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Abstract—This paper investigates MIMO (Multiple-Input
Multiple-Output) adaptive filtering techniques for the application
of supervised source separation in the context of convolutive
mixtures. From the observation that there is correlation among the
signals of the different mixtures, an improvement in the NSAF
(Normalized Subband Adaptive Filter) algorithm is proposed in
order to accelerate its convergence rate. Simulation results with
mixtures of speech signals in reverberant environments show the
superior performance of the proposed algorithm with respect to the
performances of the NLMS (Normalized Least-Mean-Square) and
conventional NSAF, considering both the convergence speed and
SIR (Signal-to-Interference Ratio) after convergence.
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I. INTRODUCTION

THE evolution of telecommunications has driven the

development of efficient techniques for digital signal

processing. Adaptive filtering techniques, in particular, have

attracted a great deal of interest. Due to good performance,

low computational complexity and high robustness, these

techniques have been widely used in a variety of applications,

such as system identification, channel equalization, echo

cancellation and source separation [1]-[3]. This last application

will be addressed in this article.

Most acquired audio signals correspond to mixtures of

signals from various sources, such as speech, music, ambient

and equipment noise. Source separation consists of retrieving

the original source signals of interest from one or more mixing

signals. Direct applications include real-time lectures with

simultaneous translation and sampling of sounds for electronic

music composition. Many derivative applications are aimed at

identifying impulse responses and/or modifying the mixing

signal, for example in speech enhancement within hearing

devices and audio rendering for multichannel devices. In some

applications, excerpts of the original signals present in the

mixtures are known prior to the separation [4]. In these cases,

one can use supervised adaptive algorithms, such as those that

will be approached in this work, to obtain the coefficients of

the separation system.

The blind audio source separation (BASS) technique

has been a subject of intense research over the last

few years. Several successful methods have emerged,

such as Independent Component Analysis (ICA) [5],
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Computational Auditory Scene Analysis (CASA) [6] and

Sparse Decomposition (SD) [7]. However, it is still difficult to

assess the characteristics and limitations of source separation

algorithms due to the lack of adequate performance measures,

specially in the challenging case of convolutive mixtures. The

supervised source separation approach can be a good tool to

aid in the refinement of blind source separation techniques.

In this paper we investigate the separation of sources

from convolutive mixtures in a supervised way, through

adaptive filtering, using two algorithms: Normalized

Least-Mean-Square (NLMS) [1] and Normalized Subband

Adaptive Filters (NSAF) [8]. The NSAF algorithm

decomposes the input and desired signals, with the purpose

of generating error signals in subbands that are used to adapt

the coefficients of the applied filter over the entire frequency

band. This procedure causes the NSAF to differ from its

predecessor subband adaptive algorithms [9], which employ

distinct subfilters and independent adaptation in the different

subbands.

From the observation that there is correlation among the

mixture signals, a modification in the NSAF algorithm is

proposed for applications in supervised source separation

procedures, by including the correlation matrices of the

subband signals in the coefficient updating equation, thereby

accelerating the convergence of the algorithm.

II. THE SOURCE SEPARATION PROBLEM

For a system with Q sources and P sensors, linear

convolutive signal mixtures can be defined according to the

equation

x(n) = H(n) ∗ s(n), (1)

where “∗” is the convolution operator,

H(n) =

⎡
⎢⎢⎢⎣
h11(n) h12(n) . . . h1Q(n)
h21(n) h22(n) . . . h2Q(n)

...
...

. . .
...

hP1(n) hP2(n) . . . hPQ(n)

⎤
⎥⎥⎥⎦ (2)

is the mixture matrix of dimensions P × Q, comprising the

impulse responses hij(n) (corresponding to the path from the

j-th source to the i-th sensor) of the mixture filters,

s(n) =
[
s1(n) s2(n) . . . sQ(n)

]T
(3)

is the vector composed of the signals from the sources, and

x(n) =
[
x1(n) x2(n) . . . xP (n)

]T
(4)

is the vector formed by the signals arriving at the sensors.
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The task of separating linear convolutive mixed sources

requires the determination of a so-called separation matrix,

W(n), which is used with the purpose of estimating the source

signals out of the mixed signals by computing

y(n) = W(n) ∗ x(n), (5)

where

y(n) =
[
y1(n) y2(n) . . . yQ(n)

]T
(6)

and

W(n) =

⎡
⎢⎢⎢⎣
w11(n) w12(n) . . . w1P (n)
w21(n) w22(n) . . . w2P (n)

...
...

. . .
...

wQ1(n) wQ2(n) . . . wQP (n)

⎤
⎥⎥⎥⎦ (7)

is the Q×P separation matrix. If the number of sensors P is

equal to the number of sources Q, the separation problem is

called determined, which is the case considered in this work.

III. ADAPTIVE ALGORITHMS

In this section the NLMS and NSAF adaptive algorithms

are presented. It is also described how each algorithm was

adequate to the problem of supervised source separation in

the context of convolutive mixtures.

A. NLMS Algorithm

The NLMS algorithm is one of the most popular adaptive

filtering approaches due to its computational simplicity, proven

convergence in steady state environments with Gaussian

noise, and robust behavior when implemented with finite

precision arithmetic [2]. The NLMS algorithm updates the

filter coefficients using the error between the desired output

and the signal produced by the filter. The input vectors

and coefficients in the instant n are denoted, respectively,

by x(n) =
[
x(n) x(n− 1) . . . x(n−N + 1)

]T
and

w(n) =
[
w0(n) w1(n) . . . wN−1(n)

]T
, where N is the

adaptive filter length. Therefore, the output and error equations

are

y(n) = wT (n)x(n) (8)

and

e(n) = d(n)−wT (n)x(n), (9)

respectively, where d(n) is the reference signal.

The update of the coefficients is given by [10]

w(n+ 1) = w(n) +
μ

δ + xT (n)x(n)
e(n)x(n). (10)

The adaptation step-size μ is introduced in order to control

the misadjustment of the coefficients after convergence and

the regularization parameter δ to avoid very large steps when

xT (n)x(n) becomes very small. The range of suitable values

for μ is [10]

0 ≤ μ ≤ 2. (11)

B. NLMS Algorithm for the Source Separation Problem

In order to adequate the NLMS algorithm to the problem

of supervised source separation, assuming for simplicity the

case of two sources and two sensors, we obtain the output

signals, y1(n) and y2(n), and the error signals, e1(n) and

e2(n), through the equations

yi(n) = wT
i (n)x(n) (12)

and

ei(n) = di(n)− yi(n), (13)

where the input vector x(n) is composed of the two mixed

signal vectors

xi(n) =
[
xi(n) xi(n− 1) . . . xi(n−N + 1)

]T
, (14)

for i = 1, 2, that is,

x(n) =
[
xT
1 (n) xT

2 (n)
]T

. (15)

The coefficient vectors w1(n) and w2(n) have coefficients of

the two filters that generate each output, given by

w1(n) =
[
wT

11(n) wT
12(n)

]T
(16)

and

w2(n) =
[
wT

21(n) wT
22(n)

]T
, (17)

where

wij(n) =
[
wij,0(n) wij,1(n) . . . wij,N−1(n)

]T
. (18)

The indices i and j are related to the sources and mixtures,

respectively, and N is the number of coefficients of each

separation filter. Therefore, at each iteration, the updates of

the coefficient vectors w1(n) and w2(n) are accomplished

according to equation

wi(n+ 1) = wi(n) +
μ

δ + xT (n)x(n)
ei(n)x(n). (19)

C. NSAF Algorithm

The NLMS algorithm converges slowly when the input

signal is colored. To solve this problem, a compelling approach

is to use subband filtering in which the colored input signal is

decomposed into almost mutually exclusive frequency bands

and the decimated signal of each subband is approximately

white [11].

The NSAF algorithm proposed in [8] decomposes the

input and the desired signals into subbands, allowing the

use of particular properties of each resulting signal. This

algorithm exploits the principle of minimum perturbation, in

which, from one iteration to the next, the coefficients of the

adaptive filter must be altered in a minimum way, subject to

restrictions imposed to the subband errors after the update

(null subband a posteriori errors). Since the updating of the

coefficients is carried out at a lower rate by decimating the

error signals, computational cost increase is very small [12]

when compared to the NLMS algorithm, whereas coefficient

convergence is faster for colored input signals. A unique

feature of the NSAF algorithm relies in the fact that the

signal error is computed in subbands, but the updating of the
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Fig. 1 NSAF structure

adaptive filter coefficients is performed in fullband, as shown

in Fig. 1. In the NSAF algorithm, the desired signal d(n)
and the filter output y(n) are decomposed into M subbands

by the analysis filters F0(z), ..., FM−1(z) and are critically

decimated. The decimation factor is equal to the number of

subbands. Therefore, the decimated output signal of the m-th

subband is given by

ym↓(k) =
N−1∑
l=0

ŵl(k)xm(kM − l) = ŵT (k)xm(k), (20)

where

xm(k) =
[
xm(kM) xm(kM − 1) . . . xm(kM −N + 1)

]T
(21)

and

ŵ(k) =
[
ŵ0(k) ŵ1(k) . . . ŵN−1(k)

]T
. (22)

The corresponding error signal is given by

em↓(k) = dm↓(k)− ŵT (k)xm(k), (23)

where dm↓(k) is the desired decimated signal of the m-th

subband.

Coefficient updates of the NSAF algorithm are given by

ŵ(k + 1) = ŵ(k) + μ

M−1∑
m=0

xm(k)

δ + ||xm(k)||2 em↓(k), (24)

where μ and δ are introduced with similar purposes as those

adopted for the NLMS algorithm.

D. NSAF Algorithm for the Source Separation Problem

To fit the NSAF algorithm to the supervised source

separation problem, a procedure similar to the NLMS

algorithm was used. Accordingly, (23) and (24) were modified

to generate the error signals in subbands and to update the

coefficients of the separation filters. Considering the case of

two sources and two sensors, the filter coefficient vectors that

generate the source estimates are defined as

ŵ1(k) =
[
ŵT

11(k) ŵT
12(k)

]T
(25)

and

ŵ2(k) =
[
ŵT

21(k) ŵT
22(k)

]T
, (26)

where

ŵij(k) =
[
ŵij,0(k) ŵij,1(k) . . . ŵij,N−1(k)

]T
(27)

is the N -th lenght filter coefficient vector that generates the

portion of the estimation of the i-th source from the j-th

mixture. Defining the vector with the samples of the mixture

signals in the m-th subband as

xm(k) =
[
xT
1,m(k) xT

2,m(k)
]T

, (28)

where

xi,m(k) =
[
xi,m(kM) xi,m(kM − 1) . . . xi,m(kM −N + 1)

]T
,

(29)

the decimated subband error signal and the update equation

of the separation system coefficients relative to the i-th source

estimate are given, respectively, by

ei,m↓(k) = di,m↓(k)− ŵT
i (k)xm(k) (30)

and

ŵi(k + 1) = ŵi(k) + μ
M−1∑
m=0

xm(k)

δ + ||xm(k)||2 ei,m↓(k). (31)

E. Improved NSAF Algorithm for the Source Separation
Problem

From the observation that there is correlation among

the signals of the mixtures, we have introduced in the

update equation of the NSAF algorithm estimates of the

correlation matrices of the subband mixed signals, Rm(k) =
E[xm(k)xT

m(k)], in order to accelerate its convergence,

obtaining

ŵi(k+ 1) = ŵi(k) + μ
M−1∑
m=0

R̂−1
m (k)

xm(k)

δ + ||xm(k)||2 ei,m↓(k),

(32)

where

R̂m(k) = xm(k)xT
m(k) =

[
R̂m,11(k) R̂m,12(k)

R̂m,21(k) R̂m,22(k)

]
. (33)

Considering that the decimated subband input signals

are approximately white, the matrices R̂m,ij(k) can be

approximated by diagonal matrices given by

R̂m,ij(k) ≈ σ2
m,ij(k)I, (34)

where

σ2
m,ij(k) = xT

i,m(k)xj,m(k). (35)

Defining the inverse correlation matrix of the mixed signals

in the m-th subband as

R̂m(k)−1 =

[
Ŝm,11(k) Ŝm,12(k)

Ŝm,21(k) Ŝm,22(k)

]
, (36)
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using the approximation (34) and noting that σ2
m,12(k) =

σ2
m,21(k), we obtain

Ŝm,11(k) = (σ2
m,11(k)− σ4

m,12(k)σ
−2
m,22(k))

−1I, (37)

Ŝm,22(k) = (σ2
m,22(k)− σ4

m,12(k)σ
−2
m,11(k))

−1I, (38)

Ŝm,12(k) = −σ−2
m,11(k)σ

2
m,12(k)(σ

2
m,22(k)− σ4

m,12(k)σ
−2
m,11(k))

−1I,
(39)

Ŝm,21(k) = −σ−2
m,22(k)σ

2
m,12(k)(σ

2
m,11(k)− σ4

m,12(k)σ
−2
m,22(k))

−1I.
(40)

The increase in the computational complexity resulting from

the introduction of the inverse of the correction matrices in

the updating equation (31) is of 3M2 + 8M multiplications.

Since, in general, the number of subbands, M , is much smaller

than the length of the adaptive filters, N , this increase is not

significant.

IV. DESIRED SIGNAL FOR THE EVALUATION OF THE

BLIND SOURCE SEPARATION

In the problem of blind separation of audio signals in

convolutive mixtures, it is generally impossible to recover the

original signals from the sources, being allowed to obtain

as a valid solution filtered versions of the original signals.

Denoting by Hij(z) the corresponding transfer function of the

i-th source to the j-th sensor, one can write in the z domain

the mixture signals Xi(z) and the outputs of the separation

system Yi(z) for the problem of two sources and two sensors

as
X1(z) = H11(z)S1(z) +H12(z)S2(z), (41)

X2(z) = H21(z)S1(z) +H22(z)S2(z), (42)

Y1(z) = W11(z)X1(z) +W12(z)X2(z), (43)

Y2(z) = W21(z)X1(z) +W22(z)X2(z). (44)

Substituting equations (41) and (42) in (43) and (44), we

obtain

Y1(z) = (W11(z)H11(z) +W12(z)H21(z))S1(z)

+ (W11(z)H12(z) +W12(z)H22(z))S2(z),
(45)

Y2(z) = (W21(z)H11(z) +W22(z)H21(z))S1(z)

+ (W21(z)H12(z) +W22(z)H22(z))S2(z).
(46)

To find a possible solution to the problem, it was imposed on

the system the condition that the desired output signal Di(z)
should represent a filtered version of the original signal Si(z),
for i = 1, 2. To this end, it is enough to equal to zero the

portion of the signal corresponding to S2(z) in the equation

of Y1(z) and the portion of the corresponding signal to S1(z)
in the equation of Y2(z), that is,

W11(z)H12(z) +W12(z)H22(z) = 0, (47)

W21(z)H11(z) +W22(z)H21(z) = 0. (48)

The above equations have infinite solutions and the one

adopted was W11(z) = H22(z), W12(z) = −H12(z),
W21(z) = H21(z) e W22(z) = −H11(z). Thus, the signals

D1(z) and D2(z) become

D1(z) = (W11(z)H11(z) +W12(z)H21(z))S1(z)

= (H22(z)H11(z)−H12(z)H21(z))S1(z),
(49)

D2(z) = (W21(z)H12(z) +W22(z)H22(z))S2(z)

= (H12(z)H21(z)−H11(z)H22(z))S2(z).
(50)

The desired signals from the above equations were used in the

simulations, whose results are presented in the next section.

V. SIMULATION RESULTS

The adaptive algorithms for supervised source separation

described in Section III were evaluated using two convolutive

mixtures of two speech signals, corresponding to the signals

acquired by two microphones separated 5 cm from each other

in reverberant environment and sampled at 8 kHz. Simulations

of acoustic room propagation were developed using the

“Image-Source” model described in [13]. The simulations

were performed for three different reverberation times (T60):

0.1 s, 0.25 s and 0.5 s. The evaluation measure used was the

SIR (Signal-to-Interference Ratio).

For the subband decomposition, a cosine-modulated filter

bank [11] with M = 4 subbands and prototype filter of length

32 was used. The step-size and regularization parameters

employed in all algorithms were μ = 0.5 and δ = 0.1,

respectively.

Figs. 2-and 4 show the evolution of the SIR along the

iterations obtained with the NLMS, NSAF and improved

NSAF algorithms for T60 = 0.1 s, 0.25 s and 0.5 s,

respectively, with separation filter lengths N = 623, 1599 and

3227, which are equal to the lengths of the mixing filters L.
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Fig. 2 SIR evolution (in dB) for T60 = 0.1 s

It can be observed in these figures that the improved NSAF

algorithm presents a considerably higher convergence rate than

those of the NLMS algorithm and of the conventional NSAF

algorithm for the problem of supervised source separation.

As expected, the introduction of the correlation matrix of the

mixed signals into the coefficient update equation accelerates

the convergence of the NSAF algorithm, which is slow due

to the strong correlation among the signals of the mixtures.

Subband processing exploits the characteristics of the mixed

signals in the subbands by normalizing the adaptation step,

resulting in higher SIR values than those obtained with the

NLMS algorithm.

From Figs. 2-4, it can also be concluded that there is a

limitation in the source separation model employing finite

impulse response (FIR) filters, which produces smaller SIR
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Fig. 3 SIR evolution (in dB) for T60 = 0.25 s
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Fig. 4 SIR evolution (in dB) for T60 = 0.5 s

values as the reverberation time increases. Therefore, no

matter how good the blind separation algorithm is, for

high-throughput cases, the maximum SIR to be achieved with

FIR filters of length N = L is limited by the adopted

separation system model (around 23 dB in the simulated

scenario with T60 = 0.5 s), while for smaller reverberation

times it is possible to obtain high SIR values (above 60 dB in

the simulated scenario with T60 = 0.1 s).

VI. CONCLUSIONS

In this work, supervised adaptive algorithms were applied to

the source separation problem, considering linear determined

convolutive mixtures and separation system composed of

FIR filters. Due to the correlation among the mixed signals,

conventional adaptive algorithms, both in fullband and

subband structures, have slow convergence and result in low

SIR values. In order to improve the performance of the NSAF

algorithm for source separation, correlation matrices of the

mixed signals in the different subbands were introduced into

the coefficient update equations, which can be approximated

by block diagonal matrices using the whitening property

of the decimated subband signals, resulting in a small

increase in computational complexity over the conventional

NSAF algorithm. Simulation results using speech signals in

reverberant environments confirmed the improved performance

of the proposed algorithm with respect to the conventional

algorithms, and quantified the limitations in the SIR obtained

with the separation system model that employs FIR filters.
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