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Abstract—The adaptive backstepping controller for inverted 

pendulum is designed by using the general motion control model. 
Backstepping is a novel nonlinear control technique based on the 
Lyapunov design approach, used when higher derivatives of 
parameter estimation appear. For easy parameter adaptation, the 
mathematical model of the inverted pendulum converted into the 
motion control model. This conversion is performed by taking 
functions of unknown parameters and dynamics of the system. By 
using motion control model equations, inverted pendulum is 
simulated without any information about not only parameters but 
also measurable dynamics. Also these results are compare with the 
adaptive backstepping controller which extended with integral action 
that given from [1]. 
 

Keywords—Adaptive Backstepping, Inverted Pendulum, 
Nonlinear Adaptive Control.   

I. INTRODUCTION 
DAPTIVE nonlinear control scheme was proposed to 
stabilize inverted pendulum. A novel control design 

technique called backstepping control was used to make 
inverted pendulum rod upwards. The key idea of backstepping 
design is to drive the error equation to zero by designing 
unique control and parameter adjustment laws. This design 
technique is applicable to both linear and nonlinear systems. 

For the inverted pendulum system some of the unknown 
parameters can be measurable. With these known parameters, 
the numbers of unknown parameters are reduced and with this 
advantage, design and implementation of control law will be 
easier. That type of adaptive backstepping controller was 
designed in [1]. In that study, measuring the cart and pole 
weights, and trying to estimate the rod length are necessary. 
Comparing to measure rod length to weight is an easier task to 
perform. And also estimation of easy measure parameters is 
unnecessary. In some cases all parameters must be estimated. 
In [2] the same adaptive technique was used to estimate all 
parameters to stabilize inverted pendulum. For simplicity all 
unknown parameters are taken as three functions and 
adaptation is performed by estimating unknown parameter 
functions. With only estimation of three parameters, rather 
than five, stabilization becomes an easier task to perform. But 
this advantage is not enough to make the control law and 
adaptation mechanism easy. 

Adaptive backstepping control is also used in industrial 
motion control systems. In [3-5] integral adaptive 
backstepping control was proposed for industrial motion 
control systems. 

Experimental and simulation results show that when 
disturbance appears in the motor drives integral action in 
backstepping controller can increase system robustness with 
respect to the external disturbance and modeling error [4]. 

In this study we focus on the error. The modeling error and 
disturbance can occur in a function that has both unknown 
parameters and dynamics of the system.  

The adaptive integral backstepping motion controller [3-5] 
was used to control inverted pendulum. 

In second chapter, we proposed the problem, and related 
mathematical supplementary. Chapters 3 is the controller 
design procedure for adaptive backstepping controller and 
also in this chapter we introduce a new integral action control 
structure which is extended from [1]. In chapter 4 simulation 
and simulation results are proposed. 

II. PROBLEM STATEMENT 

A. Motion of Equation 
The objective of this study is to convert inverted pendulum 

with movable cart mathematical equation to simplified second 
order model of the motion control equation. With this 
conversion, we can apply integral adaptive backstepping 
motion controller and adaptation mechanism to inverted 
pendulum which with the conversion looks like second order 
motion equation. 

The motion equation of the inverted pendulum which 
derives from the Lagrange equation is used to derive motion 
equations of n-degree-of-freedom mechanic system. The 
Lagrange equation uses energy equation that does not need to 
use Newton’s Law. Lagrange used to compute mathematical 
equations of mechanic systems that have joint forces. 
(Because of computational difficulty we use the Lagrange 
equation). 

The Lagrange Equation 
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where q is generalized coordinate, τ is control forces and 
( )qqL ,  is the Lagrangian function by using (1) we have 

inverted pendulum motion equation 
 

( ) 2cos θθθ MplMplxMpMcu −++=          (2) 
( ) θθθ cossin2 xMplMpglMplI =++−        (3) 
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where u is the force applied to the cart, Mc and Mp are mass 
of the cart and pendulum rod respectively, l  is the length of 
the rod, g is the graviton constant, θ  is the rod angle and x is 
the position of the cart. 

By solving x and used in (2) we have 
 

( )θθθθφθφθθφ sincostansec 2
321 −++=u       (4) 

 
where 
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are functions that have unknown parameters of the system. 
Rewriting (4) in state space form is achieved by θ=1x  and 

θ=2x  (or wx =2 , where w is angular velocity). As a 
result 

 
21 xx =            (8) 

( ) 1
2

231221 sintan xxxuxxg φφ +−=       (9) 

( ) 13111 cossec xxxg φφ +=       (10) 
 
Now if we rewrite equation (8), (9) and (10) in the motion 

control form, then we have 
 

21 xx =                          (11) 

( ) ( )121 xhuxxg −=           (12) 
 
where 

 
( ) 1

2
23121 sintan xxxxh φφ −=      (13) 

B. Motion Control Equation 
Simplified second order differential equation for motion 

control is given 
 

w=θ               (14) 

LTTqwJ −=                 (15) 
 

where θ  is angular position, w is angular velocity J is total 
effective inertia, Tq is the acting torque (used as input) and TL 
is the load torque.  The variables J and TL are unknown 
parameters of the system. The purpose of the motion control 
with integral adaptive backstepping controller is to estimate 
these unknown motion parameters. 

We rewrite equation (11), (12) in the form of 
 

w=θ               (16) 

huwg −=            (17) 
 
Equations (14), (15) and (16), (17) are similar to g and h 

functions which also contain unknown parameters. This study 
aims to estimate these g and h functions by using integral 
adaptive backstepping motion controller. 

The only difference is that h and g functions also contain 
dynamics of the system which is rod angleθ . The rod angle 
θ  varies 2/π± . Then we have ( )1xg  converged to zero 

where θ  goes to zero. 
But we consider dynamic value in these functions as 

disturbance and also we will estimate these unknown values. 
Introduce normalize unknown function as 
 

( )
( )1
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III. ADAPTIVE BACKSTEPPING CONTROLLER 
DESIGN 

The error equation is defined as 
 

θθ −= refe1           (19) 

 
where refθ is the reference θ  signal which assumes that 

continuous and differential piecewise signal, for inverted 
pendulum is zero. 

Virtual control equation is defined as 
 

1111 xecw refref λθ ++=          (20) 

 
where ( )∫= ττ dex 11  is the integral action and by using this 

equation we can ensure that tracking error converge to zero. 
Second error equation defined as 
 

wwe ref −=2         (21) 

 
By using derivative of 2e to make desired dynamic for the 

velocity tracking error 
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We have control command input function as 
 

( ) ( ){ }Γ++−+++−= ˆ1ˆ 11122111
2
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where ĝ and Γ̂ are estimated values of g and Γ. Now we can 
construct adaptation rules by using Lyapunov energy function. 
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where 1121 ,,, λγγ c  are positive constants at the disposal of 
the designer where they determine the conversion speed of the 
estimation.  

The adaptation laws are 
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The adaptation laws cancel undesired dynamics in the 

Lyapunov derivation. 
For compare the all results we extend the adaptive 

backstepping controller which is given in [1] with integral 
action. New virtual control, control law and adaptation 
equation given equations (23), (24) and (25) respectively; 

 

11334 λθξ xkx spd ++−=         (23) 
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2
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where θθ == 43 , xx  

 

spx θε −= 33  

dxx 444 −=ε  
 
The new adaptive backstepping controller and adaptation 

mechanism simulation as introduced in Fig. 7.  

IV. SIMULATION AND SIMULATION RESULTS 
Simulation executed by using 1=Mc , 1.0=Mp , 1.0=l , 

8.9=g  model parameters and controller parameters selected 
as c1=6, c2=6, γ1=6, γ2=6 and λ1=0.0001. 

 

 
Fig. 1 Adaptive Integral Backstepping Control Block Diagram 

 
Fig. 1 is the block diagram of the controller. This diagram 

is executed using the SIMULINK computer program. Initial 
conditions of inverted pendulum rod angle selected as 0.5 
radian. This value is important as a higher degree or 
linearization. The inverted pendulum equation is converted to 
linear form by assuming rod angel in small values. By this 
assumption linear adaptive or non-adaptive control schemes 
can be applied. But in this study our purpose is to create a 
nonlinear adaptive controller for the nonlinear inverted 
pendulum. Higher changes in angel will not affect the control 
law. 

Figs. 2 and 6 are the experimental result of the inverted 
pendulum rod angle. The angle converges to zero from 0.5 
and 0.3 radians respectively. 

Figs. 3 and 4 are the convergence of unknown parameters 
which converge into their true values. 

Fig. 5 is the error function diagram that shows the error 
between the actual rod angle and the reference value which is 
zero. The error goes to zero which is the expected value. 

Fig. 7 is the rod angle resulted from experiment in [1] 
which is extended with integral action. 
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Fig. 2 Inverted pendulum rod angle for initial 0.5 radians 
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Fig. 3 Unknown J parameter convergence 
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Fig. 4 Unknown Γ parameter convergence 
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Fig. 5 Error function 
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Fig. 6 Inverted pendulum rod angle for initial 0.3 radians 
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Fig. 7 Inverted pendulum rod angle for initial 0.5 radians by using 

estimation of l parameter with integral action 
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