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Abstract—Currently the most prevalent deep learning methods
require a large amount of data for training, whereas few-shot learning
tries to learn a model from limited data without extensive retraining.
In this paper, we present a loss function based on triplet loss for
solving few-shot problem using metric based learning. Instead of
setting the margin distance in triplet loss as a constant number
empirically, we propose an adaptive margin distance strategy to obtain
the appropriate margin distance automatically. We implement the
strategy in the deep siamese network for deep metric embedding,
by utilizing an optimization approach by penalizing the worst case
and rewarding the best. Our experiments on image recognition and
co-segmentation model demonstrate that using our proposed triplet
loss with adaptive margin distance can significantly improve the
performance.

Keywords—Few-shot learning, triplet network, adaptive margin,
deep learning.

I. INTRODUCTION

DEEP learning methods has achieved great success in

recent years, which have being applied to various

visual tasks like facial recognition [5], [26] and pedestrian

recognition [7]. However, to train a good neural network model

always requires a large amount of labelled data in numerous

iterations, which can be quite time consuming and financially

expensive. Additionally, it is not practically applicable to train

a network for endangered objects like Orcaella brevirostris,

due to insufficient data available. On the contrary, we as

human are able to learn a new object like car, animal swiftly,

given only one photo. Inspired by this capability of human’s

neural networks, few-shot learning approach was proposed

[16], aiming to recognise new categories from limited few

samples with the prior knowledge learned from the other

datasets.

To recognise new categories from limited few samples,

we can obtain the prior knowledge learned from the other

datasets. As the training is based on few samples, few-shot

learning is easily stuck in overfitting problem. To alleviate this

problem, researchers propose Fine-Tune strategy models [22],

[18], metric based models [20], [11], [24] and sequence based

methods [17]. The metric based learning methods that employ

distance measures to find the similarity between images have

shown their superior performance. With the advent of modern

deep neural networks, these approaches map the low-level

visual features to an embedding space, where samples are

clustered together if they belong to same class, while samples
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of different classes keep a large distance apart. As a result,

a test sample can be easily classified using kNN. Matching

networks [23] consider the relationship among the training

examples and learn a classifier for any given support set.

Relation networks [21] learn a deep distance metric instead

of a fixed metric function. Prototype Network [20] proposes

the prototype representation, calculated by mean point of each

class in each episode training, and followed with a Softmax

classifier to make the final prediction.

The key point of metric based methods is how to learn a

good mapping function, making samples belonging to different

classes in the embedding space keep as far as possible from

others, while same-class samples are compact. Designing a

proper loss function will contribute to learn such a good

mapping function, and one of the most popular loss functions

is the triplet loss [19]. A triplet is composed of three

samples (an anchor, a positive and a negative data point).

The distance between the anchor and the positive is smaller

than that between the anchor and the negative, and usually

we set a margin distance to value such a distance difference.

Margin distance plays an important role in loss function,

as a proper margin distance could make the embedding

space more discriminative, which directly influences the final

performance of whole algorithm. Apparently, a small margin

distance makes most triplets fit the triplet criteria, so it

speeds up the convergence of algorithm but outputs a bad

classifier. Contrarily, a large margin distance may make

the most selected triplets violate the rules, slowing down

the convergence, and even making the algorithm rendering

a failure of convergence, despite the good performance

of classification. Many researchers set the margin distance

empirically as a constant number, and conduct ablation study

to compare the accuracy of their models with several margin

distances for experiments. Usually the middle range margins

are chosen. Unlike the empirical approach, in this paper we

aim to learn this parameter automatically and adaptively,

by taking a data-driven approach with a consideration of

a problem related to zero-shot learning [8], [13]-[15], [3].

In few-shot learning, each task we use to train the model

is different. More specifically, the distributions of the input

data are not same. So, when dealing with different tasks,

we may employ a constant margin to evaluate the distance

difference in the triplets. To some extent, this problem is

like the domain shift problem in zero-shot learning [8], [13].

To deal with this problem, [13] proposes a encoder-decoder

model, whose core part is the constrain in its decoder. The

model is able to re-construct the original visual feature, while

backward influencing the mapping function in the encoder

part. Reference [25] employs a large-margin criterion, making

the margin distance relative to data itself, as it calculates the

mean L-2 norm value of all samples in one mini-batch in
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Fig. 1 Triplet Network: The three networks share same structure and parameters. Our proposed employs a conditional triplet loss and an adaptive margin
strategy to compute the distance between anchor, positive, and negative samples

the embedding space. This strategy works and generates a

better discriminative embedding space, but it is still not able to

describe the difference between the distributions of each input

task. We adopt the margin distance in [25] as the initial value,

adding a variance item of each episode. The initial value is

corrected with a Kullback–Leibler divergence to evaluate the

distribution difference between episodes, so that the adaptive

margin distance is related to the data distribution and obtained

automatically in the training stage. Moreover, we propose a

optimization strategy by penalizing the worst case of triplets

and rewarding those that meet the best condition. We employ

our proposed triplet loss function to image-recognition and

image co-segmentation. Our contributions in this work are

summarized as follows: (i) we propose an adaptive margin

distance strategy to improve the performance of triplet loss,

powering it with a penalty/reward optimization approach in

training stage. (ii) We evaluate the performance of our methods

in image recognition and co-segmentation by replacing the

standard loss function with our proposed triplet loss. The

experiments results demonstrate an obvious performance gain.

II. RELATED WORKS

A. Few Shot Learning

The meta few-shot learning aims to train a classifier

template from tasks and swiftly adapts to new tasks which

are formed of samples from different classes. Usually

few-shot learning contains two stages. Given a dataset

D = (xi, yi)}Ni=1, yi ∈ C, where xi is the input images,

C = y1, ...yK is the classes and N is the number of

samples. In training stage, we set training dataset Dtrain =
{(xi, yi)}Ntrain

i=1 from Ctrain classes to train the classifier. In

testing phase, we use the remaining samples to construct a

support set DS with the same form of training tasks and

a query set DQ. DS = {(xj , yj)}Sj=1 from classes Ctest,

yj ∈ Ctest and Ctrain∩Ctest = �. Then we predict the labels

of query set Dq = {(xj)}S+Q
j=S+1, where Q is the number of

queries. Conventionally,it is called C-way K-shot learning if C

classes are selected for the support set, and K samples selected

from each classes in C, with S = K × C .

B. Triplet Loss and Triplet Network

Before introducing triplet network, we firstly come to

Siamese neural network [12]. The Siamese network is

composed of two paralleled sub-networks which share the

same structure, weights and parameters. Given a pair of inputs,

the Siamese network firstly maps them into an embedding

space to obtain two corresponding embedding vectors, and

then outputs the similarity of these inputs by a contravasive

loss. If the similarity is smaller than a pre-set threshold, the

two inputs are considered as same label, and vice versa.

Compared to Siamese network, the triplet network [10]

implements a triplet loss to increase the performance and

efficiency. A triplet is formed of an anchor sample, a negative

and a positive, where the anchor and the positive are selected

from the same class, while the anchor and the negative are

from different. Fig. 1 shows the structure of the basic triplet

network, in which we replace the standard triplet loss with

our triplet loss implemented with our adaptive margin. Like

Siamese network, the triplet network also maps triplets into

an embedding space, where the anchor and positive samples

should be near, while the anchor and negative are supposed to

be far from each other.

The embedding feature vector of the input xi is f(xi) ∈ Rd,

where d is the dimension of embedding vector. In the training
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stage, we select triplets T = (xa, xp, xn) which consist of an

anchor xa, a positive sample xp and a negative sample xn. The

labels of the triplet T satisfy ya = yp �= yn. Triplet loss aims

to pull samples belonging to the same class into nearby points

on a manifold surface, and push samples with different labels

apart. The standard triplet loss is:

Lstandard =
1

Nt

Nt∑
i=1

[‖(f(xa
i )− f(xpi ))‖22−

‖(f(xa
i )− f(xni ))‖22 +m]

(1)

where Nt is the number of triplets and m is the margin

distance.

III. METHODOLOGY

A. Adaptive Loss

We choose the triplet loss aforementioned in (1) as

our adaptive margin function. Apparently, different anchor,

negative and positive samples will create different inputs for

the selection of triplets, so the distances between the anchor

and the negative/positive samples may vary. To handle this

variation, here we define an adaptive loss as:

Ladaptive =
1

Nt

Nt∑
i=1

[‖(xa
i − xpi )‖22−

‖(xa
i − xni )‖22 +ma]

(2)

We use the adaptive margin with randomly initialized model

parameters at the beginning of training. We set the initial

margin value as me:

me =
1

Nb

Nb∑
i=1

‖f(xi)‖22 (3)

where Nb is the number of all embedding samples in a

mini-batch and me is the average of L2-norm of the samples

in the mini-batch. Then we update the value by:

ma = me + αs± βA (4)

where s is the item for the variance in the embedding space,

α is the balanced parameter, A is a penalty/reward item and β
is the corresponding balanced item. The penalty/reward item

fines the worst triplets by adding a penalty term and rewards

triplets that satisfy the best condition, which will be introduced

later.

For the variance parameter s, we take the intra-class and

inter-class divergence of input data into consideration. For

the sake of simplicity, we take L2-norm of all samples for

calculating. Denoting Nc as the number of classes selected

from {1, ..., Ctrain}, CNc as the set of class indices, ck as the

k-th element in CNc
, Dck as the subset of all training samples

with yi = ck. For each class, denoting Sk and Qk as the

subsets of support set and query set that are randomly selected

from Dck respectively, and Sk∩Qk�. The center of each class

ck = 1
|Sk|

∑
(xi,yi)∈Sk

xi. The intra-class divergence should

be:

Sintra =

Nc∑
i=1

1

|Sk|
Sk∑
j=1

‖f(xij)− ci)‖22

where xij is the j-th sample in i-th class. For the inter-class

divergence, instead of using all samples to calculate a complex

similarity matrix, we use their center as their representations.

Therefore, the inter-class divergence is:

Sinter =
1

Nc

Nc∑
i=1

Nc∑
j=1

‖ci − cj‖22

The total data divergence Stotal = Sintra + Sinter

To better measure the difference of data distribution in

embedding space in different tasks, we utilize the KL

divergence to measure the variance difference in adjacent

iteration.

First, we sort all samples in ascending order, we measure

the KL divergence between two adjacent iterations, and used

as a corrected parameter for Stotal. For example, the KL

divergence for n-th iteration and (n+1)-th iteration is:

KLn+1
n =

1

Nc|Sk|
Nc|Sk|∑
i=1

‖f(xn+1
i )‖22 log

‖f(xn+1
i )‖22

‖f(xn
i )‖22

(5)

So we obtain

sn+1 = Sn+1
total × (1− KLn

n+1 +KLn+1
n

2
) (6)

Like EM algorithm[6], we update s in each iteration, and

We can obtain our final adaptive margin distance ma after

it converges.

B. The Penalty-Reward

Given O(N3) triplets, it is infeasible to put all of them into

a single mini-batch. So we need to sample the triplets over the

entire training set. Some sampling methods such as hard and

semi-hard[19] find the particular negative samples which, but

are more computationally expensive for creating the triplets.

Consequently. In this paper we apply the random triplets

sampling approach [9] and try to accelerate the convergence

and reduce the risk of being stuck in local optima.

Among all triplets we generate, we pick up two cases: the

worst and the best, as they are more important than others.

The best triplets contribute to speed up the convergence while

the worst possibly may weaken the ability of the training

and result in poorly trained network. Hence, we increase the

training loss for worst triplets to enable the network to find

the better weights for them.

Firstly, we determine the worst and best cases in random

triplets sampling. We can solve the penalty/reward function

through optimization - find the solution while satisfying the

constraints. For example, a general constrained minimization

problem may be written as follows:

z = f(x), s.t: h(x) > 0 (7)

where h(x) is the constraint and f(x) is the objective

function that needs to be optimized. This constrained problem
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can be solved by transforming it to an unconstrained

problem, with addition of a penalty function. This approach

replaces a constrained optimization problem by a series of

unconstrained problems whose solutions ideally converge

to the solution of the original constrained problem. The

aforementioned minimization problem, it can be transformed

to the unconstrained problem as:

z = f(x) + β × (h(x)) (8)

where α is the balanced parameter. For the triplet loss function,

the worst case is when the positive samples are too far away

from the anchor, i.e.

‖f(xa)− f(xp)‖22 > ‖f(xa)− f(xn)‖22 +m (9)

So we penalize those samples by adding a penalty term:

Apenalty = β ×
[‖f(xa)− f(xp)‖22 + ‖f(xa)− f(xn)‖22

2

]

(10)

Apart from the worst cases, some triplets may produce the

best cases. The best cases meet the constrain as:

‖f(xa)− f(xp)‖22 − ‖f(xa)− f(xn)‖22 +m < 0

. This constrain however means weights will not be updated,

preventing the network from being trained. A large distance

however will slow down the convergence of network.

Therefore, we tune distance so that it is within a particular

small-range:

ε < ‖f(xa)− f(xp)‖22 − ‖f(xa)− f(xn)‖22 +m ≤ 2ε (11)

where ε = km and 0 < k < 1. Therefore, the best triplets

satisfy both constraints below:

‖f(xa)− f(xp)‖22 − ‖f(xa)− f(xn)‖22 > km−m (12)

‖f(xa)− f(xp)‖22 − ‖f(xa)− f(xn)‖22 < 2km−m (13)

The reward item Areward is :

Areward = β ×
[‖xa − xn‖22 − ‖xa − xp‖22

2

]
(14)

Finally, the adaptive margin can be summarized as:⎧⎨
⎩

mean + αs + βApenalty, Worst Case

mean + αs − βAreward, Best Case

mean + αs, O.W

IV. EXPERIMENTAL

A. Image Recognition

Parameter Setting: The experiments are conducted on

FasionMINIST dataset, that is a large database, containing

10 different commodities, and used for various image

processing tasks. FasionMINIST consists of a training set

of 60,000 examples and a test set of 10,000 examples. For

our experiments on few-shot learning, we randomly sample

and choose 500 images from FasionMINIST. Our work is

implemented using Keras [4] in a 8-core PC, i7-6700 3.4 GHz

with 8GB RAM to train the network with 20,000 of iterations.

Network Structure: As we focus more on margin

distance for loss function, we take a simple network for

our few-shot learning in image recognition: three stacks of

Convolutional-Pool layers, plus one fully connected layer.

Experiments: Three images are put into the network, which

then maps them into the embedding space. In the embedding

space, the images from same class, i.e. the anchor and positive

pair, should be near to each other with a small distance, while

the distance between the anchor and the negative is large.

Therefore, we set a threshold for this determination, as in

class [4]. Low threshold may produce false negatives while

a high one may result in false positives. This is a ”ROC curve

problem”, and we take ”Area Under Curve (AUC)” metric

to evaluate our performance. We evaluate the recall after we

have chosen appropriate threshold which making the false

positive rate is under 10e-3. As seen in Fig. 2, the AUC started

from 0.721 and finished at 0.961. Comparing test images with

pictures from other classes, clearly we can see that the distance

between the test image and pictures in same class is much

smaller than that between the test image and pictures from

other class.

Apart from AUC, we also use the interlace distance in the

embedding space to evaluate the effectiveness of our network.

As shown in Fig. 3, the average distance between classes

grows from 0.5 to 1.5. This clearly demonstrates the effective

embedding of our proposed approach.

We conducted the simulation of the proposed triplet for

few-shot image recognition in FashionMNIST dataset and

compared with the basic triplet loss. In Table I, our proposed

triplet loss outperforms the basic triplet loss for both AUC and

recall.

TABLE I
COMPARISON OF THE PROPOSED TRIPLET LOSS WITH ADAPTIVE

MARGIN WITH THE BASIC TRIPLET

Method AUC Recall
Standard Triplet loss 0.997 77.7%
Triplet loss with penalty+reward 0.998 87.3%

B. Image Segmentation

We also employ our methods to CoSegNet for image

co-segmentation using CMU-Cornell iCoseg dataset [2].

CoSegNet [1] is composed of a siamese network and a

decision network, trained by end-to-end strategy. CogSeNet

uses the standard triplet loss to calculate the loss of siamese

net based on the pairs of images (positive, negative). We

utilize an extra image as anchor, so that we can calculate the

three features and use our proposed triplet loss to train the

siamese net. Fig. 4 illustrates the CoSegNet model modified

by our contribution. Fig. 5 shows the segmentation results

using our proposed triplet loss function. Obviously the results

are satisfactory and demonstrates the effectiveness of our

approach.

We apply the Precision and Jaccard Index, which are the

intersection over union of the co-segmentation result and the
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Fig. 2 Top: AUC and sensitivity of the proposed triplet loss. Down: Similarity and distance between three classes T-shirt, Trouser, and Pullover with other
classes for one-shot image recognition

Fig. 3 Distance in embedding space after 11000 iterations

TABLE II
COMPARISON OF PRECISION AND JACCARD INDEX

Method Precision Jaccard Index
Standard Triplet loss 69.06 0.61
Triplet loss with penalty+reward 73.3 0.67

ground truth common foreground segment, to evaluate the

performance. Table II is the results. Apparently, using our

adaptive triplet loss improves the performance, with the better

performance for both metrics being achieved. It is notable that

the simulation for all of loss functions have been done using

the same parameters, number of iterations, and pre-trained

weights. It is expected that more iterations could improve the

segmentation results.

V. CONCLUSIONS

An adaptive margin strategy and a penalty/reward

optimization function have been proposed to improve standard

triplet loss function for metric learning. After calculating

the data-relative margin in one mini-batch, the worst and

best triplets in random triplets sampling are selected. The

worst triplets are given a penalty term whereas the best

a reward, which makes our model benefit from a better

convergence speed. Moreover, our method is evaluated on

image recognition task and image co-segmentation, which

shows a better performance.
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Fig. 4 Illustration of the modified CoSegNet, inspired by [1]. Our contribution is shown in red colors

Fig. 5 Illustration of co-segmentation. The first row are the original images, the second row are the corresponding ground truth, and the segmented results
are shown in the last row
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