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Adaptive kernel filtering used in video processing
Rasmus Engholm, Eva B. Vedel Jensen and Henrik Karstoft

Abstract—In this paper we present a noise reduction filter for
video processing. It is based on the recently proposed two dimen-
sional steering kernel, extended to three dimensions and further
augmented to suit the spatial-temporal domain of video processing.
Two alternative filters are proposed - the time symmetric kernel and
the time asymmetric kernel. The first reduces the noise on single
sequences, but to handle the problems at scene shift the asymmetric
kernel is introduced. The performance of both are tested on simulated
data and on a real video sequence together with the existing steering
kernel. The proposed kernels improves the Rooted Mean Squared
Error (RMSE) compared to the original steering kernel method on
video material.

Keywords—Adaptive image filtering, Noise reduction, Kernel
Methods, Video Processing.

I. INTRODUCTION

KERNEL methods are non-parametric methods of noise

reduction. In relation to video it is a strength that the

methods are non-parametric since broadcasted material have

various origins and qualities. Electronic interference and flaws

in the transmission and the digital image acquisition add noise

to the image/video. Some programs are sent digitally at high

bit rates, others are sent as analog signals via cables. Some

programs have been stored on magnetic tapes for years and

thereby degraded and some are sent directly. It seems impossi-

ble to construct a single parametric model that can describe all

the different types of material and noise. An additional benefit

of the kernel methods are that they have applications within

noise reduction as well as within interpolation.

The transition to much larger screens, together with the

transition from Catode Ray Tube technology (CRT) to Liquid

Crystal Displays (LCD) and similar digital screen technolo-

gies, makes noise appear much more disturbing on a television

set. It is therefore important that the noise is reduced to get the

viewer the best perceived experience possible. However other

factors such as sharp edges are also important for the perceived

video quality. This is what makes the noise removal difficult

because blurring reduces the noise but also removes the

sharpness of the edges. On the other hand edge enhancement

techniques e.g. peaking enhances the noise. Another similar

problem is that texture and noise shares many of the same

statistics e.g. a sandy beach or the leafs of a tree can locally

appear very random.

We will in section II first describe related work on kernel

methods with special emphasis on the recently proposed

steering kernel method. In section III we extend this to the

video domain, and augment it to handle some of the difficulties
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in video. We present experiments on both video with simulated

noise and real analog noise in section IV to compare and show

the behavior of various methods considered. The application

we have in mind is television but the scope of kernel methods

is much broader.

II. RELATED WORK

In recent years methods that utilizes non-static kernels,

dynamic kernels, that adapt to the data, have been proposed,

see [1], [2]. These kernels add flexibility to the performance

as well as introduce new challenges.

Instead of just using the Euclidean distance to determine

the weight of the observation at a given site we may combine

the Euclidean distance with other metrics. Examples of this,

where the observed value also enters into the computation of

the weight are bilateral filter and steering kernels.

A. Bilateral filter

The bilateral kernel has had a lot of support since the

introduction in 1998 [2] due to its edge preserving properties

combined with the appealing simplicity and intuitive construc-

tion. The bilateral filter is an attempt to build a filter kernel

that has the smoothing properties of the ordinary Gauss filter,

and at the same time does not smooth the edges.

The intuition is that sites with similar observations which

are also located close to each other is from the same structure

and therefore can be assigned larger weights than sites with

either different observations or location far away from each

other. The bilateral kernel is then a product of two kernels.

In general any low pass kernel can be used, but usually the

Gaussian kernel is used.

This intuitive approach has received a lot of theoretical

investigation tying it together with other edge preserving filter-

ing techniques such as anisotopic difussion, robust estimation,

weighted least squares [3] and adaptive smoothing [4], [5].

Others have tried to speed up the performance [6]–[8]. The

algorithm has also found use within computer graphics where

it has been used to perform smoothing of 3D-meshes [9]. The

origin of the bilateral filter is empirical, but it can be derived

from the weighted least squares formulation, similar to 0-order

local regression

On artificial examples the filter performs very satisfying.

But on natural images the shortcomings becomes clear. The

filtered images often appear ’cartoon’ like. The filter does

indeed sustain the sharp edges, but within the areas defined by

the edges, all fine details get blurred. Another disadvantage is

that a single noise observation (a pixel very different from the

neighborhood is is located in) remains unchanged.
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B. Steering kernels

Instead of using the difference in intensities to guide the

filtering like the bilateral filter, thus indirectly using gradient

information, the intuition behind the steering kernel, intro-

duced in [1], is to directly use the gradient information to

construct the kernel. This means that the actual kernel will

be a deformation of an ordinary smoothing kernel (scaled,

rotated, skewed). The steering kernel was introduced with a

Gaussian kernel, but any type of kernel could in principle be

used. We should note that the original formulation suggest that

the kernel is used iteratively. However the optimal number of

iterations remains unclear, why we here will only consider it

as a one pass filter.

As with the bilateral filter, the objective is to remove noise

while preserving the edges. The shortcomings of the bilateral

filter described above appear partly because the kernel is

designed directly from the observations i.e. a single black pixel

in a white neighborhood can be hard to smooth, since the

intensity part of the kernel will ensure that all weight will be

put on the single observation under consideration.

The steering kernels are defined using the gradient informa-

tion and performing principal component analysis, to reduce

all the gradients in a local window to the dominant orientation

in that window. A kernel is then calculated based on this

orientation giving weights to the observations in the window

such that most smoothing is performed along edges and not

over edges.

We define the pixel that we want to estimate as x0 in a

local window. The sites of the observations are indexed in a

two dimensional grid (x1i, x2j), i = 1, . . . , n, j = 1 . . . , m,

representing our pixel in the plane. To each pair (x1i, x2j) we

have a single associated observation, yij giving the grey level

value in the image.

We consider a local window and define the gradient as

(∇y)(x1i, x2j) =

[

∂y

∂x1

(x1i, x2j),
∂y

∂x2

(x1i, x2j)

]

Since we are working on discrete values we must use a discrete

differentiation operator.

We are interested in finding the dominant orientation of the

structure in the local window of the image, so that we do

not smooth in that direction. On average we can consider the

gradients to be orthogonal to the dominant orientation. We do

a PCA analysis on the gradients in the local window to find the

dominant edge orientation. The gradients of a local window

is then reordered as an nm × 2 matrix:
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where each row specifies first the gradient in the horizontal

and then in the vertical direction. The steering kernel uses a

simple estimate of the covariance structure of the gradients

obtained by

Cx0
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This symmetric structure, Cx0
, of the gradients in a local

window is then used to form the steering kernel. The objective

is to spread the kernel parallel to the edges, so the edges

remain unblurred. Secondly if the gradients in general are

small we would assume that the differences originates from

noise and need smoothing thus requiring a relatively flat

kernel. On the other hand if the gradients in general are large

we will assume that it originates from structure and need less

smoothing which calls for a steep kernel. Considering the

(a)

∇

C
0

−
1

x
0

C
0

(b)

Fig. 1. (a) Image with a red square that indicates the neighborhood being
examined. (b) Contour ellipses of Cx0

and Cx0

−1 superimposed onto the
current neighborhood together with the estimated gradients.

eigenvectors of Cx0
, the first eigenvector is in the direction

of greatest variance i.e. the direction of on average greatest

gradient. This structure is exactly the opposite of what we

look for. We wish to rotate the structure and make the largest

eigenvalue orthogonal to the main gradient direction. This can

be accomplished by inverting Cx0
. Since the inverse of a

symmetric matrix, has the same eigenvectors but reciprocal

eigenvalues, we obtain the wanted structure, see Fig. 1.

Using this structure to construct a Gaussian kernel we arrive

at the steering kernel

KS(x0,xw) = c · exp

(

−
(x0 − xw)T(Cx0

)(x0 − xw)

2σs

)

where KS(x0,xw) is the weight associated to pixel xw in the

local window, Cx0
is the structure of the gradients for the local

window centered around x0, and c is a normalizing constant.

σs is the parameter governing the basic level of smoothing

e.g. the steepness of the Gaussian kernel before it is deformed

by C0. Fig. 2 illustrates the construction of a steering kernel.

III. STEERING KERNELS IN VIDEO

Applying steering kernels on video is an obvious extension.

By having more frames we want to use the redundancy

of the video to get a better estimate of the pixel value.
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(a) (b) (c)

Fig. 2. Construction of the steering kernel based on the red dot in (a) in a 21x21 neighborhood. (b) The steering kernel based on the structure of the
gradients. (c) The result of filtering with the steering kernel with parameter σs = 11.

The redundancy occurs because in video, e.g. 50 frames per

second, are available. Of course the type of content determine

how useful the surrounding frames are. If a scene shift occurs

we cannot use the information to get a better estimate. We

propose firstly to extend the idea of the steering kernel such

that the kernel is three dimensional and secondly to introduce

time asymmetric kernels to handle the problems at scene shifts.

With grey level video we have a three dimensional site input

(x1i, x2j , x3k), i = 1, . . . , n, j = 1 . . . , m, k = 1 . . . , l, where

(x1i, x2j) indicates the spatial location of the site in the frame

and x3k the frame number, i.e. the temporal location, of the

site. The observation at site (x1i, x2j , x3k) is denoted yijk

representing the grey level value.

A. Time symmetric kernel

Extending the steering kernel introduces some difficulties,

since the temporal resolution can not be compared to the

spatial resolution because of different scales. By governing

the time direction by a separate parameter, we construct a

video version of the steering kernel. We restrict the kernel

such that two of the three axes in the estimated covariance

structure is parallel to the spatial domain (the one from the

original steering kernel). The third is then orthogonal to these

and parallel to the temporal directional plane as shown on Fig.

3. This is chosen because we wish to maintain sharp edges

with respect to each frame and not in arbitrarily directions in

the spatial/temporal space.

We construct the matrix similar to the two dimensional case

but augment the matrix to a 3×3 matrix. We reuse the Cx0

unchanged but augment it with the variance of the gradient in

the temporal direction

It should be emphasized that we for the calculation of the

temporal variance use all gradients in the temporal direction

in the considered block, whereas we only use the gradients in

the the spatial directions from the central frame. The resulting

shape of the video kernel in the central frame is the same shape

as in the 2 dimensional case, but with smaller weight since

some of the weight is transferred to the surrounding frames

dx0
=

n
∑

i=1

m
∑

j=1

l
∑

k=1

(

∂y

∂x3

(x1i, x2j , x3k)

)2

.

Fig. 3. Illustration of the idea of video steering kernel, here using five
relatively identical frames. The third is the one we perform filtering on.
The superimposed red ellipses represent level curves with same density of
the kernel. It is obvious that redistributing some of the kernel weight on
surrounding frames in this case can give a better estimate.

Here dx0
is the last entry in the diagonal of our enlarged

matrix.

We can now define the covariance structure of the time

symmetric kernel as

C̃x0
=

[

Cx0

σs

0

0
dx0

σt

]

,

where Cx0
is exactly as before. Since we want to be able to

adjust the overall smoothing in spatial and temporal direction

independently we introduce a new parameter σ t governing the

temporal degree of smoothing. We can now define the time

symmetric steering kernel as

KTS(x0,xw) = c · exp

(

−
(x0 − xw)T(C̃x0

)(x0 − xw)

2

)

,

where w index the sites in the local block and c is the

normalizing constant.

We see that the kernel is locked to have one eigenvector

parallel to the temporal direction, since there is no correlation

between the temporal and the spatial direction. Furthermore we

notice that when experiencing small temporal gradients, i.e. the

content of the frame is relatively unchanged, the estimate of

C̃x0
is going to be relatively small. This will lead to a kernel
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stretching in the temporal direction giving more weight to the

surrounding frames. On the other hand if is there is a lot of

changes, we will get a large estimate of C̃x0
, resulting in a

kernel shrinking in the temporal direction ultimately becoming

the ordinary steering kernel.

B. Time asymmetric kernel

Utilizing the surrounding frames like the described kernel

construction above improves noise reduction, however the

performance is degraded at scene shift and at pan. Obviously at

scene shifts the gradient in the temporal direction is relatively

large, resulting in a very flat kernel in the temporal direction,

almost identical to the two dimensional kernel. We therefore

propose an alternative kernel construction, where the temporal

direction supports asymmetry. This provides us with more

flexibility to exploit the redundancy in only one temporal

direction when entering/exiting a scene shift as illustrated

in Fig. 4. For estimating the asymmetric kernel we have to

Fig. 4. Illustration of the idea of time asymmetric kernel, here using three
relatively identical frames and a scene shift. The third is the one we perform
filtering on. The superimposed red ellipses represent level curves with same
density of the kernel. It is obvious that redistributing some of the kernel weight
to frame 1 and 2 will give a better estimate, and that frame 4 and 5 should
have little or zero weight

estimate the two parts of the kernel separately. We therefore

divide the gradients into two groups, one containing the

gradients based on frames before our current frame and one

after the current frame. We then get

˜̃
Cx0

=















∑

n

i=1

∑

m

j=1

∑

t−1

k=1
( ∂y

∂x3

(x1i, x2j , x3k)3)
2

if x3k ≤ t
∑n

i=1

∑m

j=1

∑l

k=t+1
( ∂y

∂x3

(x1i, x2j , x3k)3)
2

otherwise

,

where t is the index of the current frame, x3k is the index in

the temporal direction in the considered block.
˜̃
Cx0

substitutes

the C̃x0
from the time symmetric kernel.

IV. EXPERIMENTS

We tested the proposed kernels in four different setups il-

lustrating the performance. We tested together with the regular

two dimensional steering kernel for comparison. The first three

we used sequences with added normal noise with N(0,5). The

last test was done on a real broadcasted video with analog

noise originating from transmission. For the simulated data

we optimized wrt. the Rooted Mean Squared Error (RMSE).

The last example we used subjective image quality.

A. Single static sequence

In the first experiment, we took a standard sequence, Susie

representing respectively a very static setting. We added noise

with N(0, 5) . We compared the performance of the steering

kernel of size [5 x 5]with the video steering kernel of size [5

× 5 × 3] with respect to RMSE. For parameter estimation

we used a frame in the middle of the sequence to determine

the steering kernel parameter. This was shared with the video

steering kernels. we notice a significant improvement from

the two dimensional kernel. The difference between the three

dimensional kernels with and without symmetry is ambiguous.

There is no clear winner. For this sequence, see Fig. 5, the

perceptual quality appears much better for the video steering

kernels than the original two dimensional steering kernel.

B. Single dynamic sequence

The setup of this experiment is identical to the previous. The

used sequence, Football, represents a very dynamic sequence

with both camera and object movement. Adding movement

makes the video steering less optimal. However the perfor-

mance is still constantly superior to the two dimensional

kernel. The variance of the video kernels performance is more

pronounced than in the previous. The time asymmetric kernel

is slightly better than the time symmetric kernel.

C. Sequences with scene shifts

We used another video consisting of five very different

concatenated standard sequences, see Fig. 7. Those were

Table Tennis, a relative static scene with a noise like wall

paper, Flower Garden a panoramic sequence of small flowers,

Birdcage, a very static scene with a birdcage spinning slowly

around, Susie as mentioned before and finally Mobcal, a

panoramic video of mobile and calender. We added noise

as before to investigate the performance when encountering

scene shift. The three dimensional kernels performed better

than the two dimensional kernels. Only exception is in the

Flower Garden sequence where the performance of all three

are similar bad. We notice that the biggest difference between

the two dimensional and the three dimensional is obtained in

sequences where the camera is relatively static and the back-

ground has a noise like texture e.g. Table Tennis. Comparing

the time symmetric kernel and the time asymmetric kernel we

notice that in general the asymmetric kernel performs better.

Furthermore at scene shift indicated with a dashed vertical

line on Fig. 7(f) the performance of the asymmetric kernel

is superior to the orthogonal (most noticeable around frame

number 90).

D. Real video sequence

The final test was performed on a real video which had

been broadcasted and grabbed and converted to digital video.

We only show a frame together with the residual image to

illustrate the effect of the three different methods, since the

original sequence is unavailable. Each of the RGB-layers have

been filtered separately. The parameter was chosen to make the

best visual filtering. On the filtered images we notice that the

video kernels appear most noise free.
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Fig. 5. Detail of frame number 7 of, (a) the original frame and, (b) the frame with added noise with N(0, 5). The resulting frame of filtering with the, (c)
steering kernel of size [5 × 5], (d) video steering kernel of size [5 × 5 × 3] and (e) video steering kernel of size [5 × 5 × 3] and (f) The frame by frame
comparison of the RMSE of the three methods.
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Fig. 6. The frame by frame comparison of the RMSE of the three methods on the Football. The kernel sizes was like the Susie example.

V. CONCLUSION

In this paper we have extended the steering kernel to be used

in video with added flexibility. The kernel have been altered

progressively to handle the difficulties concerning scene shift.

This results in the introduction of a constraint on direction

of the temporal direction and the introduction of asymmetric

kernels. The proposed kernels improves the performance with

respect to minimizing the RMSE compared to the original

steering kernel. Further work with optimizing the choice of

parameters needs to be performed. Finally further work also

needs to be done to show how the obtained RMSE results

correlates with the perceived video quality.
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Fig. 7. (a)-(e) A single frame from each of the five subsequences in this sequence. The scene was added noise with N(0, 5) and a filtering with the steering
kernel and the video steering kernel was performed. The resulting RMSE of the filtering is presented in (f). The vertical lines marks, where a scene shift
occurs. The video kernels outperforms the two dimensional kernel. The time asymmetric kernel performs overall best and handless scene shift better than the
time symmetric kernel.
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Fig. 8. (a) A frame from a real video sequence. (b), the result of the filtered frame with the two dimensional steering kernel, (c) the time symmetric kernel
and (d) time asymmetric kernel.


