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Abstract—In the current work, adaptive extended Kalman filter

(AEKF) is presented for solution of ground radar based ballistic
missile (BM) tracking problem in re-entry phase with unknown
ballistic coefficient. The estimation of trajectory of any BM in re-
entry phase is extremely difficult, because of highly non-linear
motion of BM. The estimation accuracy of AEKF has been tested for
a typical test target tracking problem adopted from literature. Further,
the approach of AEKF is compared with extended Kalman filter
(EKF). The simulation result indicates the superiority of the AEKF in
solving joint parameter and state estimation problems.

Keywords—Adaptive, AEKF, ballistic missile, EKF, re-entry
phase, target tracking.

I. INTRODUCTION

HE BM tracking is quite crucial for security of any nation
against any BM attack from enemy country. In India, a

multilayered BM defence has been developed to guard against
such attack [1]. Tracking of BM can be done with the help of
ground based radar but traced parameters contain certain
uncertainty and error. This error can be minimized by Kalman
filter [2] which uses a set of equation and consecutive data
input (from radar) to estimate the accurate value. However,
this filter is only suitable for linear system model and hence, it
cannot be used to trace the motion of BM in re-entry phase
which is highly nonlinear and unpredictable because of the
parameters like drag, drift, ballistic coefficient and
atmospheric condition. In case of non-linear process, extended
Kalman filter (EKF) is used which is non-linear version of
Kalman filter. EKF adopts a technique called Taylor series
expansion to linearize a non-linear state model.

EKF estimates the non-linear state by using a priori guess of
the process and measurement noise. As the targets enter in the
endo-atmospheric reason, the estimation becomes difficult
since the physical parameters like ballistic coefficient, drag,
lift etc. are not known accurately. Further, it really becomes
difficult to estimate the position, when the priori estimated
value is too far from its real values. In such situation the
estimates offered by EKF may diverge. A modified non-linear
state estimator named as adaptive extended Kalman filter
(AEKF) has been proposed in [3] for GPS integration. The
algorithm updates the process and measurement noise at every
measurement to find its proper value and hence reduces the
chance of divergence of the estimation.
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In this paper, an attempt has been made to track the BM
having unknown ballistic coefficient using EKF and AEKF
algorithms. The results obtained have been compared in terms
of estimation error and covariance.

In view of the discussions carried out in the above sections,
this paper is organized as follows: Section II shows the
trajectory as well as the reference system of BM and state
model for unknown ballistic coefficient is covered. Moreover,
the measurement model of BM is also covered. Ballistic
coefficient is different for every flying object. The Jacobian
matrix of unknown ballistic coefficient is also shown. Section
III covers the EKF and AEKF filters which are used in order
to estimate the position of BM. The theory as well as
algorithm of both filers is covered. The theory as well as
algorithm of both filers is covered. Section IV presents
simulation results and discussions. Section V presents the
conclusion.

II. PROBLEM FORMULATION

A. Trajectory
The forces acting on the BM are gravity, drag and other

forces like centrifugal acceleration, Coriolis acceleration, wind
acceleration, lift force. Spinning motion is ignored because of
small effect on its trajectory. The trajectory of BM from
launch to impact is mainly divided into three phase boost
phase, ballistic flight and re-entry as shown in Fig. 1.

Fig. 1 Different phases of BM Trajectory

Boost phase is the period during which the rockets of a
ballistic missile operate to attain its peak velocity. This thrust
may vary which makes the trajectory estimation more
complex. The total acceleration in boost phase is given by

gdT aaaa  (1)
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where a is total acceleration, Ta is acceleration due to thrust,

da is acceleration due to drag, ga is acceleration due to
gravity. In this case, the earth rotation can be omitted because
of its small duration hence the Coriolis acceleration and
centrifugal force is neglected.

Ballistic flight is the travelling of BM between boost phase
and re-entry phase. Re-entry phase is when BM re-enters in
atmosphere. The forces act on BM in re-entry phase is given
by

gd aaa  (2)

The hypothesis of flat earth is considered here so the
orthogonal co-ordinate system depicted in Fig. 2 can be used
with following variables as in [4]: x is the abscissa, y is the

ordinate, 0x and 0y are target co-ordinate at time 0t , v is the
velocity module, and is the angle between the horizontal axis
and the direction of motion.

Fig. 2 Co-ordinate reference system of BM

B. State Model of BM for Unknown Ballistic Coefficient
State model of BM during its trajectory in discrete time

non- linear dynamic equation is given by [5]
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where state vector, ks ≜  Tkkkkk syyxx ]5[ , here kx is

position along x-axis, kx is velocity along x-axis, ky is
position along y-axis, ky is velocity along y axis,  5ks is
unknown ballistic coefficient.

   kkkkk sGfss  (4)
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where T is sampling time.
Drag force is the force that opposes the motion of the body.

It can be considered as aerodynamics resistance. Here the drag
force will act against the motion of BM and given by [6]

2

2
1 vgD  



 (7)

where β is ballistic co-efficient, g is gravitational force
2sec/81.9 m ),  is air density, v is the velocity module.

Air density (  ) is the function of height (exponentially
decaying function of height) and it decreases with increases in
altitude. It also changes with the variation in temperature and
humidity, however in case of tracking BM it is avoided as it
hardly affects BM motion. Here air density can be given by

ycec 2
1
 (8)
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Drag force can be written in terms of state vector
components which can be given by,
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By exploiting the following identities
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Equation (9) can be simplified as
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The process noise is assumed as Gaussian and it can change
dynamically during filter operation and in this case Q is given
by
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where 1q [7] in 32 / sm and 2q in 522 /  smkg are tuning
parameters which are selected by designers to get the process
noise in the target dynamics, 2 is 22 matrix with elements
equal to zero. The better filter operation and result can be
achieved by tuning the filter parameters Q and R and its value
may change in each time of measurement.

The trajectory of BM depends on the gravity of Earth,
aerodynamic forces and aerodynamic moments. The major
uncertainty in estimating the trajectory of a ballistic target is
due to the aerodynamic forces and moments acting on it.

The initial information matrix 0J is the inverse of initial
covariance matrix and given by

0/00 PJ  (14)

The suitable expression for 0/0P is
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2
 is the variance of unknown ballistic coefficient based on

the prior value or assumed knowledge of mass of the BM.

C.Measurement Model
The radar is considered to be located at ground level i.e.

0y,0 R Rx with range r and elevation  . The error

standard deviation of these measurements are denoted as r
(for range) and e (for elevation).

The measurement equation is given by

kkk vHsz  (16)
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whereas the estimation & prediction equations are in the
rectangular coordinates, this requires transformation in one
direction. The relationship between the target position in
rectangular coordinate and measurement in polar coordinate is
given by polar coordinate transformation d= cosr and h=
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An example of target trajectory is shown with the
following parameters are taken into consideration,

2390m/s.v,190γ232km,x

80km,y2s,T,sm1q,.skg.m400β

000

0
32
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The state model of BM is simulated in MATLAB with
above parameters to get the trajectory as well as velocity and
acceleration graph. Fig. 3 shows the trajectory of BM in x-y
plane, Figs. 4 and 5 show the target velocity and target of BM
during its trajectory respectively.

Fig. 3 Trajectory of BM

Fig. 4 Velocity of BM

There is strong deceleration because of the drag forces
which increases with increase in velocity of the object which
can be seen in Fig. 5.

D.Jacobian Matrix for Unknown Ballistic Coefficient
Ballistic coefficient describes how air resistance slows

down projectile in its flight [9]. It generally depends on mass,
body shape and cross-sectional area. Accurate value of
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Ballistic coefficient is very necessary in order to know the true
nature and trajectory of BM and in case of target tracking,
ballistic coefficient is unknown to us. So in this paper we have
considered it as unknown for all calculation purpose and also
estimated the unknown ballistic coefficient.

Jacobian matrix is the matrix of all the first order partial
derivative of a vector-valued function. Here Jacobian  can
be written as [4]

kk GF (18)

The elements of the matrix
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III. FILTER

A. EKF
EKF is widely used for the position estimation of non-linear

system. To estimate the process and measurement noise
covariance EKF uses a fixed priori estimates during its whole
process. The summary for EKF algorithm is given as [2]:

1) Time update equation
(a) The state Projection

(21)

(b) The error covariance projection:

k
T
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  1 (22)

Fig. 5 Acceleration of BM

2)  Measurement update equation
(a) Kalman Gain update
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(b) The error covariance update
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Here ks


is the predicted estimate of state at kth step,


ks ,is a
posteriori estimate of state at kth state, 

kP is the error
covariance, k is the state transition matrix, kK is the Kalman
Gain matrix, kQ and kR represent the process and
measurement noise covariance respectively.

To implement EKF we require priori knowledge of process
and measurement noise. However, there is a chance of high
estimation error when the priori noise covariance is presumed
with improper value. To overcome this demerit of EKF,
AEKF is proposed which adjusts the process and measurement
noise at every measurement to find proper noise covariance at
each step.

B. AEKF
AEKF helps to reduce the influence of prior Q and R on the

estimation by updating it in every measurement. The main two
approaches for Q and R estimation are correlations of the
innovation sequence and the other one is correlations of the
output innovation sequence. Here the correlation of innovation
sequence is used to determine Q and R and further the
maximum-likelihood estimation for the multivariate normal
distribution approach is used to make the actual value of the
covariance consistent with its theoretical value [10].

The innovation sequence can be written as
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kkkk vssHe 
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The covariance can be obtained by taking the variance on
both sides of (26)
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The covariance of ke is written as
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According to the maximum-likelihood estimation for the
multivariate normal distribution approach, the statistical
sample variance k is given as:
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From (27), the estimate of the measurement noise
covariance is as

T
kkk HHPR  (30)

Process noise covariance Q is the uncertainty in the non-
linear dynamic equation measured during measurement update
and it is applied to the system in order to get the proper
estimate. It can be written as
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The process and measurement noise covariance are
modified adaptively by using (30) and (31). So, in EKF, it is
mandatory that the initial value Q and R should be set
correctly otherwise there is high chance of divergence from
true trajectory whereas AEKF updates the process and
measurement noise at every measurement to find noise
covariance proper value and hence reduces the chance of
divergence of the estimation.

IV. SIMULATION RESULTS AND DISCUSSIONS

In this paper, the two non-linear filters namely, EKF and
AEKF are used for solution of tracking of a typical ballistic
target as considered in [4]. The filtering algorithms are
implemented using MATLAB R2012a on a computer with
2.00GHz Intel Core I3-6006U processor with 4 GB RAM.
Typical BM tracking problem has been solved and the test run
for each case has been performed 30 times and best result of
estimated ballistic coefficient and estimation error has been
shown in Figs. 8, 9 and 10, respectively. The comparative
results for estimation error covariance (as considered in [11])
for both EKF and AEKF are presented in Table I. The mean
value for 30 runs is taken into consideration which is shown in
Table I.

Fig. 6 Block Diagram for Adaptive Kalman filter

TABLE I
COVARIANCE VALUE FOR UNKNOWN BALLISTIC COEFFICIENT

State
Mean Estimation Covariance Percentage (%)

ImprovementEKF(×10-5) AEKF(×10-5)

kx 0.499 0.395 20.84

kx
 0.989 0. 573 42.06

ky 0.289 0.188 34.94

ky


0.164 0.102 37.80

]5[ks 0.321 0.208 35.20

With the % improvement in Table I, the AEKF offers a
mean estimation error covariance of 0.395×10-5, 0.573×10-5,
0.188×10-5, 0.102×10-5 and 0.208×10-5 respectively for the five
states under consideration with an improvement 0.104×10-5,
0.416×10-5, 0.101×10-5 and 0.062×10-5 and 0.113×10-5 of
respectively, compared to EKF. Thus, AEKF offers more
accurate estimation of target trajectory.

The comparative results corresponding to AEKF
(represented by dotted line) and EKF (represented by dashed
lines) for typical trajectory is presented in Fig. 7. The

Qk and Rk

Measurement Update
(a) Kalman Gain Update:

(b) Error Covariance Update:

(c) Estimate update with measurement:

Time Update
(a) The State Projection:

(b) Error Covariance Projection:

Qk and Rk

Measurement Update
(d) Kalman Gain Update:

(e) Error Covariance Update:

(f) Estimate update with measurement:

Time Update
(c) The State Projection:

(d) Error Covariance Projection:
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estimation errors for AEKF and EKF corresponding to
position and velocity along the x and y direction are given in
Fig. 9. The trajectory offered by AEKF is found to be closer to
the true trajectory of BM under consideration.

Fig. 7 Estimated Trajectory of BM

Fig.8 Estimated Ballistic coefficient (beta) of BM

Fig. 8 shows estimated ballistic coefficient (beta) compared
with true value of ballistic coefficient (solid line). Here also
AEKF able to estimate the unknown beta very close to its true
value as compared with EKF. Fig. 10 shows the error of
estimated beta as compared to true value and it also proves
that estimation error is less in AEKF when compared with
EKF.

V. CONCLUSION

BM tracking problem in re-entry phase with unknown
ballistic coefficient is solved using AEKF. In this work, the
performance of AEKF is tested using typical target problem
and further its result is compared with EKF counterpart. The
simulation result obtained using MATLAB shows that AEKF
stands superior to EKF in terms of accuracy. Further, it may
be observed that, the AEKF not only supersedes EKF in state
estimation but also in parameters estimation too. Thus, the
AEKF may be recommended as a promising tool for solving
similar estimation problems with unknown ballistic coefficient

or other more complex estimation problems.

Fig. 9 Error of EKF (dashed line) and AEKF (dotted-line)

Fig. 10 Error of EKF (dashed line) and AEKF (dotted-line) for beta
estimation
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