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Action functional of the electomagnetic field: Effect
of Gravitation

Arti Vaish and Harish Parthasarathy

Abstract—The scalar wave equation for a potential in a curved
space time, i.e., the Laplace-Beltrami equation has been studied in
this work. An action principle is used to derive a finite element
algorithm for determining the modes of propagation inside a wave-
guide of arbitrary shape. Generalizing this idea, the Maxwell theory
in a curved space time determines a set of linear partial differential
equations for the four electromagnetic potentials given by the metric
of space-time. Similar to the Einstein’s formulation of the field equa-
tions of gravitation, these equations are also derived from an action
principle. In this paper, the expressions for the action functional
of the electromagnetic field have been derived in the presence of
gravitational field.

Keywords—General theory of relativity, Electromagnetism, Metric
tensor, Maxwells Equations, Test functions, Finite element method.

I. INTRODUCTION

TO study the propagation of electromagnetic waves inside
a waveguide in the presence of an external gravitational

field, we assume exponential dependence of the four potential
on the z and time coordinate and modify the action principle
slightly [2]. This modified action will be quadratic in the
electromagnetic four potential but will also involve the external
gravitational field as a parameter. This action principle can
be used to derive a finite element algorithm for obtaining the
potentials. The idea is to partition the cross section of the guide
into triangular elements, and assume that each component of
the four potential inside a triangle can be expressed as a linear
combination of the corresponding component at the vertices of
the triangle, the interpolation functions being linear functions
of the x and y coordinates [3], [4]. Using these interpolation
rules, the action functional for the entire field is expressed as a
quadratic function of 4N variables where N is the number of
vertices and the factor of 4 arises due to the presence of four
potential components. The modes of propagation can then be
derived from the eigenvalues of the 4N×4N matrix associated
with this quadratic form [5], [6].

A. Introduction to general relativity

In the general theory of relativity, gravitation field is re-
garded as curvature of space-time [7]. The interval between
two infinitely close events in curved spacetime is given by

ds2 = gμνdx
μdxν (1)
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where gμν is the symmetric metric tensor (depending in
general on the spacetime coordinates x0, x1, x2, and x3) .
In flat space-time Cartesion coordinate system, the metric is
diagonal with (−1, 1, 1, 1) on the diagonal. This is called a
Galilean coordinate system [2], [8]. In curved 4-dimensional
space-time, the choice of a reference system is arbitrary and
therefore the laws of physics must be written in a form that
is independent of the reference system. This is achieved by
writing the laws of physics in tensor form. Subsection text
here.

1) General Theory of Relativity: Background: Since 1915,
the theory of relativity has been developed extensively among
others by Einstein and by the British astronomers James Hop-
wood Jeans, Arthur Stanley Eddington, and Edward Arthur
Milne, by the Dutch astronomer Willem de Sitter, and by the
German-American mathematician Hermann Weyl [9], [10] .
Most of their efforts were to extend the theory of relativity
under electromagnetic phenomena [11], [12]. Although some
progress has been made in this area, these efforts have been
marked thus far by less success.
In 1928, a relativistic electron theory was developed by the
British mathematician and physicist Paul Dirac, and subse-
quently a satisfactory quantized field theory, called quantum
electrodynamics, was evolved. It unifies the concepts of rela-
tivity and quantum theory in relation to the interaction between
electrons, positrons, and electromagnetic radiation [13].
In recent years, Hawking [14] made an attempt of full in-
tegration of quantum mechanics with relativity theory. Sub-
sequently, many attempts have been made in this direction,
yet very few people have studied the effect of gravitational
field on the electromagnetic, i.e., the frequency of propagation
of waveguide. Thus, the present work aims to investigate the
effects of gravitational field on the frequency of propagation
modes of the waveguide using the finite element method.

B. Tensors and curvilinear coordinates

Consider the transformation from one coordinate system x0,
x1, x2, and x3 to another coordinate system x

′0, x
′1, x

′2, and
x

′3.

xα = xα(x
′0, x

′1, x
′2, x

′3) (2)

Any collection of four quantitiesAα that, under this coordinate
transformation, transform according to

Aα =
∂xα

∂x′β
A

′β (3)
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is called a contravariant four-vector [2]. Similarly any collec-
tion of four quantities Aα that transform according to

Aα =
∂x

′β

∂xα
A

′

β (4)

is called a covariant four vector [2], [5]. These transformation
laws can be generalized to tensors of arbitrary rank. The
transformation Changing between contravariant and covariant
forms of vectors and tensors is accomplished by using the
metric tensor as follows

Aα = gαβA
β (5)

Aα = gαβAβ (6)

where gαβ is the contravariant metric tensor, defined by the
relation

gαβg
βδ = δδα (7)

From equations (3) and (4), it is obvious that if a vector (or
tensor) vanishes in one coordinate system, it will vanish in any
coordinate system. Thus, if the relation holds in one coordinate
system it will hold in any coordinate system. The same is true
for more complicated tensor equations and therefore if a law
of physics can be expressed as a tensor equation in a given
coordinate system it will have the same tensor form in any
other coordinate system. It is said to have been formulated in
covariant form.

C. The covariant derivative

From the transformation law (equation 4), it follows that
the differentials of a covariant vector transform as

dAα =
∂x

′β

∂xα
dA

′

β +A
′

β

∂2x
′β

∂xα∂xγ
(8)

In case of the non-linear transformation, the second term on
the right hand side of Eq. (8) will be non-zero, which means
that dAα is not a vector. Therefore, ordinary differentiation
can not be used in the covariant formulation of the laws of
physics. In curved space-time coordinates, the substraction of
the two vectors Aα and Aα+dAα at points xα and xα+dxα

is not a vector. To get a vector, it needs one intermediate step,
i.e., parallel translation of Aα to xα + dxα and then do the
subtraction. This is done using the following definition of the
derivative of covariant and contravariant tensors;

Aα:β =
∂Aα

∂xβ
− Γγ

αβAγ (9)

Aα
:β =

∂Aα

∂xβ
+ Γα

γβAγ (10)

where Γα
βγ are the Christoffel symbols defined as:

Γα
βγ =

1

2
gαδ

(
∂gδβ
∂xγ

+
∂gδγ
∂xβ

− ∂gβγ
∂xδ

)
(11)

It is shown elsewhere [15], [16] that it is always possible
to choose a coordinate system in which Γα

βγ is zero at the
same time as the metric is brought to Galilean form at a given
point. This is called a locally inertial coordinate system [15].
At this point, the covariant derivative reduces to the ordinary
derivative and any equation between tensors will reduce to

the special relativistic form. The general relativistic forms of
the laws of physics can thus be obtained from the special
relativistic ones by exchanging the ordinary derivatives with
the covariant derivatives [16].

II. MAXWELL’S EQUATIONS IN RELATIVITY

The Static electric field and Static magnetic field due to
charges at rest and steady currents, respectively, are given by
Maxwell’s equations, as:

E = −1

c

∂A

∂t
− gradφ (12)

H = curlA and divH = 0 (13)

1

c

∂H

∂t
= −curlE (14)

1

c

∂E

∂t
= curlH − 4πj (15)

divE = 4πρ (16)

Now for special relativity, we will put them in four-
dimensional form. The potential A and φ form a four vector
kμ given by,

k0 = φ, km = Am; (m = 1, 2, 3) (17)

Define
Fμν = kμ,ν − kν,μ (18)

From equation 12

E1 = −∂κ
1

∂x0
− ∂κ0

∂x1
=
∂κ1
∂x0

− ∂κ0
∂x1

= F10 = −F 10 (19)

and from equation 13

H1 = −∂κ
3

∂x2
− ∂κ2

∂x3
= −∂κ3

∂x2
− ∂κ2
∂x3

= F23 = F 23 (20)

From equation 20

Fμν,σ + Fνσ,μ + Fσμ,ν = 0 (21)

This gives the Maxwell equations 14 and 15. We have

F 0ν
,ν = F 0m

m = −Fm0
m = divE = 4πρ (22)

From equation 17, again

F 1ν
,ν = F 10

,0 + F 12
,2 + F 13

,3 = −∂E
1

∂x0
+
∂H3

∂x2
− ∂H2

∂x3

= 4πj1 (23)

The charge density ρ and current jm form a four vector Jμ

in accordance with

Jm = ρ J0 = jm (24)

From equation 23 and 24, we can write

Fμν
,ν = 4πJμ (25)

In this way the Maxwell equations are put into the four
dimensional form required by special relativity. It should be
noted here that Equation 25 is not valid in general relativity.



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:4, No:8, 2010

1125

For general relativity, rewrite the equations in covariant form
as:

Fμν = kμ:ν − kν:μ (26)

This gives us the covariant definition of the quantities Fμν .
We have further

Fμν:σ = Fμν,σ − Γα
μσFαν − Γα

νσFμα (27)

Now making cyclic permutation of μ, ν and σ and adding
the three equations, we get Maxwell equation to the covariant
form.

Fμν:σ + Fνσ:μ + Fσμ:ν = Fμν,σ + Fνσ,μ + Fσμ,ν (28)

Thus, the Maxwell equation in general relativity can be written
in covarient form as:

Fμν
:ν = 4πJμ (29)

Equation 14 can be applied to any antisymmetric two suffix
tensor, we get

(Fμν√),ν = 4πJμ√. (30)

it leads to

(Jμ√),μ = (4π)−1(Fμν√),μν = 0 (31)

This equation gives us the law of conservation of electricity.
The conservation of electricity holds accurately, undisturbed
by the curvature of space.

A. Action principle for the Maxwell equation

In classical electromagnetic theory in flat space-time, the
action for the free space electromagnetic field is given by:

S =

∫
FμνF

μνd4x (32)

Where Fμν is given by equation 20. The action principle δS =
0 leads to the free space field equations.

Fμν
,ν = 0 (33)

This follows from,

δ(FμνF
μν) = 2FμνδFμν − 2Fμν(δAν,μ − δAμ,ν)

= 4(FμνδAν,μ)

= 4(FμνδAν),μ − 4Fμν
,ν δAν (34)

The integral (FμνδAν),μd
4x = 0 (by Gauss theorem), so

δS = −4

∫
Fμν
,ν δAνd

4x = 0 (35)

gives
Fμν
,ν = 0 (36)

Taking μ = 0, 1, 2, 3, we get the Maxwell equations;

div
−→
E = 0 (37)

and

curl
−→
H = ε

∂
−→
E

∂t
(38)

The action functional apart from a proportionality constant
may be shown to be equal to

∫
(E2 − H2)d4x. In general

( X 1 , Y1)
V1

 A( X 1)
 A( Y 1)
 A( Z 1)

( X 2 , Y2)
V2

 A( X 2)
 A( Y 2)
 A( Z 2)

( X 3 , Y3)
V3

 A( X 3)
 A( Y 3)
 A( Z 3)

Fig. 1. Anisotropic waveguide cross section for two regions

relativity, the action functional should be a scalar. This is
generated by replacing d4x with

√−gd4x. The Maxwell
equations for a fixed metric gμν are derived from

δ

∫
FμνF

μν√−gd4x = 0 (39)

Which yields,
(Fμν√−g),ν = 0 (40)

or
Fμν
,ν = 0 (41)

III. FINITE ELEMENT FORMULATION

A schematics of a triangular finite element in the rectangular
waveguide is shown in Figure 1.

Consider a triangle having vertices
(x1, y1), (x2, y2), (x3, y3). The expansion of the four
functions Ax,Ay ,Az and V as a linear combination of their
vertex values can be describes as:

Ai = Ai(1)φ1 +Ai(2)φ2 +Ai(3)φ3, (42)

where i = x, y, z and

V = V1.φ1(x, y) + V2.φ2(x, y) + V3.φ3(x, y). (43)

Here, Ai(j) and V(j) are the nodal potential at node j =
1, 2, 3 or at points (x1, y1), (x2, y2) and (x3, y3).

Here we are taking (x1, y1), (x2, y2), and (x3, y3) as
(0.0, 0.0), (0.5, 0.5) and (0.0, 0.5). Two vectors, −→u and −→v
have been drawn by joining the vertices [(x1, y1), (x2, y2)]
and [(x1, y1) and (x3, y3)] [17], respectively.
Let

d1 = |u| =
√
(x2 − x1)2 + (y2 − y1)2 = .5 (44)

and

d2 = |v| =
√
(x3 − x1)2 + (y3 − y1)2 = .25 (45)

The unit vector along the two directions u and v are

û =
u

|u| =
(x2 − x1, y2 − y1)

d1
(46)
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and

v̂ =
v

|v| =
(x3 − x1, y3 − y1)

d2
(47)

any point (x, y) inside this triangle can be represented as

(x, y) = (x1, y1) + u.û+ v.v̂

= (x1, y1) +
u(x2 − x1, y2 − y1)

d1
+
v(x3 − x1, y3 − y1)

d2
so

x = x1 +
u(x2 − x1)

d1
+
v(x3 − x1)

d2
(48)

and

y = y1 +
u(y2 − y1)

d1
+
v(y3 − y1)

d2
(49)

The solution of these two linear equations results in the
variables u, v as linear functions of x, y. The area measure
is given by

ds(u, v) = |�u× �v|du.dv
where

|�u× �v| = sinα

Here, α, the angle between the vectors u and v, is defined as

cosα =
u.v

d1.d2

=
(x2 − x1)(x3 − x1) + (y2 − y1)(y3 − y1)

d1.d2
(50)

where

Δ = x2y3 − x3y2 + x3y1 − x1y3 + x1y2 − x2y1 = .25 (51)

where

φ1(x, y) =
(y2 − y3)x+ (x2 − x3)y + (x2y3 − x3y2)

Δ
= 2y + 1, (52)

φ2(x, y) =
(y3 − y1)x+ (x3 − x1)y + (x3y1 − x1y3)

Δ
= 2x, (53)

φ3(x, y) =
(y1 − y2)x+ (x1 − x2)y + (x1y2 − x2y1)

Δ
= −2x− 2y + 2. (54)

Ax(xi,yi) = Axi
(55)

And

φi(xi, yi) = δij (56)

Ax evaluated at (x1, y1) is Ax1. Now the derivative of φi with
respect to x is given as:

φ1,x =
(y2 − y3)

Δ
= 0, φ2,x =

(y3 − y1)

Δ
= 2,

φ3,x =
(y1 − y2)

Δ
= 2 (57)

and the derivative of φi with respect to y is given as:

φ1,y =
(x2 − x3)

Δ
= 2, φ2,y =

(x3 − x1)

Δ
= 0,

φ3,y =
(x1 − x2)

Δ
= 2, (58)

IV. ELECTROMAGNETIC FIELD EQUATIONS IN A

WAVEGUIDE IN THE PRESENCE OF A GRAVITATIONAL

FIELD:

The four potentials is are given by [18], [19]

(Aμ) = (V,Ax, Ay, Az) (59)

The metric of space-time is assumed to be Newtonian with
the gravitational potential U independent of z

dτ2 =

(
1 +

2U(x, y)

c2

)
dt2 − 1

c2
(dx2 + dy2 + dz2) (60)

so that

g00 =

(
1 +

2U

c2

)
, and g11 = g22 = g33 =

−1

c2
(61)

The electromagnetic field tensor is given by [19]

Fμν = Aν,μ −Aμ,ν (62)

The Lagrangian density is given by

L = FμνF
μν = gμαgνβFμνFαβ (63)

The derivatives with respect to z are replaced by multiplication
with −γ and the derivatives with respect to time are replaced
by multiplication by iω or jω and a negative sign is added
before these. To see the reason for the negative sign, we
consider a simple case in which one of the components of
the action functional is,∫

V 2
,zdxdydzdt (64)

The variation of this gives on integration by parts,∫
V,zδV,zdxdydzdt = −

∫
V,zzδV dxdydzdt (65)

The coefficient of δV is −V,zz = −γ2V . In the
original action, if we replace V,z by −γ.V , then we
get the term γ2

∫
V 2dxdydzdt which on variation gives

γ2
∫
V δV dxdydzdt and the coefficient of δV is γ2V . This

shows that in the replacement of V,z by γV in the original
action, a minus sign must be introduced to obtain the correct
field equations. The same goes for derivative with respect to
time [6]. This can also be seen to be true for terms of the
form

∫
ψ.V,zdxdydzdt. Taking the variation with respect to

V , integrating by parts and selecting the coefficient of δV
gives us −ψ,z which is γψ. On the other hand, if we directly
make the replacement V,z → −γV in the action, we get
−γ ∫ .ψ.V dxdydzdt. Taking the variation with respect to V
and selecting the coefficient of δV gives us −γψ and to get
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agreement with the former, a negative sign must be introduced.
Now,

L = 2g00g11F 2
01 + 2g00g22F 2

02 + 2g00g33F 2
03

+2g11g22F 2
12 + 2g22g33F 2

23 + 2g11g33F 2
31 (66)

The first term contains

F 2
01 = (A1,0 −A0,1)

2 = A2
1,0 +A2

0,1 − 2A1,0A0,1(67)

As per the above rule, this term is to be replaced by

ω2A2
1 +A2

0,1 + 2jω.A1A0,1 = ω2(g11Ax)
2 +

(g00V )2,x + 2jω.g11Ax(g00V ),x (68)

Similarly, the second and third terms which
contain F 2

02 and F 2
03 must be replaced by

ω2(g22Ay)
2 + (g00V )2,y + 2jωg11Ay(g00V ),y and

ω2(g33Az)
2− γ2g00V

2− 2jωγ.g33g00AzV , respectively. The
sign of the last term can be understood as follows. Consider
the variation of A3,0A0,3 with respect to A3. On integrating
by part, it gives −A0,30δA3 and the coefficient of δA3 here
is −A0,30 = jωγA0. On the other hand, replacing A3,0

and A0,3 respectively by jωA3 and −γA0 reduces the term
A3,0A0,3 to −jωγA3A0 and the variation with respect to A3

gives −jωγA0. To get agreement, we must thus introduce an
extra negative sign here. The fourth term contains F 2

12. This
evaluates to

F 2
12 = (A2,1 −A1,2)

2

= ((g22Ay)
2
,x + (g11Ax)

2
,y − 2Ay,xAx,y (69)

It results in no modification. In the accord to the above rules,
the fifth and sixth terms which contain F 2

23 and F 2
31 must

be replaced with (g33Az)
2
,y − γ2A2

y − 2γ(g33Az),yg22Ay and
−γ2(g11Ax)

2 + (g33Az)
2
,x − 2γg11Ax(g33Az),x, respectively.

Taking c = 1 and substituting for metric coefficients, we get
the modified Lagrangian density as

L = −2(1− 2U)(ω2(Ax)
2 + ((1 + 2U)V )2,x − 2jω.Ax

((1 + 2U)V ),x)− 2(1− 2U)(ω2(Ay)
2 + ((1 + 2U)V )2,y

−2jω.Ay((1 + 2U)V ),y)− 2(1− 2U)(ω2(Az)
2 − γ2

(1 + 2U)V 2 + 2jωγ.(1 + 2U)AzV ) + 2(A2
y,x +A2

x,y

−2Ay,xAx,y) + 2(A2
z,y − γ2A2

y − 2γAz,yAy)

+2(−γ2A2
x +A2

z,x − 2γAxAz,x) (70)

Note that we have assumed the gravitational potential U to be
weak, i.e., |U | << 1 so that g00 can be taken as 1− 2U [20],
[21]. We further simplify the above expression so that O(U2)
terms do not appear. We then get

L =

−2ω2(1− 2U)A2
x − 2(1− 2U)(V,x)

2 − 8(UV ),xV,x

+4jω(1− 2U)AxV,x + 8jωAx(UV ),x − 2ω2(1− 2U)A2
y

−2(1− 2U)V 2
,y − 8(UV ),yV,y + 4jω(1− 2U)AyV,y

+8jωAy(UV ),y − 2ω2(1− 2U)A2
z − 2γ2(1− 2U)V 2

+4γ2UV 2 − 4jωγ(1− 2U)AzV − 4jωγ.U.Az.V + 2

(A2
y,x +A2

x,y − 2Ay,xAx,y) + 2(A2
z,y − γ2A2

y

−2γAz,yAy) + 2(−γ2A2
x +A2

z,x − 2γAxAz,x) (71)

We can write this equation as

L = F + UG (72)

where F, G depend only on the four electromagnetic poten-
tials. The Action principle involves

δ

∫
L
√−gdxdydt = 0 (73)

and we have

L
√−g = L(1 + U)

= (F + U.G)(1 + U)

= F + U(F +G) (74)

with neglect of O(U2) terms, and after multiplication L with
(1 + U) we get,

L(1 + U) = −2ω2(1 − U)A2
x − 2ω2(1− U)A2

y − 2ω2(1− U)

A2
z − 2(1− U)V 2

,x − 2(1− U)V 2
,y + 4jω(1− U)V,xAx + 4jω

(1− U)V,yAy − 4jωγAzV (1− 2U)− 2γ2(1− U)V 2

+8(UV ),xVx + 8jωAx(UV ),x − 8(UV ),yVy + 8jωAy(UV ),y

+2(1 + U)[A2
y,x +A2

x,y − 2Ay,xAx,y +A2
z,y − γ2A2

y − 2γ

−γ2A2
x +A2

z,x − 2γAxAz,xAz,yAy]

(75)

We can write above equation as:∫
L
√−gdxdy = L1 + L2 + L3 + L4 + L5 + L6 + L7 + L8

+L9 + L10 + L11 + L12 + L13 + L14 + L15

+L16 + L17 + L18 + L19 + L20 + L21 + L22

(76)

Where

Li1 = −2ω2

∫
Δ

(1 − U)A2
j1dxdy

wherei1 = 1, 2, 3 and j1 = x, y, z (77)

Li2 = −2

∫
(1− U)V 2

,j2dxdy

where i2 = 4, 5 and j2 = x, y (78)

Li3 = 4jω

∫
(1− U)V,j3Aj3dxdy

where i3 = 6, 7 and j3 = x, y (79)

Li4 = 2

∫
(1 + U)A2

j4dxdy where

i4 = 8, · · · 11 and j3 = x, y; y, x; z, y; z, x (80)

Li5 = −2γ2
∫

(1 + U)Aj5dxdy

where i5 = 12, 13 and j5 = x, y (81)
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Li6 = 8jω

∫
Aj6(UV ),j6dxdy

where i6 = 14, 15 and j6 = x, y (82)

Li7 = −4γ

∫
(1 + U)Aj7Ak7dxdy where

i7 = 16, 17 and j7 = x, y; k7 = z, x; z, y (83)

L18 = −4jωγ

∫
(1− 2U)V Azdxdy (84)

L19 = −2γ2
∫
Δ

(1− U)V 2dxdy (85)

L20 = 8

∫
(UV ),xVxdxdy (86)

L21 = −8

∫
(UV ),yVydxdy (87)

L22 = −4

∫
Δ

(1 + U)Ay,xAx,ydxdy (88)

U(x, y) = − GM

C2((x −R)2 + y2)1/2
(89)

Let GM = 1 and velocity of light, C is given by C = 1 for
simplification of calculation. Now∫

L
√−gdxdy = L1 + L2 + L3 + L4 + L5 + L6 + L7

+L8 + L9 + L10 + L11 + L12 + L13

+L14 + L15 + L16 + L17 + L18 + L19

+L20 + L21 + L22

(90)

V. INTEGRAL CALCULATION

Now, we are taking triangular element and expand the four
functions Ax, Ay, Az, V as linear combination of their vertex
values. Now the integration L1 can be calculated as:

A. Calculation of first integral

∫
L1dxdy = −2ω2

∫
Δ

(1 − U)A2
xdxdy (91)

Now, expand each term in the expression and finally we get

∫
L1dxdy = −ω2 sinα

∫ d1

0

∫ d2−d2.u
d1

0(
1 +

1√
(.7u− 5)2 + (.7u+ v)2

)
[
A2

x(1)(1.96u
2 + 4v2 + 5.6uv + 1 + 5.6u+ 8v)

+.49u2A2
x(2) +A2

x(3)

(7.84u2 + 4v2 + 5.6uv + 4 + 5.6uv)

+Ax(1)Ax(2)(3.92u
2 + 5.6uv + 2.8u) +Ax(2)Ax(3)

(−7.84u2 − 5.6uv + 5.6)

+Ax(1)Ax(3)(−7.84u2 − 8v2 − 16.8uv + 4v + 4)
]

dudv (92)

All other integrals can be calculations in the similar way.

VI. RESULT AND DISCUSSION

Resultant integral is given by:∫
L
√−gdxdy =

(3.6− 1.74ω2 − 1.64γ2)A2
x(1)− (1.6ω2 + 4.0γ2)A2

x(2) +

(4.2− 2.6γ2 − 2.2ω2)A2
x(3)− (1.65ω2 + 6.2γ2)A2

y(1) +

(2.62− 1.4ω2 − 8.5γ2)A2
y(2) + (4.8− 6.6γ2 + 1.9ω2)A2

y(3) +

(3.7− 1.4ω2)A2
z(1) + (4.3− 1.9ω2)A2

z(2) + (4.8− 2.84ω2)

A2
z(3)− (1.58ω2 + 4.8γ2)Ax(1)Ax(2)− (1.84 + 4.56γ2)

Ax(2)Ax(3) + (2.6− 4.7γ2)Ax(1)Ax(3)− (4.8ω2 + 8.7γ2)

Ay(1)Ay(2) + (1.7− 2.2ω2 − 3.4γ2)Ay(2)Ay(3)− (2.0 +

1.9γ2)Ay(1)Ay(3) + (4.2− 1.9ω2)Az(1)Az(2) + (4.4−
1.09ω2)Az(3)Az(2) + (4.9− 1.84ω2)Az(1)Az(3)− (4.1259

+1.27γ2)V 2
1 − (3.3 + 3.2γ2)V 2

2 − (4.683 + 2.424γ2)V 2
3

+(4.7− 3.0γ2)V2V3 + (4.08− 2.518γ2)V1V2 + (2.875−
3.125γ2)V1V3 − (1.8566jωγ)V1Az(1)− (1.678jωγ)V1Az(2)

−(3.424jωγ)V1Az(3)− (1.974jωγ)V2Az(1)− (3.43jωγ)V2

Az(2)− (6.353jωγ)V2Az(3)− (4.757jωγ)V3Az(1)− (8.7

jωγ)V3Az(2)− (4.7jωγ)V3Az(3) + 1.5jωV1Ax(1) + 7.5jω

V2Ax(1) + 3.7jωV1Ax(2) + 4.3jωV1Ax(3) + 8.9jωV1Ay(1) +

4.4jωV2Ay(1) + .09jωV3Ay(2) + 3.7jωV2Ay(2) + 6.8jωV3

Ay(3) + 4.7jωV2Ay(3) + 9.7jωV1Ay(3) + 3.6jωV2Ax(2)

+6.7jωV2Ax(3) + 4.0jωV1Ay(2)− 4.4jωV3Ax(1)− 3.2jω

V3Ax(2)− 5.8jωV3Ax(3)− 3.4jωV3Ay(1)− .7Ax(1)Ay(2)

−1.4Ax(2)Ay(3)− 8.41Ax(1)Ay(3)− 5.4Ax(3)Ay(3)

−6.42γAz(1)Ay(1)− 1.4γAz(1)Ay(2)− 3.2γAz(1)Ay(3)

−3.6γAz(3)Ay(1)− 6.0γAz(3)Ay(2)− 2.4γAz(3)Ay(3)−
4.4γAz(1)Ax(1)− 1.5γAz(1)Ax(3)− 3.4γAz(2)Ax(2)

−2.0γAz(3)Ax(1)− 3.4γAz(3)Ax(3)− 1.4γAz(1)Ax(2)−
.4γAz(2)Ax(1)− .4γAz(2)Ax(3)− 4.5γAz(3)Ax(2) (93)

Equation 93 results in a matrix of size 12 X 12. In the
general formulation of waveguide problem, using a variational
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principle applied to four potential, we still get a term linear
in γ, i.e. the eigen problem is of the form

det(A+ γB + γ2C) = 0

However, if we take in to account the Lorentz Gauge Condi-
tion, this linear term disappears. It is evident from the wave-
equations:

∇2−→A + ω2με
−→
A = 0

∇2−→V + ω2με
−→
V = 0

Which yields(
∂2

∂x2
+

∂2

∂y2
+ ω2με + γ2

)−→
A = 0

In the presence of the gravitational field, however, the term
linear in γ can not be made to vanish even after applying the
general relativity gauge condition.

(Aμ√−g),μ = 0

VII. CONCLUSION

In this paper, the expressions for the action functional of
the electromagnetic field have been written in the presence of
a weak gravitational field. The cross-section of the waveguide
has been partitioned in to small triangles and the fields inside
each triangle have been expressed as linear combinations of
the vertex fields using linear test functions. The action integral
reduces to a quadratic function of the vertex fields. In this
function, first and second powers of the frequency and prop-
agation constant appear. For a fixed frequency, minimization
of the action function with respect to the vertex field values
leads to an eigen equation of the form

det(A+ γB + γ2C) = 0

Where γ is the propagation constant. In the absence of gravity,
the term γB is absent. Numerical techniques to solve the later
problem need to be investigated. Sample matrices A, B, and
C have been computed for special typical example in this
paper. This work also gives a path way to the future work in
which one can develop a numerical algorithm and/or software
to solve this problem fully (up to the eigen value).
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