / 47.6 / 49.1 
Baseline [20] 52.6 / 43.6 / 47.7 

 
Song et al. [29] used SVM in combination with Conditional 

Random Fields (CRF) and included character n-grams, 
orthographic information, and other lexical features in 
addition to part-of-speech and noun phrase tagging. Giuliano 
et al. [10] also incorporated part-of-speech tagging and word 
features of tokens surrounding each analyzed token in 
addition to features similar to those used in this experiment. In 
addition, Giuliano et al. [10] pruned the data instances in order 
to reduce the dataset size by filtering out frequent words from 
the corpora because they are less likely to be relevant than 
rare words. 

Zhou and Su [34] developed the system that performed best  
in the JNLPBA-04 task. Zhou and Su [34] used SVM in 
conjunction with Hidden Markov Models in a more complex 
learning method. The systems made use of many language-
specific and domain-specific knowledge such as character n-
grams, orthographic information, gene sequences, gazetteers, 
part-of-speech tags, word triggers, abbreviations, and 
cascaded entities. While this system performed better than the 
baseline multi-class experiment, its heavy use of language and 
domain-specific prior knowledge contradicts the promise of 
the language and domain-independent approach [11]. 

Different machine configurations were tried during the 
course of the baseline experiments. Due to the CPU-intensive 
nature of the classification process, especially for the All-
Together multi-class case, the first successful multi-class 
experiment ran on a Pentium IV quad-processor Linux-based 
machine and completed in 17 days. The experiment was 
repeated on a Xeon quad-processor 3.6 GHz machine and 
completed in 4 days. The promising accuracy measures of the 
language and domain-independent, yet simplified machine 
learning approach, are a motivation to explore the scalability 
issues and investigate ways to improve training time of multi-
class SVM. The following section reports the results of a 

series of scalability experiments using single-class and multi-
class SVMs and examines the impact of training data size on 
the training time using different SVM implementations. 

IV. SVM SCALABILITY EXPERIMENTS 

In this section, the results of several sets of scalability 
experiments using single-class and multi-class SVM are 
examined. These experiments use the same training and test 
datasets described in Section III. The datasets represent a real-
world problem, namely the biomedical named entity 
recognition, to identify the names of proteins, DNA, RNA, 
cell lines, and cell types in biomedical abstracts. The approach 
used promotes language and domain independence by 
eliminating the use of prior language-specific and domain-
specific knowledge. Pre-processing of the training and test 
datasets is limited to extracting morphological and contextual 
features describing words in the biomedical abstracts and 
representing each vector with a high-dimensional binary 
vector. The input dimensionality of the training data exceeds a 
million features. The training data is composed of 492,551 
examples and the test data includes 101,039 tokens. 

The scalability experiments train single-class and multi-
class support vector machines using chunks of the training 
dataset with increasing size. The trained model is then used to 
classify named entities in the complete test dataset. The 
training time is noted in each experiment as well as the 
number of support vectors and the accuracy measures 
achieved. Several sets of experiments are conducted, which 
include: 
• Single-class experiments identifying protein names using 

the popular SVM implementation by Thorsten Joachims, 
SVM-Light [13-15], and different training data sizes. 

• Multi-class experiments identifying all five named 
entities (protein, DNA, RNA, cell line, and cell type) 
using Joachims’ All-Together multi-class implementation, 
SVM-Multiclass [9, 30], and different training data sizes. 

• Single-class experiments identifying protein names only 
using the new SVM implementation, SVM-Perf [16, 17, 
30, 31], and different training data sizes. 

• The training data chunks range from 1,000 examples to 
492,551 examples (the complete training dataset). Each 
set of experiments consists of 51 tests. 

• Single-class experiments using SVM-Perf [16, 17, 30, 31] 
and varying values of the training error vs. margin error 
trade-off factor C. The training data size used for this 
round is fixed at 150,000 examples. The C-Factor values 
are reported in their SVM-Light equivalent for easier 
comparison and range from 0.01 to 1.0 in increments of 
0.01. This set of experiments consists of 100 tests. 

• All experiments use a linear kernel and a margin error of 
0.1. The tests run on an Intel Core 2 quad-processor 2.66 
GHz machine and a Xeon quad-processor 3.6 GHz 
machine. Running the same test on both machines 
completed in similar training time.  
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A. Single-Class Results 

Using SVM-Light [13-15], a single-class support vector 
machine is trained to recognize protein name sequences. The 
trained machine is then used to classify proteins in the test 
data. Since no pre-processing was performed on the training 
and testing data besides features extraction, the positive 
examples in the data sets remained scarce. Training the SVM-
Light machine with the complete training dataset and a trade-
off value of 0.01 completed in about 28.5 minutes. The recall, 
precision, and F-score achieved in this case are 62.72, 56.12, 
and 59.23 respectively. Increasing the trade-off value to 1.0 
raised the training time to about 269 minutes, and improved 
the accuracy measures to 68.92, 58.58, and 63.33 respectively. 
The SVM-Light curve in Fig. 2 summarizes the training time 
versus increased training data size. The training time is found 
to be polynomial O(n2) w.r.t. the training data size. 

The same set of experiments is repeated using SVM-Perf 
[16, 17, 30, 31], which improves training time of linear 
machines to be linear w.r.t. the training data size. The training 
time improvement using SVM-Perf is several orders of 
magnitude as compared to that using SVM-Light, with the 
same classification results when trained with the same 
learning parameters. Fig. 2 compares the training time using 
both SVM-Light and SVM-Perf with the same data and 
learning parameters. 
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Fig. 2 Comparison of SVM-Light and SVM-Perf  

Training Time vs. Training Data Size 
 

Training time is clearly enhanced to linear time using SVM-
Perf. This is a major improvement in the field of support 
vector machines which makes training linear binary SVM and 
linear multi-class SVM approaches that are based on 
combining binary machines much more feasible and practical 
for real-world applications. This is particularly useful for text 
applications such as named entity recognition which have 
been shown to be mostly linear [33]. Using different learning 
parameters with both SVM-Light and SVM-Perf leads to the 
same conclusion, as the training time using SVM-Light 
remains polynomial O(n2) while being linear using SVM-Perf. 

As a result of the observation of the enhanced accuracy 
measures with different training error vs. margin error trade-
off factor values, and the associated impact on training time, a 
series of experiments investigating the effect of the trade-off 

factor C on training time is conducted using SVM-Perf. Since 
the training time is consistently longer with SVM-Light than it 
is with SVM-Perf, one can easily extrapolate the impact of the 
trade-off factor C on SVM-Light training time. The variation 
of training time w.r.t. the variation of the trade-off factor C is 
presented in Fig. 3. The training time scales in O( C ). 
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Fig. 3 SVM-Perf Training Time vs. Variation of C-Factor 

 

As the variation of C clearly impacts the training time, its 
impact on various accuracy measures is investigated to assess 
whether it is possible to perform a grid search for tuning the 
learning parameters using a subset of the training dataset. A 
set of experiments using different training data sizes and a 
range of C values is conducted and the accuracy measures 
achieved are noted. TABLE II presents a sample of these results 
at training data size of 25,000, 250,000, and the complete set 
and some values of C. These experiments show that the 
accuracy improvement with varying C is consistent with 
different training data sizes, where the accuracy measures 
reach their best values within a very close range of C values. 
Using the same learning parameter for multi-class training 
reflects the same consistency in accuracy enhancement. 

 
TABLE II 

CONSISTENT PERFORMANCE CHANGE WITH VARYING C-FACTOR 
Training 
Data Size 

Trade-Off 
Factor C 

Performance 
Recall/Precision/F-Score 

C=0.01 32.72 / 38.55 / 35.40 
C=0.12 53.74 / 48.87 / 51.19 
C=0.14 53.51 / 48.66 / 50.97 
C=0.20 53.58 / 48.28 / 50.79 

25,000 

C=1.00 52.29 / 47.54 / 49.80 
C=0.01 58.32 / 53.68 / 55.90 
C=0.12 69.11 / 60.09 / 64.29 
C=0.14 69.05 / 60.01 / 64.21 
C=0.20 68.11 / 59.11 / 63.29 

250,000 

C=1.00 65.03 / 56.88 / 60.69 
C=0.01 62.72 / 56.12 / 59.23 
C=0.12 73.04 / 62.48 / 67.34 
C=0.14 72.72 / 62.16 / 67.03 
C=0.20 72.52 / 61.81 / 66.74 

492,551 

C=1.00 68.06 / 59.29 / 63.37 
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This observation is very useful for tuning the learning 
parameters with a subset of the training dataset in order to 
achieve better accuracy with larger training data size during 
the final learning phase. Note that the F-score for protein 
single-class classification improved considerably using a C 
value of 0.12, with an eight points improvement over that 
achieved with C value of 0.01. Increasing the trade-off factor 
C any further led to a decline in the F-score measure, as 
observed in TABLE II. This shows that one can reach a 
reasonable trade-off between training time and the final 
accuracy measures by tuning the support vector machine with 
a fraction of the training dataset. 

Comparing the accuracy measures improvement in the 
single-class training case (an F-score increase from 59.23 to 
67.34), combined with the All-Together multi-class improved 
F-score of protein names from 59.23 to 65.90 using a C factor 
of 0.01 [11], leads one to believe that the potential accuracy 
improvement using All-Together multi-class training and a 
tuned value of the C factor would be a substantial motivation 
to use this technique with the proposed simplified machine 
learning technique for named entity recognition. The main 
prohibiting consideration in the time being is the extremely 
slow training time. An SVM-multiclass experiment with 
C=0.12 is currently being conducted to prove the potential 
enhancement of accuracy measures. 

As part of the scalability experiments, the impact of the 
number of support vectors on training time is also observed as 
well as its relation to the training data size using both 
implementations. Fig. 4 and Fig. 5 depict the variation of the 
number of support vectors with the training data size using 
SVM-Light and SVM-Perf, respectively.  
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Fig. 4 SVM-Light Number of Support Vectors 

vs. Training Data Size 
 

The number of support vectors using SVM-Light is O(n0.8) 
w.r.t. the training data size. However, using SVM-Perf, the 
number of support vectors was only a very small fraction of 
the training data size and increased slightly with increased 
data size. The reduced number of support vectors is the main 
basis for the improved training time of SVM-Perf. The 
relationship between the number of support vectors and the 
training time is observed to be the same as that of the training 
data size, i.e., training time is polynomial w.r.t. the number of 
support vectors with SVM-Light, and linear with SVM-Perf. 
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Fig. 5 SVM-Perf Number of Support Vectors 

vs. Training Data Size 

B. Multi-Class Results 

The SVM-Multiclass implementation by T. Joachims is 
based on [9] and uses a different quadratic optimization 
algorithm described in [30].  The SVM-Multiclass 
implementation uses an All-Together multi-classification 
approach, which is computationally more expensive yet 
usually more accurate than One-Against-All or One-Against-
One  multi-classification methods. Hsu and Lin [12] note that 
“as it is computationally more expensive to solve multi-class 
problems, comparisons of these methods using large-scale 
problems have not been seriously conducted. Especially for 
methods solving multi-class SVM in one step, a much larger 
optimization problem is required so up to now experiments are 
limited to small data sets.” The multi-class experiments 
presented herein attempt to solve a real-world large-scale 
problem using an All-Together classification method. The 
training data is composed of 11 classes where each named 
entity is represented by two classes – one denoting the 
beginning of an entity and the other denoting a continuation 
token within the same entity – in addition to one class 
denoting non-named entity tokens. 

Initial experiments for multi-class classification were 
unsuccessful, mostly due to hitting the processing power 
limits of the testing machines. The same experiments were 
attempted on different machine configurations, and 
unreasonably long processing time was needed to finally 
complete training using the complete training dataset. The first 
successful experiment required a total learning and 
classification time of 17 days in order to complete using a 
serial algorithm on a quad-processor Pentium IV machine. 
The same experiment was repeated on a Linux machine with 
four Xeon 3.6 GHz processors and completed in 97 hours or 
four days and one hour. 

To explore the scalability issues of the All-Together multi-
class SVM implementation, a series of experiments using 
different training data sizes is conducted with a low value for 
the C learning parameter equal to 0.01. The training time with 
1,000 examples was 3.187 seconds and it increased 
considerably with increased data size to reach 416,264.251 
seconds (6,937.738 minutes or 4.8 days) on the same machine. 

The SVM-Multiclass [9, 30] implementation is based on the 
learning implementation in SVM-Light [13-15]. Fig. 6 reports 
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the variation of the multi-class training time w.r.t. the training 
data size. The relationship remains polynomial O(n2) w.r.t. the 
training data size and a factor of O(k2) increase in time as 
compared to the single-class SVM-Light time, where k is the 
number of classes. Fig. 7 compares the training time of single-
class training time using SVM-Light or SVM-Perf as 
compared to that of the multi-class implementation. It is clear 
that the training time required for All-Together multi-class 
training is prohibiting to using this approach with large 
datasets, unless new implementations are developed to address 
this issue. 

y = 2E-06x2 + 0.1166x

0

50,000

100,000

150,000

200,000

250,000

300,000

350,000

400,000

450,000

0 50,000 100,000 150,000 200,000 250,000 300,000 350,000 400,000 450,000 500,000

# of Training Examples

Tr
ai

ni
ng

 T
im

e 
(s

ec
)

 
Fig. 6 SVM-Multiclass Training Time 

vs. Training Data Size 
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Fig. 7 Single and Multi-Class Training Time 

vs. Training Data Size 

 
The observation of the number of support vectors (SV) 

produced by SVM-Multiclass in relationship to the training 
data size (Fig. 8) shows that the number of SVs is O(n0.8) 
w.r.t. the training data size. This is the same relationship 
observed with the number of SVs produced in the single-class 
case using SVM-Light. Since SVM-Multiclass uses the same 
learning modules of SVM-Light, one may anticipate a 
potential scalability improvement by developing a new All-
Together multi-class implementation based on the improved 
learning time of SVM-Perf.  
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Fig. 8 SVM-Multiclass Number of Support Vectors 

vs. Training Data Size 
 

Fig. 9 presents the impact of the training data size on the 
multi-class classification performance measures in terms of 
precision, recall, and Fβ=1-score. It is noted that the 
performance measures improve sharply with increased 
training data size in the low range of sizes, while only slight 
improvement, if any, is achieved with further increase in 
training data size. The trade-off between the potential 
performance enhancement vs. the cost of training in terms of 
computational time and memory needs may need to be 
considered when applying the All-Together multi-
classification technique to large datasets. 
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Fig. 9 SVM-Multiclass Overall Performance vs. Training Data Size 
From Top to Bottom: Precision, F-Score, and Recall 

 
Finally, a comparison of the training time of the All-

Together experimental results to estimates of the training time 
using approaches based on combining binary SVM classifiers 
– namely One-Against-All, One-Against-One, and Half-
Against-Half approaches – is presented. Fig. 10 compares the 
experimental multi-class experimental results to estimates of 
the training time using the other approaches based on SVM-
Light single-class results with the same learning parameters. 
The comparison weighs against using the All-Together 
approach despite the potential accuracy enhancement, until a 
new implementation is available to improve its scalability. 
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Fig. 10 Multi-Class Training Time Using Various Approaches 

Estimates Based on SVM-Light Binary Training Time  

 
In order to investigate the potential improvement in training  

for multi-class learning using the learning algorithms 
implemented in SVM-Perf [17] for training linear machines, 
an initial prototype is developed and the preliminary 
experiments using this prototype resulted in a tremendous 
improvement of the training time while achieving the same 
accuracy measures as SVM-Multiclass. The new prototype 
implementation is referred to as SVM-PerfMulti. A sample of 
the training time results is reported in TABLE III. These initial 
scalability improvement results are very promising and a 
complete analysis is currently undergoing in order to 
implement the full multi-class learning solution for linear 
machines. The initial prototype improves the training time at 
the expense of increased memory needs. Further investigation 
is needed in order to improve the memory consumption.  

 
TABLE III 

COMPARISON OF SVM-PERFMULTI  AND SVM-MULTICLASS 
TRAINING TIME VS. TRAINING DATA SIZE 

Training 
Data Size 

SVM-Multiclass 
Training Time 

(seconds) 

SVM-PerfMulti
Training Time 

(seconds) 

5,000 94.213 3.028 
10,000 355.101 10.232 
20,000 1,453.887 39.689 
50,000 7,784.148 175.413 
100,000 23,531.920 518.839 
200,000 91,632.975 1,624.452 
300,000 165,178.301 3,522.994 

 

V. CONCLUSION AND FUTURE WORK 

In this paper, a series of experiments is presented in order to 
explore the scalability issues associated with solving the 
named entity recognition problem using multi-class support 
vector machines and high-dimensional features. Baseline 
experiment results have shown that the proposed language and 
domain-independent approach is capable of successfully 
recognizing and classifying named entities with reasonable 
accuracy measures. These measures are further improved by 

tuning the learning parameters at the expense of longer 
training time. The potential improvement in the classification 
accuracy measures using an All-Together multi-class training 
and tuned parameters constitute a motivation to investigate 
ways to improve the scalability of this technique. 

The new implementation of binary SVM classifiers, SVM-
Perf, offers a great improvement in training time with 
consistent accuracy performance measures compared to those 
obtained using the currently popular SVM-Light 
implementation. We strongly recommend switching to SVM-
Perf for training linear SVM machines. An initial prototype 
focused on improving scalability of the All-Together multi-
class technique using the learning algorithms of SVM-Perf 
results in a tremendous improvement in the training time but 
increases the memory needs. The preliminary results are 
encouraging and further analysis and implementation of the 
improved All-Together multi-class learning and classification 
is currently undergoing.  
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