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Abstract— The widely used Total Variation de-noising algorithm 
can preserve sharp edge, while removing noise. However, since fixed 
regularization parameter over entire image, small details and textures 
are often lost in the process. In this paper, we propose a modified Total 
Variation algorithm to better preserve smaller-scaled features. This is 
done by allowing an adaptive regularization parameter to control the 
amount of de-noising in any region of image, according to relative 
information of local feature scale. Experimental results demonstrate 
the efficient of the proposed algorithm. Compared with standard Total 
Variation, our algorithm can better preserve smaller-scaled features 
and show better performance. 

Keywords— Adaptive, de-noising, feature scale, regularization 
parameter, Total Variation. 

I. INTRODUCTION

mage de-nosing is to filter out the noise. The challenge is to 
preserve and enhance important features during the 
de-noising process. For example, edge, small details, texture 

are the most universal and crucial features. De-noising via the 
conventional filters (including linear filters and nonlinear 
filters) normally does not perform satisfactorily since both 
noise and features contain high frequencies. This led to a search 
for more effective alternatives. In recent years, wavelets [1], 
mathematical morphology [2] and partial differential equation 
(PDE) [3], [4] have been widely used in image de-noising. One 
of the de-noising methods that has draw a lot of attention is the 
Total Variation model proposed by Rudin, Osher and Fatemi[4]. 
Much of the appeal of Total Variation method lies in achieving 
numerical accuracy as well as stability and overcoming the 
basic limitations of all smooth regularization algorithms. 

Though Total Variation method has shown impressive 
performance, recently the shortcomings began to raise attention 
[5], [6]. In Total Variation model, regularization parameter 
exhibits a critical behavior [7], [8]. When regularization 
parameter is very large small features are lost and when it is 
very small noise can not be removed.   

Total Variation with the fixed regularization parameter over 
entire image is effective for large scale feature [8]. When it is 
used to process nature image with features at multiple scales, 
smaller-scaled features such as texture and small details will be 
partial or entirely removed.  
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The major aim of this paper is to provide a solution to 
preserve small features in nature images while removing noise. 
This is primarily obtained by allowing the regularization 
parameter to adapt automatically to the local feature scale. 

II. TOTAL VARIATION REGULARIZATION

A. Total Variation Model [4] 

Total Variation model is a classical PDEs image de-noising 
algorithm. This algorithm seeks for the solution to the 

minimization of the Total Variation norm ,u x y  and the 

fidelity of this image to the noisy image
0 ,u x y :
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Where  is the regularization parameter that determines the 
trade-off between goodness of fit to the measured image, and 
the amount of regularization done to the measured image  

0 ,u x y  in order to recover the desired image ,u x y . The 

regularization parameter is positive constant and relative to the 

noise ,x y .

 In real world, it is often supposed that noise ,x y  is 

additive white Gaussian with zero mean and 
2

 deviation. So 
image de-noising can be formulated as finding  

2
2

0

min

1

2

u

u

u
D

D
u

u dxdy

subject to u u dxdy
D

  (3) 

This formulation is another common form of Total Variation 
model with noise-constrained. We note that solving (1) is 

equivalent to solving (3) when 1 , where  is the 

Lagrange multiplier computed by 
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We then have 
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This gives us a dynamic value  when noise level 
2

 is 
assumed to be known.  

B. Regularization Properties [8] 

The regularization parameter  in Total Variation model 

determines the properties of the image ,u x y

approximating
0 ,u x y .When  is very large, small  features 

are lost, and when it is very small, noise can not be removed. In 
addition, the change in image intensity  due to Total 
Variation regularization is directly proportional to the 
regularization parameter  and inversely proportional to the 
scale of the image feature s . It is clear that 

s
  (6) 

In general, features of very small scale relative to  are 
essentially removed while other features of larger scale 
preserved. So this can explain why Total Variation is well 
suited for images with large-scaled features. 

III. REGULARIZATION WITH ADAPTIVE FEATURE SCALE

In real world, scenes are observed at more or less arbitrary 
scales, thus nature images should remain the same for image 
features at multiple scales. In order to better preserve small 
features in nature images, the regularization parameter 
should not have a fixed value over the entire image, but locally 
adapt to feature scale. And the desired information about scale 
of various image features can be estimated by examining the 
change in the image due to Total Variation regularization.  

A. Automatic Feature Scale Recognition 

If we know the change in intensity level due to Total 
Variation regularization and regularization parameter , we 
can find the scale of various image features, by re-writing (6) as  

s  (7) 

Here, the scale of a piecewise constant image feature s is

defined as the ratio of the area of the feature  to its 

boundary length   ; that is s . Although this 

definition does not extend exactly to non-piecewise constant 
images features, this has heuristic effect on the results for the 

general cases.  In general, each position with scale ,s x y

can be considered as the pixel belonging to certain feature. The 

bigger ,s x y  is, the larger the certain feature scale is.  

Roughly speaking,  is the change between the regularized 

image ,u x y  and the original image
0 ,u x y , but not 

considering necessarily the direction (i.e. the sign) of the 
change.  How to compute the intensity change at each position 

in image is different from different cases. We first give a 
scheme for noise-free images, and then discuss how to extend it 
to noisy images.   

For piecewise constant features of noise-free images, 

,x y  can be computed on a pixel-by-pixel basis between 

the image before regularization 0 ,u x y , and the image after 

regularization   ,u x y . That is 

0, , ,x y u x y u x y  (8) 

For smooth features of noise-free images, since there is 
non-uniform change in intensity over the region of the feature 

of interest, we can take the average change as ,x y , which 

is given by 

0, ,
1

, u x y u x yx y dxdy  (9) 

In order to extract the information about feature scale of 
noisy image, the above scheme would need to be modified to be 
effective, as much of change from the original image to 
regularized image is due to the de-noising that takes place. 
Moreover, the boundaries of different features are unknown for 
us and the change of boundary is actually realized by the 
intensity at the pixels nearer the boundary being reduced more 
than the intensity change for the pixel locations nearer the 

center of the feature. Therefore we can compute ,x y  for 

the noisy image as following formula: 

0 ,

1
, , , ,x yx y u x y u x y x y d xd y
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Where , , ,x y x y x x y y  is the smoothing 

function, and the function is satisfied 

with , , 1x y x y d xd y .

As the noise is independent on signal mentioned before, the 

total intensity change ,x y  can be approximated 

as si , ,gnal noisex y x y , the sum of intensity change of 

signal and intensity change of the noise, respectively. Due to 

the smoothing role of , ,x y x y  in intensity change of the 

noise, ,
noise

x y  becomes small. Moreover, when the 

regularization parameter  gets bigger, the proportion of  

si ,
gnal

x y  to ,
noise

x y  becomes larger. Therefore, when 

the regularization parameter is sufficiently large, we can attain 

si , ,gnal noisex y x y  (11) 

Here, intensity changes of the noise ,
noise

x y  in different 

regions are approximately equal. 

In fact, we need not know the actual values of
si ,

gnal
x y ,

but rather their relative values, that is, relative to each other. 
Considering the intensity changes of two regions, which are 
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respectively denoted by ,x y  and ,x y , we easily get 

the ratio of the different signal changes, ,
signal

x y

and ,
signal

x y , as follows: 
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Here 
min ,x y  is the minimum of intensity change in entire 

image which is corresponding to the maximum feature 

scale
maxs , according to (7). Then the relative value to different 

scales of image features is given by  
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B. Choosing Adaptive Regularization Parameter 

We know, from formula (6), that more regularization of the 
image is desired in regions of larger-scaled feature, while less 
regularization is appropriate in regions of smaller-scaled 
feature. We suggest the following adaptive regularization 
parameter  

0

max

,
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s x y
x y

s
 (14) 

Where p  is constant ( 1 2p ),
0

 is obtained by (5). 

Therefore the adaptive Total Variation based on feature scale is 
to solve the following Euler-Lagrange (E-L) equation: 

0 0

max

,
0

p

s x y u
u u
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IV. EXPERIMENTS AND DISCUSSION

In this section, toys image [9] from real world is illustrated to 
show the performance of the proposed algorithm. 

Figure 1 is the original clean image and figure 2 is the noisy 
image. In order to show that the adaptive regularization 
parameter is appropriate, we normalize the regularization 
parameter computed by (14) to 8-bit gray image, as given by 
figure 3. The brightest region in figure 3 is corresponding to the 
biggest regularization parameter, and the darkest region to the 
smallest regularization parameter. Comparing figure 3 with 
figure 1, we find the darkest region in figure 3 is almost 
corresponding to the region of the smallest feature in figure 1, 
namely the middle-bottom part of image, and in other parts the 
change of bright is corresponding to the change of different 
scales of image features. Therefore, the adaptive regularization 
parameter is suitable for weighing the change of feature scale in 
original image. 

Then, we explain the efficient for nature image by 
comparing the standard Total Variation method and the 
proposed algorithm. Figure 4 is de-noised by standard Total 
Variation and figure 5 is de-noised by the proposed algorithm. 
From the two images, it is obvious that the noise in left-up 
region is removed by both algorithms. However, in 
middle-bottom of image, textures are better preserved by the 
proposed method. In addition, our proposed algorithm shows 
better performance than standard Total Variation in terms of 
signal noise ratio (SNR) (and also visually).  

V. CONCLUSION

An adaptive Total Variation based on feature scale is 
presented. The proposed algorithm better preserves 
smaller-scaled features and improve de-noising performance, 
in comparison with standard Total Variation. However, our 
scheme is rough in estimating the feature scale of original 
image. Further improvement may be gained by using more 
elaborated schemes.  
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Figure 1 Original clean image 

Figure 2 Noisy image (SNR 12.53) 

Figure 3 Normalized image corresponding to  
         adaptive regularization parameter 

Figure 4 De-noised by standard Total Variation  
(SNR 16.24) 

Figure 5 De-noised by adaptive Total Variation  
 (SNR=17.50) 

 

 


