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Abstract—A novel adaptive fuzzy trajectory tracking algorithm of 

Stewart platform based motion platform is proposed to compensate 
path deviation and degradation of controller’s performance due to 
actuator torque limit. The algorithm can be divided into two parts: the 
real-time trajectory shaping part and the joint space adaptive fuzzy 
controller part. For a reference trajectory in task space whenever any 
of the actuators is saturated, the desired acceleration of the reference 
trajectory is modified on-line by using dynamic model of motion 
platform. Meanwhile an additional action with respect to the 
difference between the nominal and modified trajectories is utilized in 
the non-saturated region of actuators to reduce the path error. Using 
modified trajectory as input, the joint space controller incorporates 
compute torque controller, leg velocity observer and fuzzy disturbance 
observer with saturation compensation. It can ensure stability and 
tracking performance of controller in present of external disturbance 
and position only measurement. Simulation results verify the 
effectiveness of proposed control scheme. 
 

Keywords— Actuator saturation; adaptive fuzzy control; Stewart 
platform; trajectory shaping; flight simulator.  

I. INTRODUCTION 
TEWART platform has been widely used in flight simulator, 
driving simulator, parallel machine tools and etc. Although 

it has many advantages over conventional serial mechanism 
including high structural stiffness, heavy load capacity and 
possibility of lightweight design, it may encounter problems 
such as limited workspace, singularity problem and difficulty 
to exploit the dynamic potential due to complexity of 
transformation equations between joint space and operational 
space [1]. 

In order to achieve high performance for Stewart platform, 
both effective trajectory planning method and robust controller 
should be carefully designed considering capability of 
actuators and external disturbances. The early research of 
actuator saturation problem in control system limited in linear 
systems [2] and gradually extended to nonlinear systems such 
as flight control systems [3] and serial manipulators [4]. But for 
Stewart platform, fewer results have been reported in public. 
The controller design methods considering actuator saturation 
can be mainly divided into two kinds: (1) Consider actuator 
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saturation during controller design phase, including 
anti-windup [5], robust control [4], model predictive control [6] 
and so on. These methods are most suitable for linear system. (2) 
Trajectory modification. This kind of methods can modify 
reference trajectory if trajectory varies too fast, which ensures 
the actuators unsaturated. But it can not ensure the performance 
of controller when large external disturbances are existed. 

This paper proposes an adaptive fuzzy controller and 
real-time trajectory shaping scheme for Stewart platform under 
actuator saturation. The real-time trajectory shaping algorithm 
makes use of dynamic model information to predict saturation 
condition and thus modifies the reference trajectory. The 
adaptive fuzzy controller incorporates computing torque 
controller, link velocity observer and fuzzy disturbance 
observer with the saturation compensation. It can ensure 
stability and tracking performances of the controller in present 
of external disturbance and position only measurement. 

II. DYNAMIC MODEL OF STEWART PLATFORM 
An operational space dynamic model of the Stewart platform 

is derived by means of Newton-Euler method as follows, 
DFJXXHXXM +=+ T),()( &&& ,                     (1) 

where XXX &&& ,, separately correspond to position, velocity and 
acceleration information of a payload platform in 
operational-space; )(XM  is the inertia matrix; ),( XXH &  the 
nonlinearity including Coriolis, centrifugal and gravity force; 
F  the driving force of actuators; J  the Jacobian matrix and 
D  the external disturbance. 

The joint-space dynamic model needs transformation 
between joint space and operational space, which is related to 
inverse acceleration kinematic analysis of the Stewart platform, 

XJXJL &&&&&& += ,                                     (2) 
where L&&  corresponds to acceleration of links, J& is the 
differentiation of Jacobian matrix and can be expressed as 
follows, 
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where is is the unit vector of every link; iw the rotational 

angular velocity of every link; [ ]Tzyx ωωω=ω the rotational 

angular velocity of the payload platform. 
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So the joint space dynamic model can be expressed as 
follows, 

llll DFXXHLXM +=+ ),()( &&& ,                  (4) 

where 1)()( −−= JXMJXM l
T , 

XJJXMJXXHJXHl
&&& 1)(),()( −−− −= TT , lD is the external 

disturbance transformed to joint space. 

III. FUZZY DISTURBANCE OBSERVER (FDO) BASED ADAPTIVE 
CONTROLLER 

The classical control method for Stewart platform is the 
computed torque controller (CTC), which makes use of 
dynamic model information to compensate the highly 
nonlinearity of Stewart platform and proves to be effective. But 
in real world application, external disturbance is common and 
CTC completely ignores its influence. That will cause the 
degradation of controller’s tracking performance and even 
make the whole system unstable. 

For electro-mechanical system, external disturbance is 
generally compensated by two means: (a) High gain methods 
such as sliding control and etc. This kind of method can not 
avoid chattering effect and thus will cause the saturation of 
actuators. (b) Observer-based methods such as disturbance 
observer (DOB) [7] and etc. For the reason that DOB is based 
on linear system theory, it can not be applied in nonlinear 
system like Stewart platform. To overcome the defect of DOB, 
Kim [8] proposes a fuzzy disturbance observer (FDO) based on 
the theory that fuzzy system is a universal approximator [9]. 
The FOB can observe both external disturbance and internal 
model error. In this paper, we will incorporate CTC in joint 
space and FDO to construct the controller. 

A. Controller Form 
The standard nonlinear system equations can be derived as 

follows, 

21 xx =&  

ΩuMHMduMHMx2 ++−=++−= −−−− 1111
llllll& ,               (5) 

where Lx1 = , Lx2
&= , dΩ = is the external disturbance. The 

effect of applying FOB is to approximate external disturbance 
Ω  with fuzzy system Ω̂  and cancel external disturbance with 
feedforward method. The controller can be expressed as, 

1

1 ˆ
−

− −+
=

l

ll

M
ΩHMvu ,                                 (6) 

where v can be any feedback controller, in this paper we use 
CTC as v signal. 

B. Velocity Observer (VO) Design 
 
The position information of links can be obtained by 
photoelectric encoders integrated in joint torque motors. The 
velocity information of links can be measured by 
tachogenerator. But that will introduce severe noise 
information. Another method is differentiation of position 
information and then through a low-pass filter. Due to the delay 

effect of low-pass filter, the bandwidth of the controller will be 
lowered. In this paper, we will introduce a velocity observer 
[10] to obtain links’ velocity information. Consider the 
following observer, 

1D21 xGxx ~ˆˆ +=& , 

ΩxGuHMx 1P2
ˆ~)(ˆ 1 +++−= −

ll
& ,                                          (7) 

where PD GG ,  are gains of the observer. Define observation 
errors as follow, 

111 xxx ˆ~ −= , 

222 xxx ˆ~ −= .                                                                         (8) 
Then the observation errors dynamic equations of velocity 
observer can be expressed as 

1D21 xGxx ~~~ −=& , 

1P2 xGΩΩx ~)ˆ(~ −−=& .                                                            (9) 

C. Fuzzy Disturbance Observer (FDO) Design 
For the nonlinear system expressed in (5), the dynamic 

model of FDO can be expressed as follows, 
ΩuMHMxμμ 1

ll
1

l2
ˆ++−+−= −−σσ& ,              (10) 

where σ is positive definite. Due to unavailable of 2x , we use 

2x̂  instead and then, 
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Define observation error of FDO as μxζ 2 −= , and then we 
can obtain the observation error dynamic model of FDO by 
subtracting (11) from (5): 

2xΩΩζζ ~)ˆ( σσ +−+−=& .                       (12) 

D. Controller Synthesis 
The controller adopts the structure of feedback + 

feedforward. The feedback part uses CTC and the feedforward 
part uses FDO. The control output can be expressed as, 

ld1Pd2Ddl HΩxxKxxKxMu +−−−−−= ]ˆ)()ˆ([ &&& ,    (13) 
where PD KK , are gains of the controller. The controller’s 
structure is showed in the fig. 1: 

 
Fig. 1 Structure of adaptive fuzzy controller 

Define tracking errors as d11 xxe −= , d22 xxe &−= , and 
put control output into Eq.5, we can get 

21 ee =& , 

2D1P2D2 xKΩΩeKeKe ~)ˆ( +−+−−=& .                                (14) 



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:12, 2009

2909

 

 

Merge (9), (12) and (14) , and then we get 
)ˆ( ΩΩBΠΞΞ −+=& ,                               (15) 

where [ ]T2121 eeζxxΞ ~~= , 
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[ ]TIIIB 00= . 
Through proper choice of  PG , DG , PK , DK and σ , all 
eigenvalues of Π can ensure staying in the left side of complex 
plane. So there is symmetrical positive definite matrix P  and 
make the following equation QPΠPΠ −=+T  existed, where 
Q  is a positive definite matrix. Define Lyapunov equation as 

θθPΞΞ ~~
2
1

2
1V TT

γ
+= ,                          (16) 

where γ  is positive and θ̂  corresponds to learning speed. 

Choose TT PBξΞθ γ=
&̂ , we can prove that V& keeps negative 

outside a compact set, which ensures the tracking error and 
observation errors of VO and FDO are uniformly ultimately 
bounded (UUB) [11]. The specific proving process can be 
found in [8]. 

IV. CONTROLLER MODIFICATION CONSIDERING ACTUATOR 
SATURATION 

Due to the randomness and non-prediction of external 
disturbance, the disturbance observer may be unstable if 
disturbance is large enough to reach the actuator’s limit. In this 
situation, the observer can not observe the disturbance correctly 
and the performance of the whole system can not be ensured. 

Eq(11) is dynamic model of practical system, can be 
expressed as, 

ΩuMHMx2 ++−= −− )(11 satlll& ,                  (17) 
where 
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and )(usat  corresponds to saturation operation for every 
element of vector u , maxu is the maximal force every single 
actuator can afford. Then the Eq.12 can be modified to the 
following form, 

2
1

l xuuMΩΩζζ ~))(()ˆ( σσ +−+−+−= − sat& .         (18) 

As soon as the actuator saturation appears, ))(( uuM 1
l −− sat  

part will cause divergence of disturbance observer error. 
In order to deal with the above divergence problem, we add 

saturation compensation operation into both FDO and VO, to 
ensure precisely observation of external disturbance and 
velocity signal under actuator saturation situation. The 

modified equations are as follows, 
ΩuMHMxμμ 1

ll
1

l2
ˆ)(ˆ ++−+−= −− satσσ& ,       (19) 

ΩxGuHMx 1P2
ˆ~))((ˆ 1 +++−= − satll

& .           (20) 

V. REAL-TIME TRAJECTORY SHAPING UNDER ACTUATOR 
SATURATION 

When the reference trajectory changes too rapidly, there is 
necessity to modify the reference acceleration to keep the 
controller operate within the non-saturated state. The main idea 
is making use of dynamic model information to limit the 
maximal actuator force in joint space and then computing the 
modified reference acceleration in operational space. 

The operational space dynamic model of Stewart platform 
can be transformed as follows, 

FttttttFTZ 654321 ⋅=⋅= ],,,,,[&& ,                 (21) 

where Tzzzzzz ],,,,,[)(/),( 654321 &&&&&&&&&&&&&&&&& =+= XMXXHXZ is 

introduced to simply the dynamic equation. )(/ XMJT T= is 
the projection matrix, it  is the i th column vector of T . 

From (21), we can see that there is a transformation between 
actuator force and payload platform acceleration. Due to the 
limited force output capability of actuators, payload platform 
acceleration has a boundary which is changing with 
manipulator dynamics. If the acceleration of the reference 
trajectory is beyond that boundary, actuator saturation will 
happen. So the function of the trajectory shaping algorithm is to 
modify the reference trajectory acceleration and move it into 
the maximum acceleration boundary, assuming that the 
modification’s influence to dynamic performance of Stewart 
platform is as small as possible. The maximum acceleration 
boundary can be expressed as follows, 
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1
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where if is the i th the column vector of F , FΩ is the 

boundary of actuator’s output force, )Ω(Ζ&&  is the maximum 
acceleration boundary of Stewart platform. We illustrate the 
mapping of acceleration boundary by a 2D case (fig.2) for 
Eq.(22) is 6D and hard to explain. 

 
Fig. 2 The acceleration modification in 2D situation 

 
Because actuator saturation is with if , we choose 

},,,,,{ 654321 tttttt  as basis. The reference value of Z&&  
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can be expressed as a linear combination of basis elements 
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where iλ  can be obtain by projecting refZ&&  on the basis 
},,,,,{ 654321 tttttt : 
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If iλ  is not within FΩ , we modify refZ&&  and make it stay in the 
boundary 

i
i

iγλ∑
=

=
6

1
i

mod tZ&& , 
⎪
⎩

⎪
⎨

⎧

∉

∈
= F

i
i

i

F
i

i f Ω,

Ω,0.1
max

λ
λ

λ
γ .         (25) 

where max
if  is the maximum force of the i th link. Here max

if  
is not equal to maxu , which is the maximum output force of the 

actuator. Considering the external disturbance, max
if  can be 

expressed as ii uf Ω−= ˆ
max

max , where iΩ̂ is the i th element 

of Ω̂ . The modified acceleration trajectory 
is )(/),( refrefref XMXXHZX modmod &&&&& −= . Where 

refX and refX&  are reference position and velocity of Stewart 
platform. The trajectory shaping algorithm can be 
demonstrated with a 2D case again as fig.3. 

 
Fig. 3 The acceleration modification in 2D situation 

Although the above trajectory shaping algorithm solves the 
problem of actuator saturation, it also introduces the position 
error of the reference trajectory. So we need a further 
modification for the acceleration of reference trajectory as soon 
as the actuators are back to non-saturated state. It will force 
position error of the reference trajectory converge to zero. The 
modification can be expressed as follows, 

)()( modmod XXXXXX mod −+−+= ref
p

ref
dref AA &&&&&& ,    (26) 

where pA and dA are gain for the modification. 

VI. COMPUTER SIMULATION 
In this section, the proposed adaptive fuzzy controller and 

trajectory shaping scheme under actuator saturation will be 

evaluated. The dynamic model and its parameters used in 
computer simulation is based on a Stewart platform in our 
laboratory. The weight of payload platform is kg2.45 . The 
center of gravity is [ ]m25.000 . The inertial moment is 

[ ] 2)1.136.147.12( mkgdiag ⋅ . The saturation force of the 
actuators is 2000N. And the parameters of the controller are 
chosen as: DK  is 6E100 ; PK  is 6E1000 ; DG  is 6E10 ; PG  
is 6E100 ; σ  is 100 ; γ  is 1000 , where 6E  is the 66×  
identity matrix. 

The simulation will compare three kinds of control schemes: 
conventional computed torque controller (CTC), computed 
torque controller with real-time trajectory shaping (CTCRTS) 
and FDO based adaptive controller with real-time trajectory 
shaping (FDORTS). The reference trajectory used in 
simulation is the sine wave applied both in X axis and Y axis. 
The period of the sine wave is 1s and the amplitude is 0.5m. 
Furthermore, an external disturbance of 100N is exerted on the 
first link of the Stewart platform at the end of 1s. The 
simulation results are shown in following figures. 

 
Fig. 4 Comparison of X axis tracking 

 
Fig. 5 Comparison of Y axis tracking 
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Fig. 6 Comparison of Z axis tracking 

 

 
Fig. 7 Comparison of rotational axis tracking 

 

 
Fig. 8 Disturbance Observing Results on Different Links 

As we can see from the above figures, due to actuator 
saturation, CTC performs bad and produces undesirable motion. 
If the reference trajectory varies severely, the controller may 
even turn to unstable. CTCRTS performs better than CTC 
during simulation time of 0~1s thanks to its inclusion of 
real-time trajectory shaping algorithm. Actuator saturation 
situation does not happen and no undesirable coupling motion 
is observed. But during simulation time of 1~2s, CTCRTS 
produces large tracking error and finally becomes divergence 
under the influence of external disturbance. By contrast, 
FDORTS can precisely estimate the external disturbance and 
cancel it. Both stability and tracking performance are ensured 
for the Stewart platform with the proposed control scheme. 

VII. CONCLUSION 
We propose an adaptive fuzzy controller and real-time 

trajectory shaping scheme for Stewart platform under actuator 
saturation in this paper. The real-time trajectory shaping 
algorithm makes use of dynamic model information to predict 
saturation condition and thus modifies the reference trajectory. 
The adaptive fuzzy controller combines computing torque 
controller, link velocity observer and fuzzy disturbance 
observer with the saturation compensation. It can ensure 
stability and tracking performances of the controller in present 
of external disturbance and position only measurement. Further 
is required verification of the performances of the control 
scheme in a practical Stewart platform by means of algorithm. 
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