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Adaptation of Iterative Methods to Solve Fuzzy
Mathematical Programming Problems

Ricardo C. Silva, Luiza A. P. Cantão, and Akebo Yamakami

Abstract— Based on the fuzzy set theory this work develops two
adaptations of iterative methods that solve mathematical program-
ming problems with uncertainties in the objective function and in
the set of constraints. The first one uses the approach proposed by
Zimmermann to fuzzy linear programming problems as a basis and
the second one obtains cut levels and later maximizes the membership
function of fuzzy decision making using the bound search method.
We outline similarities between the two iterative methods studied.
Selected examples from the literature are presented to validate the
efficiency of the methods addressed.

Keywords— Fuzzy Theory, Nonlinear Optimization, Fuzzy Math-
ematics Programming.

I. INTRODUCTION

OPERATIONAL Research (OR) is an area of science
that develops techniques to optimize systems efforts.

Applications of OR are found in business, industrial, military
and governmental areas, among others. The study of OR can
be divided in several subareas and mathematical programming
is one of them. Mathematical programming is used to solve
problems that involve minimization (or maximization) of the
objective function in a function domain that can be constrained
or not.

Optimization models have used traditional mathematical
programming, which attempts to represent the optimization
operation of interest by constructing an exact mathematical
model. The studies may overlook ambiguities, that exist in
actual optimization operations. In recent years, Fuzzy Logic
[1] has shown great potential for modelling systems which
are non-linear, complex, ill-defined and not well understood.
Fuzzy Logic has found numerous applications due to its ease
of implementation, flexibility, tolerant nature to imprecise
data, and ability to model non-linear behavior of arbitrary
complexity because of its basis in terms of natural language.

A fuzzy set is defined by a membership function μÃ(x),
that establisher to each x a pertinence degree to the set A,
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with μÃ ∈ [0, 1]. One way to express a fuzzy set as:

μÃ =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

x − ainf

amod − ainf

x ∈ [ainf , amod]

asup − x

asup − amod

x ∈ [amod, asup]

0 otherwise,

where amod is modal value, ainf and asup are lower and upper
bounds, respectively. Figure 1 show the membership function
described for equation above.

μÃ(x)

amod asupainf x

1

Fig. 1 Membership function μ
Ã

(x)

Mathematical programming problems need a precise def-
inition of both the constraints and the objective function
to be optimized. Fuzzy sets help handle uncertainties when
mathematical programming problems are formalized in the
following form:

min f(ã;x)

s.t. gk(x) � bk, k = 1, . . . , m

hl(x) ∼= cl, l = 1, . . . , n

x ≥ 0

(1)

where ã represents a fuzzy parameter and, � and ∼= represent
the uncertainties in the constraints.

This work is divided as follows. Section II deals with
the constraint types and the increasing computational effort
increase in some mathematical problems; section III introduces
the adaptations of two versions of iterative methods to solve
mathematical programming problems with fuzzy parameters
in the objective function and uncertainties in set of con-
straints; section IV presents numerical simulations for selected
problems and an analysis of the obtained results. Finally,
concluding remans are found in section V.
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II. SET OF CONSTRAINTS

Mathematical programming problems can have three types
constraint formulation: (i) equality constraints; (ii) inequality
constraints; (iii) equality and inequality nixed constraints.

μl(x)

cl cl + Tlcl − Tl hl(x)

1

Fig. 2 Membership function of the equality constraint h l(x) = cl

Figure 2 shows the membership function of the equality
constraints with uncertainties, while Figures 3 and 4 show
the membership functions of the inequality constraints with
uncertainties.

μk(x)

bk bk + Tk gk(x)

1

Fig. 3 Membership function of the inequality constraint gk (x) � bk .

μk(x)

bkbk − Tk gk(x)

1

Fig. 4 Membership function of the inequality constraint gk (x) � bk .

In the literature, each equality constraint is partitioned into
two inequality constraints, as presented in Figures 3 and 4.
Thus, the computational effort increases with the number of
equality constraints.

The adaptations presented in this work solve only math-
ematical programming problems with inequality constrains.

Thus, each equality constraint is generates originally two
inequality constraints. Therefore, Figure 2 is divided in the
Figures 3 and 4, where cl = bk and Tl = Tk. Hence, the
number of constraints in Problem (1) is m + 2n, where m is
the number of inequality constraints of original problem and
2n represent the inequality constraints generated from the n

equality constraints.
In [2], a transformation of an equality constraint in an only

inequality constraint using the module function, without loss
of generality.

III. ITERATIVE METHODS

The methods presented in this section are proposed to solve
mathematical programming problems with uncertainties both
in objective function and in set of constraints. These methods
are adaptations of the methods developed to solve problems
with uncertainties in the set of constraints, described in [3]–[5],
which adapt classic methods that solve classic mathematical
programming problems.

In [6] it was developed an adaptation of classic methods to
solve fuzzy linear programming problems, while in [3] and
[4] this method was generalized to solve fuzzy nonlinear pro-
gramming problems. Based on this generalization, we consider
in subsection III-A some modifications to solve Problem (1).

Another optimization method to solve fuzzy nonlinear pro-
gramming problems has been described in [5]. Subsection
III-B presents an approach to solve problems with fuzzy
parameters in the objective function and uncertainties in set
of constraints.

A. Adaptation of Zimmermann´s Method

A mathematical programming problem with a fuzzy objec-
tive function and fuzzy constraints can be described generi-
cally, in the from of Problem (1), as follows:

min g0(ã;x)

s.t. gi(x) � bi, i = 1, . . . , m + 2n

x ∈ Ω,

(2)

where ã represents a fuzzy parameter in the objective function
and � denotes the uncertainties in the set of constraints. It can
be noted that the formulation without ∼ is the original classic
mathematical programming model. The objective function
with fuzzy parameters can be interpreted as:

IDf(g0(ã;x)) � IDf(b̃0)

where IDf(·) represent the defuzzyfication function, that uses
Yager´s first index, described in [7]–[9].

As suggested in [6], we transform each fuzzy inequality
constraint into a classic inequality constraint. This transfor-
mation is done performed by introducing variable tj , j =
0, 1, . . . , m + 2n, that indicate the fuzzy constraints violation
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level of the fuzzy constraints. Thus, Problem (2) becomes

IDf(g0(ã;x)) ≤ IDf(b̃0) + IDf(t̃0)

gi(x) ≤ bi + ti, i = 1, . . . , m + 2n

x ≥ 0

0 ≤ IDf(t̃0) ≤ IDf(T̃0)

0 ≤ ti ≤ Ti

where Tj = [IDf(T̃0), T1, . . . , Tm+2n] is the maximum tolera-
ble violation of each constains.

The membership functions μ0(g0(ã,x)) and μi(gi(x)), with
i = 0, 1, . . . , m + 2n, are described below:

μ0(g0(ã,x)) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0, se IDf(t̃0) ≥ IDf(T̃0)

1 −
t̃0

T̃0

, se 0 < IDf(t̃0) < IDf(T̃0)

1, se IDf(t̃0) ≤ 0

μi(gi(x)) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, se ti ≥ Ti

1 −
ti

Ti

, se 0 < ti < Ti

1, se ti ≤ 0

where the satisfaction level for the decision maker can be
defined by the degree of membership to each constraint
j. However, we can define an aggregate function for each
constraint as: ⋂

0≤j≤m+2n

⋂
x

μj(gj(x)) ∈ [0, 1]

where
⋂

denotes intersection.
Then, the degree of conjunctive satisfaction can be maxi-

mized over all constraints. Setting S̃ = min0≤j≤m+2n μj(gj),
the fuzzy mathematical model can be formulated as:

max S̃

s.t. (a) IDf(g0(ã;x) − b̃0 − T̃0 ∗ (1 − S̃)) ≤ 0

(b) gi(x) − bi − Ti ∗ (1 − IDf(S̃)) ≤ 0

(c) S̃ ∈ [0, 1], x ∈ Ω,

(d) T̃0 ≥ 0̃, Ti ≥ 0, i = 1, . . . , m + 2n

(3)

Note that the constraint (a) is the objective function of
original problem and the constraints (b), (c) e (d) represent
the set of constraints of the original problem. The objective
S̃ is represented as fuzzy number because the membership
function of the original objective objective is a fuzzy value.

B. Adaptation of Xu´s Method

The Two-Phase Method transforms a fuzzy optimization
problem into classical equivalent. This is done by changing
Problem (2) into:

min g0(ã;x)

s.a gi(x) ≤ bi + Ti, i = 1, . . . , m + 2n

x ∈ Ω

(4)

However, using a function μi(x) : R
n → [0, 1], we have

distinct satisfaction levels inside of the unitary interval [0, 1].
The membership function for each inequality constraint can
expressed in two forms, depending on the inequality type, as
follows:

1) Decreasing membership function, Figure 3:

μi(gi(x)) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, se gi(x) ≥ bi + Ti

(bi + Ti) − gi(x)

Ti

, se bi < gi(x) < bi + Ti

1, se gi(x) ≤ bi

2) Increasing membership function, Figure 4:

μi(gi(x)) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, se gi(x) ≤ bi − Ti

gi(x) − (bi − Ti)

Ti

, se bi − Ti < gi(x) < bi

1, se gi(x) ≥ bi − Ti

On the other hand, we need to parameterize the set of
constraints using the α-cut levels defined in fuzzy logic, [1],
such that

Cα = {x | x ∈ IRn, μc(x) ≥ α}, ∀ α ∈ [0, 1].

An intersection is applied to all constraints with the aggre-
gate operator in the form

μC(x) =
m+2n

min
i=1

μi(x), ∀x ∈ IRn,

where the aggregate operator is the minimum function.
Thus, the Problem (4) can be transformed into a fuzzy

problem into a parametric classical problem.

min g0(ã;x)

s.t. gi(x) ≤ bi + Ti(1 − α),

x ∈ Ω, α ∈ [0, 1], i = 1, . . . , m + 2n

(5)

However, some values of the objective function depend on the
parameter α.

The function g0(x
∗(α)) shown in Figure 5, represents fuzzy

solutions to Problem (5), for α ∈ [0, 1], which is a monotone
increasing function.

f(x)

M

m

1 α0

F                                         Fig. 5 Fuzzy solution
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Generally speaking, the fuzzy decision D characterizes by
its membership function μD may be viewed as the intersection
of the fuzzy constraints and fuzzy goal, of according to
Bellman and Zadeh [10].

μD = μC

⋂
μG̃,

where μD, μG̃, μC : IF(IRn) → [0, 1]. The fuzzy constraints
C and the fuzzy goal G in (5) are defined as fuzzy sets in
the space of alternatives, characterized by their membership
functions μC and μD, respectively.

The optimal decision is to select the best alternative from
those contained in the fuzzy decision space, which maximizes
the membership function of the fuzzy decision, i.e.

μD(x∗) = max
x∈IRn

μD(x). (6)

In order to illustrate the above principle, let us imagine one
fuzzy goal G with one fuzzy constraint C. The membership
functions μG, μC and their intersection μD are plotted for
this case in Figure 6. This figure also shows that the point A

represent the optimal decision which has the maximum degree
of membership in the fuzzy decision set.

μ(x)

X

μG

1
A

0

μC

μD

max μD

F                                  Fig. 6 Fuzzy decision making

Equation (6) can obtain a optimum level α∗ and the opti-
mum point x∗ such that

μG̃(x∗) = max
x∈Cα∗

μG̃(x), (7)

where Cα∗ is the α∗-cut level of the fuzzy constraints set C.
The fuzzy solution inside of a limited interval is given by

the upper and lower values, described in Figure 5 and obtained
by function μG(x) as follows

m̃ = g0(ã;x∗(0)) = minx∈C0
g0(ã;x)

M̃ = g0(ã;x∗(1)) = minx∈C1
g0(ã;x),

where C0, C1 are the cut levels of α = 1 and 0 of the fuzzy
constraints set C. The method presented in [11] relates to the
iterative methods presented here. In that work the value m̃ and
M̃ are respectively equal to b̃0 and T̃0.

In a the fuzzy optimization problem we can establish the
fuzzy goal as follows:

μG̃(x) =
m̃

g0(ã;x)
. (8)

As expected, this fuzzy goal shows that when f reaches
its infimum m the full membership (μG = 1) is obtained;
as f increases μG approaches the non-membership (μG = 0)
boundary. Clearly, the upper and lower limits of the fuzzy goal
are given by

μu
G̃

= 1

μl
G̃

= IDf

(
m̃

M̃

)
.

(9)

In addition, substituting Equation (8) into Equation (7), we
have

μG̃(x∗) =
1

m̃
min

x∈Cα∗

g0(ã;x) (10)

This approach allow is to optimize a fuzzy problem by
means of the bound search method on the set of feasible
solutions.

IV. NUMERICAL EXPERIMENTS

Subsection IV-A shows the formulation of the problems.
The problems we use to evaluate the iterative methods are
hypothetic formulations. Nevertheless, they are efficient to
validate the study realized.

The computational results and a comparative analysis of
the classic methods and the iterative methods responses are
presented in section IV-B.

The tests were all performed on a Sun Blade 250 with
two 1.28GHZ Ultra Sparc-IIIi processor, 4GB RAM running
Solaris 9 operational system.

A. Formulation of the Problem

In this paper, we present some theoretical problems found in
the literature with a view to validate the proposed algorithms.
We simulate three nonlinear programming problems.

Uncertainties were inserted into the parameters of the ob-
jective functions in the form of a 10% variation in the modal
value, e.g. the number 2̃ can vary up to 0.2 units positively
or negatively. The optimal solutions to the problems without
uncertainties are presented in the columns x̄

t and f(x) of
tables I. The problems with inequality constraints, described
in Table I, were copied from [12].

B. Results and Analysis

In this subsection we show the results obtained for the
problems in section IV-A by the iterative methods introduced
in section III. Table II depicts the optimal solutions of the
problems in two forms: (i) totally satisfied constraints; and
(ii) totally violated constraints. Table II shows the results for
Problem (5) imposing α = 1, for case (i), and α = 0, for case
(ii).

By examining the results presented in Table II, we can
calculate the minimum satisfaction level to each problem in
Table I. The main analysis is in choosing the relation between
objective function value and satisfaction level. This choice
depends on the decision maker because he has a previous
knowledge of the main objective to be reached.
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Table III shows the results obtained by the adaptation
of Zimmermann´s method, adaptation of Xu´ method for
the problem PG1. For this problem, the adaptation of Xu´s
method obtained better responses in every front, i.e., lower
defuzzyfication value and lower convergence time, while the
satisfaction level is a admissible value. The delayed procedure
more was the adaptation of Zimmermann´s method.

In Table IV we explore the results for the problem PG2.
Note that the adaptations of Zimmermann´s and Xu´s methods
present similar responses in terms of defuzzyfication value of
objective function and satisfaction level, but processing time
of Xu´s method was higher.

The results for the problem PG3 are presented in Table
V. For this example, the three methods achieved satisfaction
levels higher than 90%. The adaptation of Zimmermann´s
method obtained better responses in every front, i.e., lower
defuzzyfication value, higher satisfaction level and lower con-
vergence time.

V. CONCLUSION

We adapt Zimmermann´s and Xu´s methods to solve mathe-
matical programming problems with uncertainties in objective
function and in set of constraints. We present two iterative
methods that transform each equality constraint into two
inequatily constraints. The introduced algorithms are similar
in the sense that their convergence points are very close to
each other.

The two iterative methods that use derived from the objec-
tive function presented good responses to hypothetic problems.
The obtained results were better than the classic results found
in the literature. However, they presented a satisfaction level
lower than 100%, i.e., the optimum solution violates one or
more problem constraints.
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TABLE I

PROBLEMS WITH INEQUALITY CONSTRAINTS

Variation Classic solution
Prob. f(ã; x)

Fuzzy
xinitial Constraints Violation

x̄T f(x)

g1(x) = x2

1
− x2 � 0 T1 = 0.35

PG1 (x1 − 2̃)2 + (x2 − 1̃)2 10% [0.5, 0.5]T
g2(x) = x2

2
− x1 � 0 T2 = 0.35

[1, 1]T 1

g1(x) = x2 − x1 − 2 � 0 T1 = 1.0
g2(x) = x2

1
− x2 + 1 � 0 T2 = 0.5PG2 x2

1
+ x2

2
− 4̃x1 + 4̃ 10% [1.0, 2.5]T

g3(x) = −x1 ≤ 0 T3 = 0.0
[0.5536, 1.306]T 3.79894

g4(x) = −x2 ≤ 0 T4 = 0.0

[1.0, g1(x) = 1 − x1x2 � 0 T1 = 0.5
PG3 9̃x2

1
+ x2

2
+ 9̃x2

3
10% 1.0, g2(x) = −x2 ≤ 0 T2 = 0.0 [0.5774, 1.732, 6

1.0]T g3(x) = x3 ≤ 0 T3 = 0.0 −0.2 × 10−5]T

TABLE II

MAXIMUM AND MINIMUM LEVELS OF TOLERANCE FOR THE SET OF CONSTRAINTS

Optimal de f(ã; x∗)Prob. Constraints
x∗ f(x̃; x∗) F (f(ã; x∗))

Temp

Totally Satisfied [1.0005, 1.0004]T [0.80655, 0.99905, 1.2115] 1.0041 2s
PG1

Totally Violated [1.2074, 1.2073]T [0.50443, 0.67117, 0.86292] 0.67739 1s

Totally Satisfied [0.55304, 1.3052]T [3.1761, 3.7973, 4.4185] 3.7973 4s
PG2

Totally Violated [0.57687, 1.2322]T [2.9128, 3.5436, 4.1743] 3.5436 15s

Totally Satisfied [0.57802, 1.7287,−0.8 × 10−12]T [5.6945, 5.9952, 6.2959] 5.9952 8s
PG3

Totally Violated [0.54934, 1.6369,−0.1 × 10−11]T [5.1237, 5.3953, 5.6669] 5.3953 11s

TABLE III

RESULT TO THE PROBLEMS

Optimal of f(ã; x∗)Prob. Algorithm
x∗ f(x̃; x∗) IDf(f(ã; x∗)) μ

Temp

Subsection III-A [1.0535, 1.0534]T [0.71657, 0.89871, 1.1059] 0.90494 0.77643 39s
PG1

Subsection III-B [1.058, 1.0578]T [0.70907, 0.89076, 1.0974] 0.89698 0.75749 4s

TABLE IV

RESULT TO THE PROBLEMS

Optimal of f(ã; x∗)Prob. Algorithm
x∗ f(x̃; x∗) IDf(f(ã; x∗)) μ

Temp

Subsection III-A [0.55094, 1.2965]T [3.1603, 3.7807, 4.4011] 3.7807 0.93768 2s
PG2

Subsection III-B [0.55473, 1.3015]T [3.1607, 3.7826, 4.4045] 3.7826 0.9361 11s

TABLE V

RESULT TO THE PROBLEMS

Optimal of f(ã; x∗)Prob. Algorithm
x∗ f(x̃; x∗) IDf(f(ã; x∗)) μ

Temp

Subsection III-A [0.57749, 1.6907, 0.9 × 1011]T [5.5598, 5.8599, 6.1601] 5.8599 0.92252 3s
PG3

Subsection III-B [0.5764, 1.7191,−0.2 × 1018]T [5.6464, 5.9454, 6.2444] 5.9454 0.91687 5s


