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Adaptive Shape Parameter (ASP) Technique
for Local Radial Basis Functions (RBFs)

and Their Application for Solution of
Navier Strokes Equations

Abstract—The concept of adaptive shape parameters (ASP) has
been presented for solution of incompressible Navier Strokes equa-
tions using mesh-free local Radial Basis Functions (RBF). The aim
is to avoid ill-conditioning of coefficient matrices of RBF weights
and inaccuracies in RBF interpolation resulting from non-optimized
shape of basis functions for the cases where data points (or nodes) are
not distributed uniformly throughout the domain. Unlike conventional
approaches which assume globally similar values of RBF shape pa-
rameters, the presented ASP technique suggests that shape parameter
be calculated exclusively for each data point (or node) based on the
distribution of data points within its own influence domain. This will
ensure interpolation accuracy while still maintaining well-conditioned
system of equations for RBF weights. Performance and accuracy of
ASP technique has been tested by evaluating derivatives and laplacian
of a known function using RBF in Finite difference mode (RBF-
FD), with and without the use of adaptivity in shape parameters.
Application of adaptive shape parameters (ASP) for solution of
incompressible Navier Strokes equations has been presented by
solving lid driven cavity flow problem on mesh-free domain using
RBF-FD. The results have been compared for fixed and adaptive
shape parameters. Improved accuracy has been achieved with the use
of ASP in RBF-FD especially at regions where larger gradients of
field variables exist.

Keywords—CFD, Meshless Particle Method, Radial Basis Func-
tions, Shape Parameters

I. INTRODUCTION

RADIAL Basis Functions were initially developed for
multivariate data and function interpolation. However,

their true meshfree behaviour has attracted the researchers to
employ these for solution of differential equations. In early
90s, Kansa [1] proposed the use of RBFs for solution of Par-
tial Differential Equations (PDEs). Later, various researchers
found it useful to apply radial basis function for numerical
solution of differential equations on meshfree domains [2]–
[7]. RBF approach provides good spectral accuracy. However,
coefficient matrices of RBFs tend to become ill-conditioned
as the number of data points within the interpolation region
increases. This puts severe limitations on number and distri-
bution of data points (or nodes) within the domain. In order to
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overcome this difficulty, use of local radial basis functions was
suggested as an alternative to global basis function [8]–[11].
Local RBF techniques generate sparse and better conditioned
coefficient matrices by compromising on spectral accuracy of
the solution. RBF in Finite Difference mode (RBF-FD) [9]–
[12] and RBF based differential quadrature methods (RBF-
DQ) [8] are the two famous local RBF techniques which are
used for solution of Navier Stroke’s equations in meshfree
domain.

Accuracy of RBF interpolation mainly depends upon the
flatness of basis function. Huage et al [13] suggested that
accuracy of interpolation can be improved by making the basis
function flatter. On the other hand, an increased flatness of
basis function results in higher condition number of coefficient
matrix. Large condition number of coefficient matrix of RBF
weights causes inaccuracies in the solution for expansion
coefficients coefficient [1]. Therefore, choice of basis function
should be a balance between flatness and conditioning of
coefficient matrices.

It has been known that behaviour of basis functions (espe-
cially for Multi-quadratic and inverse multi-quadratic) depends
heavily of choice of shape parameter. Wang [5] stated that
the sensitivity of results with choice of shape parameter was
one of the biggest limitation of RBF. Various researchers
have presented different methodologies to find the optimum
values of shape parameters for RBFs [5], [13]–[15]. Franke
[7] suggested optimal value of shape parameter based on
total number of neighbouring particles and minimum diameter
enclosing all the neighbouring particles around the data point.
Rippa [15] studied the selection of optimal shape parameter for
RBFs and concluded that a scheme for determining good value
of shape parameter should take the number and distribution of
data points, radial basis function, condition number of coef-
ficient matrix and precision of computation into account. For
any particular interpolation problem, the radial basis function
and precision of computation remains similar throughout the
domain. However, if the distribution of data points is not
uniform, the optimal value of shape parameter will differ for
each data point in local RBFs and would depend upon the
number and distribution of data points within its own influence
domain.

Lately, RBF interpolation has been used for solution of fluid
flow problems using meshfree methods [6], [8], [11], [16].
For such applications the nodal distribution is required to be
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TABLE I
COMMONLY USED RADIAL BASIS FUNCTIONS

Type of radial basis function Expression of φ(r)
Multi-quadratic (MQ) φ(r) =

√
r2 + σ2

Inverse Multi-quadratic (IMQ) φ(r) = 1/
√
r2 + σ2

Inverse Quadratic (IQ) φ(r) = 1/(r2 + σ2)
Gaussian (GA) φ(r) = exp(−(σr)2)

varied within the domain to have higher nodal density at the
regions where larger gradients of field variables are expected.
In these cases, use of globally similar value of shape function
may not ensure well-conditioned coefficient matrix throughout
the domain. Therefore, accuracy of the solution would vary
within the domain accordingly. For highly non-uniform nodal
distribution, the resultant ill conditionings in the coefficient
matrices dominate the solution causing significant inaccuracies
in the values of expansion coefficients(λ). These inaccuracies
result in breakdown of solution during subsequent iteration
process [14]. Therefore, severe limitations are imposed on the
use of non-uniform or random particle distribution within the
domain.

In order to address this problem, the concept of adaptive
shape parameter (ASP) is presented. The presented approach
suggests calculation of exclusive value of shape parameter
(σ) at each data point (or node). The value would depend
upon number and distribution of neighbouring particles in the
influence domain. Incompressible Navier Strokes equations, in
vorticity-stream function formulation, are solved using the ap-
proach. The authors have observed that in addition to improved
accuracy of interpolation, use of adaptive shape parameter
(ASP) also allows larger variation of nodal density within
the domain. Therefore, much refined grids can be placed at
regions experiencing larger gradients of field variables without
introducing ill-conditioning effects.

II. RBF FORMULATION

For N scattered data points(xi)εRd+1, 1 ≤ i ≤ N , the
approximation ū(x) to a real valued function u(x) using
Radial Basis Function (RBF) is written as:

ū(x) =
N∑
i=1

λiφ(‖x− xi‖), xεRd (1)

where φ (‖x− xi‖) is a radial basis function, ‖.‖ is a standard
Euclidean norm and λi is the expansion coefficient. Some of

The unknown parameter λi = 1, 2, . . . N can be obtained by
setting ū(xi) = ui, i = 1, 2, . . . N . This leads to the system
of linear equations:

Aλ = U (2)

where, λ = {λ1, λ2, ...λN}T , U = {u1, u2, ...uN}T and
Ai,j = φ (‖xj − xi‖)

A. RBF in Finite Difference Mode (RBF-FD)

As mentioned before, local RBFs have been proposed to
overcome the shortcomings of global RBFs. One of the local
RBF techniques suggests using RBF in Finite Difference Mode

Fig. 1. Support domain of a reference node

(the so called RBF-FD method). The scheme was introduced
by Tolstykh et al [9] and Wright et al [12] and has been
found highly effective in solving fluid flow problems [11]. The
same scheme has been used for the study of Adaptive Shape
Parameter (ASP). RBF-FD method directly approximates the
derivative of field variables to be used in differential equations.

The idea of RBF-FD method has been derived from Finite
Difference method which suggests that derivative of any field
variable at a spatial location i can be approximated using the
values of field variable at surrounding data points. For this
purpose, the interior and boundary of domain is represented by
a set of scattered data points. A supporting stencil is identified
for each data point by choosing N neighbouring particles.
RBF-FD weights are then calculated for any differential opera-
tor L , at each data point, by setting up local RBF interpolation.

Using classical finite difference approach, the derivative of
any parameter u at any node, say x1, can be expressed as

Lu(x1) =
N∑
j=1

W
(L)
1,j u(xj) (3)

where N is the number of nodes in the support domain of
node x1, u(xj) is the value of parameter u at node xj and
W

(L)
1,j is the weight of corresponding differential operator L

at node xj for node x1 as shown in figure 1.
Recall that the standard RBF interpolation for a set of

distinct points xjεRd, j = 1, 2, ...N is given by [12]:

u(x) ≈ s(x) =

N∑
j=1

λjφ(‖x− xj‖) + β (4)

where λj and β are the expansion coefficient. Equation (4)
can be written in Lagrange form as:

s̄(x) =

N∑
j=1

X (‖x− xj‖)u (xj) (5)

where X (‖x− xj‖) satisfies the cardinal conditions as

X (‖xk − xj‖) =
{

1, if k = j

0, if k �= j
k = 1, 2, ...N (6)

Applying the differential operator L on equation (5) at node
x1 we have:

Lu (x1) ≈ Ls̄ (x1) =
N∑
j=1

LX (‖x1 − xj‖)u (xj) (7)

the common radial basis functions have been defined in Table I.
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Using equations (3) and (7), RBF-FD weights W(L)
1,j are given

by
W

(L)
1,j = LX (‖x1 − xj‖) (8)

The weights can be computed by solving the following linear
system [11]: [

Φ e

eT 0

][
W

μ

]
=

[
Lφ1
0

]
(9)

where Φi,j = φ (‖xj − xi‖) , i, j = 1, 2, . . . , N ,
ei = 1, 2, . . . , N , Lφ1 represents the column vector
Lφ1 = [Lφ‖x− x1‖Lφ‖x− x2‖ . . .Lφ‖x− xN‖]T
evaluated at node x1 and μ is a scalar parameter which
enforces the condition:

N∑
j=1

W
(L)
1,j = 0 (10)

Equation (9) can be written in matrix form as:

[A] {W} = {Lφ} (11)

Evaluation of equation (11) at each node x1 gives weights
WL

1,j of all the nodes in the support domain for particular
differential operator L. Corresponding weights and location
of nodes in support domains are then used to approximate the
complete differential equation at node x1. However, solution
of equation (11) requires that coefficient matrix [A] be non-
singular. Moreover, matrix needs to be well-conditioned so
as to avoid inaccuracies resulting from computation process.
The possibility of having a non-singular and well-conditioned
coefficient matrix [A] depends upon the type of radial basis
function and corresponding value of shape parameter used for
the problem [15].

Using ASP technique, the value of shape parameter (σ)
would separately be calculated for each row of coefficient
matrix. Therefore, Φi,j = φ (‖xj − xi‖, σi) , i = 1, 2, . . . , N .
This would reduces the condition number of the matrix for the
problems where nodal distribution is not uniform within the
domain. As mentioned earlier, various models have suggested
for finding good value of shape parameters [5], [7], [13]–[15],
[17]. For present study, a commonly used scheme, presented
by Franke [7] has been used which suggests optimum shape
parameter as σi = (1.25Di)/

√
Ni where, σi is the shape

parameter value of node i, Ni is the number of neighbouring
particles (within the influence domain) and Di is the minimum
diameter of circular enclosing all the neighbouring particles.
Other schemes for calculating optimum shape parameters can
also be tested to further validate the concept of ASP.

B. RBF-FD for Incompressible N-S Equations

Vorticity Stream function formulation of two dimensional
Navier Strokes equations in non-dimensionalized form can be
expressed as:

∂ω

∂t
+ u

∂ω

∂x
+ v

∂ω

∂y
=

1

Re

(
∂2ω

∂x2
+
∂2ω

∂y2

)
(12)

∂2ψ

∂x2
+
∂2ψ

∂y2
= −ω (13)

Cartesian velocity components can be obtained from deriva-
tives of stream function as:

u =
∂ψ

∂y
(14)

v = −∂ψ
∂x

(15)

Spatial derivatives appearing in equations (12) and (13) can
be approximated using RBF-FD as:

∂ωi

∂t
+ ui

N∑
j=1

W
(x)
i,j ωj + vi

N∑
j=1

W
(y)
i,j ωj =

1

Re

⎛
⎝ N∑

j=1

W
(xx)
i,j ωj +

N∑
j=1

W
(yy)
i,j ωj

⎞
⎠ (16)

N∑
j=1

W
(xx)
i,j ψj +

N∑
j=1

W
(yy)
i,j ψj = −ωi (17)

Temporal discretization of equation (16) can be obtained using
Crank Nicolson scheme as under:

ωn+1
i − ωn

i

δt
=

1

2Re

⎛
⎝ N∑

j=1

W
(xx)
i,j ωn+1

j +
N∑
j=1

W
(yy)
i,j ωn+1

j

⎞
⎠

−1

2

⎛
⎝ui N∑

j=1

W
(x)
i,j ω

n+1
j + vi

N∑
j=1

W
(y)
i,j ω

n+1
j

⎞
⎠

1

2Re

⎛
⎝ N∑

j=1

W
(xx)
i,j ωn

j +
N∑
j=1

W
(yy)
i,j ωn

j

⎞
⎠

−1

2

⎛
⎝ N∑

j=1

W
(x)
i,j ω

n
j + vi

N∑
j=1

W
(y)
i,j ω

n
j

⎞
⎠ (18)

where ωn
j and ωn+1

j are the values of ω at node j at nth

and (n + 1)th time step respectively. After rearrangement,
equation (18) can be expressed in matrix form as:

⎡
⎢⎢⎢⎢⎢⎣

a1,1 + 1 a1,2 . . . a1,N

a2,1
. . . . . .

...
... . . .

. . .
...

aN,1 aN,2 . . . aN,N + 1

⎤
⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ωn+1
1

ωn+1
2

...

ωn+1
N

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎣

b1,1 + 1 b1,2 . . . b1,N

b2,1
. . . . . .

...
... . . .

. . .
...

bN,1 bN,2 . . . bN,N + 1

⎤
⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ωn
1

ωn
2

...
ωn
N

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(19)
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where

ai,j = −δt
2

{
1

Re

⎛
⎝ N∑

j=1

W
(xx)
i,j +

N∑
j=1

W
(yy)
i,j

⎞
⎠

−ui
N∑
j=1

W
(x)
i,j − vi

N∑
j=1

W
(y)
i,j

}

bi,j =
δt

2

{
1

Re

⎛
⎝ N∑

j=1

W
(xx)
i,j +

N∑
j=1

W
(yy)
i,j

⎞
⎠

−ui
N∑
j=1

W
(x)
i,j − vi

N∑
j=1

W
(y)
i,j

}

Similarly, equation (17) can be written in matrix form as:⎡
⎢⎢⎢⎢⎢⎢⎣

W
(xx)
1,1 +W

(yy)
1,1 . . . W

(xx)
1,N +W

(yy)
1,N

W
(xx)
2,1 +W

(yy)
2,1

. . .
...

... . . .
...

W
(xx)
N,1 +W

(yy)
N,1 . . . W

(xx)
N,N +W

(yy)
N,N

⎤
⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ψ1

ψ2

...
ψN

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

= −

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ω1

ω2

...
ωN

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(20)

Velocity components at each node can be evaluated as:

ui =
N∑
j=1

W
(y)
i,j (21)

vi = −
N∑
j=1

W
(x)
i,j (22)

An iterative process for solving equations (19-22) can be
followed starting with initial conditions of vorticity and stream
function. During each time step, equation (20) can be solved
to find the values of stream function (ψ) at each node. The
values of stream function can then be used to find velocity
components using equations (21) and (22). Finally, value of
vorticity at next time step can be calculated by solving by
solving the linear system (19).

III. NUMERICAL TESTS

A. Calculation of Derivatives and Laplacians of a Known
Function

Performance of adaptively shaped radial basis functions
in finite difference mode, has been tested by calculating 1st
and 2nd derivatives and laplacian of a known function over
meshfree domain. For this purpose, evaluation of function
f(x, y) = sin [3(x− 2.5)(y − 2.5)] has been considered over
a 2D domain with dimensions [0.5 4.5]× [0.5 4.5].

The function, its first derivative and laplacian have been
plotted in Figure 2(a) to 2(c) respectively. It can be observed
that the gradients and laplacian values of function are rather
uniform in the middle of the domain. However, towards the

(a) Function f(x,y)

(b) First derivative ∂f/∂x

(c) Laplacian ∇2f

Fig. 2. Plot of Pre assumed function, derivative and Laplacian

edges and corners, sharp gradients are encountered. There-
fore, an efficient meshing strategy should consider having
higher nodal density towards corners which gradually coarsens
while moving towards the middle of the domain. Hence, a
60x60 non-uniform particle distribution (as shown in Figure 3)
has been chosen for calculation of gradients using RBF-FD
method.

Figure 4 shows the optimum values of σ over the entire
domain using the criterion identified by Franke [7]. The
figure indicates that optimum values change by almost 400
percent across various regions of the domain. Therefore,
use of globally similar values will likely cause inaccuracies.
The derivatives of given function have been calculated using
globally similar values of σ as well as using ASP technique.
The absolute error has been calculated for each approach by
comparing the results with known values of derivatives of
function f(x, y). Figures 5 and 6 show the error values of
∂f/∂x and ∇2f respectively, along the diagonal line (shown
as thick line in figure 3) through the domain. Calculations have
been done using Multiquadratic and Inverse Multiquadratic
radial basis functions. For constant values of σ the results have
been obtained using three different values (σ = 0.5,σ = 1.0
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Fig. 3. 60x60 Non-uniforms Nodal Distribution within the Domain

Fig. 4. Profile of Optimum Values of Shape Parameter (σ)

and σ = 2.0) and compared with ASP results to have better
understanding of how results behave with varying the value of
shape parameter.

Figure 3 shows that density of nodes varies along the diago-
nal line from maximum (at bottom left corner) to minimum (in
the middle) and then again to maximum (at top right corner).
Therefore, optimum value of σ should vary accordingly. The
plots in figures 5 and 6 show that, for fixed value of shape
parameter (σ), the results are accurate only on partial range
of the diagonal. Therefore, global accuracy is not achieved.
However, adaptively varying the shape parameters (using ASP
technique) results in good agreement with the analytical values
throughout the range. For example, σ = 0.5 provides good
accuracy close to corners but the results tend to become
erroneous in the middle of the domain. As the value of σ
is increased from 0.5 to 2.0, the large error region tends to
shift towards the corners. This is due to the deviation from
the suggested optimum value of shape parameter at various
regions (Figure 4) that causes these errors.

In order to further explain the situation, curve of ∇2f
has been plotted in Figure 7. It can be observed, in closed
views, that RBF curve with fixed shape parameter tends to
deviate from analytical values near the central part of the
domain. However, the curve obtained by adaptively changing
the shape parameter tends to closely follow the analytical value
curve. Therefore, globally accurate results are achieved with

adaptively changing the shape of the basis function according
to the arrangement of neighbouring particles around the data
points.

B. Lid Driven Cavity Flow

Lid driven cavity flow constitutes complex flow features like
primary, secondary and tertiary eddies despite the fact that
it has very simple geometry. The flow problem is therefore
widely used to validate new computational techniques and
novel schemes for flow simulations. Therefore, application of
ASP for RBF-FD has been validated by simulating lid driven
cavity flow in a square and comparing the results with the
bench mark solutions for this problem presented by Ghia et al
[18]. Flow conditions at Reynolds number 400 and 1000 are
considered for the numerical simulations. The fluid domain has
been represented by 6561 and 10201 nodes (or particles) for
Re 400 and Re 1000 cases respectively. The domain has been
non-dimensionalized to acquire standardized numerical values.
The solutions have been obtained for constant as well as
adaptively shaped radial basis functions. Non-uniform particle
distribution has been introduced to capture higher gradients
expected near solid walls and corners.

On all the four walls, velocity components normal to
boundary are assumed to be zero. This ensures no penetration
of flow across the boundary Γ. This leads to �un = ∂ψ/∂�t = 0
or ψ = C1 at xεΓ, where �un is the velocity component in
the outward normal direction to the boundary (Γ) , n and
t are normal and tangential directions to the boundary and
C1 is a constant. No slip boundary condition at the walls
implies that tangential component of flow velocity along the
boundary Γ remains constant and equal to the speed of the
boundary itself. Therefore, �ut = ∂ψ/∂�n = C2 at xεΓ, where
�ut is the velocity component parallel to the boundary (Γ) and
C2 is a constant. The values of stream function (ψ) near the
boundary can be used to define the boundary conditions for
vorticity (ω). Higher order finite difference expressions for
vorticity at the four boundaries can therefore be expressed
as [19]:

Left : ωi,j = − 3

h

[
vi,j +

ψi+1,j − ψi,j

h
+
h

6
ωi+1,j

]
(23)

Right : ωi,j =
3

h

[
vi,j +

ψi,j − ψi−1,j

h
− h

6
ωi−1,j

]
(24)

Top : ωi,j = − 3

h

[
vi,j +

ψi,j − ψi,j−1

h
+
h

6
ωi,j−1

]
(25)

Bottom : ωi,j =
3

h

[
vi,j +

ψi,j − ψi,j+1

h
− h

6
ωi,j+1

]
(26)

For lid driven cavity flow, all the boundaries are stationary
except the top boundary which moves with a velocity U0 in
horizontal direction. Implementation of boundary conditions
using equations (23 - 26) necessitates the presence of locally
orthogonal grid near the boundary. For uniform particle distri-
bution, condition of locally orthogonal grid is implicitly met.
However, for random particle distribution, inner particles may
not remain orthogonal to the boundary. Therefore, special care



International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:7, No:9, 2013

1851

(a) IMQ RBF σ = 0.5 (b) MQ RBF σ = 0.5

(c) IMQ RBF σ = 1.0 (d) MQ RBF σ = 1.0

(e) IMQ RBF σ = 2.0 (f) MQ RBF σ = 2.0

Fig. 5. Error Plots of ∂f/∂x along Diagonal Line through the Domain for MQ and IMQ RBFs (Fixed and Adaptively Changing Values of shape parameter
σ)

has to be taken to ensure locally orthogonal grid near the
boundary. At steady state, higher gradients of flow velocities
are experienced near the walls. Therefore, non-uniform grid
spacing with finer grid near the walls will improve the accu-
racy. In case of constant value of shape parameter (σ), the ratio
of nodal spacing between corner-to-centre nodes is limited due
to ill-conditioning effect of coefficient matrix for RBF weights
in equation (11) as discussed in section II(A). However, with
introduction of adaptively shaped radial basis functions, the
ratio of nodal spacing between corner-to-centre nodes can be
increased without producing ill-conditioning effect. The grid
can therefore be made more refined, close to the walls, than
same sized grid used for fixed shape parameter approach.
The results are therefore more accurate for same number of

nodes within the domain. Figures 8(a) and 8(b) show the nodal
distributions for fixed and adaptive shape parameter cases at
Re 400. Due to the ill-conditioning effect with the use of fixed
shape parameters, the ratio of nodal spacing between corner-
to-centre nodes was limited to 4.0 only. Further refinement
near the walls and corners resulted in inaccurate RBF-FD
weights leading to erroneous solutions with the use of con-
ventional RBF-FD approach. However, ratio of nodal spacing
between corner-to-centre nodes could be increased to 8.0 with
the use of adaptively shaped basis functions. Therefore much
refined nodal distribution was obtained close to the corners
as shown in figure 8(b). Finer grids were able to capture the
gradients of field variables more accurately. Moreover, with the
use of ASP, optimized shape of basis function was maintained
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(a) IMQ RBF σ = 0.5 (b) MQ RBF σ = 0.5

(c) IMQ RBF σ = 1.0 (d) MQ RBF σ = 1.0

(e) IMQ RBF σ = 2.0 (f) MQ RBF σ = 2.0

Fig. 6. Error Plots of ∇2f along Diagonal Line through the Domain for MQ and IMQ RBFs (Fixed and Adaptively Changing Values of shape parameter σ)

throughout the domain thus reducing the error. As a result,
an improved accuracy was achieved with adaptively shaped
RBF-FD. Figures 9(a) and 9(b) show profile of horizontal
velocity component (vx) at mid span and vertical velocity
component (vy) at mid plane respectively, for Re 400 case.
The results have been obtained using adaptively shaped RBF-
FD. Similar velocity profiles have been calculated for Re
1000 and shown in Figures 10(a) and 10(b), respectively.
Figures 11(a) and 11(b) show vorticity (ω) profiles at Re 400
and 1000, respectively.

In table II, a comparison of results obtained from fixed and
adpatively shaped RBF-FD has been presented by evaluating
the error values using standard results from Ghia et al [18].
Maximum relative error and norm of relative error for fixed
and adaptive shape parameter cases have been shown. It can

be observed that significant reduction in error is achieved with
the use of adaptively shaped basis functions. This is due to the
possibility of having finer grids at critical regions and accurate
approximation of gradients due to optimized shape of basis
functions.

IV. CONCLUSION

The concept of adaptive shape parameters (ASP) is found
useful for flow simulations where solutions are sought through
local RBF techniques and nodal density is required to be varied
significantly within the domain to capture higher gradients.
Adaptively shaped basis functions provide greater flexibility to
change the nodal density thus enabling an improved accuracy.
Moreover, the basis functions can retain their optimum shape
throughout the domain and produce accurate approximations
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Fig. 7. Comparison of Laplacian (∇2f ) Curves along the diagonal

(a) For fixed shape parameter σ

(b) For adaptive shape parameter σ

Fig. 8. Arrangement of nodes for lid driven cavity flow problem

(a) vx at mid span

(b) vy at mid plane

Fig. 9. Velocity profiles for lid driven cavity flow at Re 400 solved with
adaptively shaped RBF-FD method
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(a) vx at mid span

(b) vy at mid plane

Fig. 10. Velocity profiles for lid driven cavity flow at Re 1000 solved with
adaptively shaped RBF-FD method

(a) For Re 400

(b) For Re 1000

Fig. 11. Vorticity (ω) plots for lid driven cavity flow solved with adaptively
shaped RBF-FD method

TABLE II
MAXIMUM ERROR AND NORM OF ERROR FOR RE 400 AND RE 1000 WITH

FIXED AND ADAPTIVELY SHAPED BASIS FUNCTIONS

Case Fixed RBF-FD Adaptive RBF-FD
Results for vx at mid span
Max relative error (Re 400) 0.0372 0.0150
Norm of relative error (Re 400) 0.0787 0.0203
Max relative error (Re 1000) 0.0459 0.0250
Norm of relative error (Re 1000) 0.2071 0.1104

Results for vy at mid plane
Max relative error (Re 400) 0.0404 0.0089
Norm of relative error (Re 400) 0.1121 0.0556
Max relative error (Re 1000) 0.0439 0.0156
Norm of relative error (Re 1000) 0.1190 0.0549

of differential operators. On the contrary, the conventional
approach of using fixed shaped basis functions results in ill-
conditioning effect when large variation of nodal density is
introduced within the domain. Therefore, grid refinement is
required to be introduced over the entire domain so as to avoid
large variation in nodal spacing at different locations. This
practice increases total number of data points (or nodes) thus
making the solutions computationally expansive. Therefore,
use of ASP with local RBFs helps improve the computational
efficiency and accuracy in these cases.
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