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Abstract—This paper presents a new approach for the protection 

of Thyristor-Controlled Series Compensator (TCSC) line using 

Support Vector Machine (SVM). One SVM is trained for fault 

classification and another for section identification. This method use 

three phase current measurement that results in better speed and 

accuracy than other SVM based methods which used single phase 

current measurement. This makes it suitable for real-time protection. 

The method was tested on 10,000 data instances with a very wide 

variation in system conditions such as compensation level, source 

impedance, location of fault, fault inception angle, load angle at 

source bus and fault resistance. The proposed method requires only 

local current measurement. 

 

Keywords—Fault Classification, Section Identification, Feature 

Selection, Support Vector Machine (SVM), Thyristor-Controlled 

Series Compensator (TCSC) 

I.  INTRODUCTION 

UE to advantages offered by series compensated 

transmission lines, their presence is consistently 

increasing in modern power system [1]. The conventional 

protection schemes are found to be inadequate either due to 

the operation of gap or varistor protection. The situation is 

worsened with applications of controllable series 

compensation using TCSC. Thus it is suggested that new 

protection approach should be investigated [2]. 

Detection, classification and location of fault are three main 

parts of transmission line protection. Detection requires 

identification of the occurrence of fault as soon as possible. 

Classification of faults consists of identification of the type of 

fault. This information is required for fault location and repair 

analysis. Fault Classification also leads to faulted phase 

selection this improves system stability with the help of single 

pole tripping [3]. Section identification further helps in zone 

identification and location of fault to speed up the repairing 

process. Fault classification and section identification is a 

difficult task for series-compensated transmission lines. 

Different methods [4] -[16] have been proposed for this 

purpose. Christopoulos and others [4] proposed an algorithm 

based on traveling waves, an algorithm using adaptive Kalman 

filtering technique was proposed in [5].  
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Various fault classification and section identification 

techniques have been proposed by different researchers for 

series compensated transmission lines using different types of 

neural networks such as Error Back Propagation Neural 

Network (EBPNN), Radial Basis Function Neural Network 

(RBFNN) and Fuzzy Neural Network (FNN) [6]-[8]. Few 

algorithms using Fuzzy logic, Wavelet transforms and higher 

order statistics have been proposed by different researchers 

[9]-[11]. Shortcomings of aforementioned methods are 

discussed in [12]-[14]. 

SVM based method with wavelet transform has been 

proposed in [12]-[15] but these methods increase overhead of 

pre-processing that too with high sampling rate for longer 

duration. Support Vector Machine (SVM) based fault 

classification scheme is proposed in [13] and encouraging 

results have been reported. However, in their method current 

samples and firing angle are given as input to SVM but these 

inputs are collected from two different location situated 150 

km away from each other, this puts overhead of 

communication on their method. Recently in [14], an SVM 

based scheme is proposed without firing angle as input. It 

feeds post-fault current samples of one cycle period at the 

sampling rate of 4 kHz but used with fixed compensation. 

Moreover, in [14] authors have reported results by tuning the 

parameters of SVM on testing set (without standard practice of 

validation or cross-validation) which may cause overfitting, in 

turn this may lead to inflated accuracy [16]-[17]. 

In this work, we have achieved improved results even with 

variable compensation (TCSC), in lesser time and with lesser 

sampling rate (1 kHz). The proposed method is highly 

accurate (almost 100%) and it removes some physical 

constraints related to real-time data acquisition. At the same 

time, it also reduces the decision time by a large extent. The 

improved performance is a result of more informative input 

features to classifier and unique architecture of SVM (single 

multiclass SVM). 10 half-cycle-post-fault-current samples at 

the sampling frequency of 1.0 kHz from every phase (total 30 

samples) were fed as inputs to the SVM from only one 

location i.e. the relaying end, providing a better practical 

solution with improved accuracy. 

System considered for simulation is described in section II. 

A brief introduction of SVM is given in section III, and then 
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Fig. 1 Single Line diagram of system used 

 

steps taken in training and testing of SVM are described at 

length in section IV. Section V presents Classification and 

identification scheme, comparative study with previous 

methods is done in section VI and finally conclusion is given 

in section VII. 

II.  POWER SYSTEM MODEL 

A 400 kV, 50 Hz power system is used for simulation 

studies, which has two sources (representing two areas), and 

300 km long transmission line having TCSC at the center of it 

as shown in Fig. 1. Compensation of line varies from 30% (at 

firing angle 180°) to 40% (at firing angle 150°). Bus 1 is taken 

as relaying end and all the data is collected only from relaying 

end. This model is developed using standard library 

components available in PSCAD/EMTDC [18]. The 

transmission line has been represented using the Bergeron line 

model. The source and line parameters are given in the 

Appendix-A. A typical protection scheme of a TCSC consists 

of a Metal Oxide Varistor (MOV), an air gap, discharge 

reactor and a bypass switch. In the case of fault voltage across 

the TCSC is limited by MOV. When energy of MOV reaches 

near to its allowable limit the gap is fired to protect both 

TCSC and MOV. After a few cycles the capacitor is reinserted 

by manual control [2]. Voltage rating of MOV is decided on 

the basis of maximum instantaneous voltage across MOV 

under normal conditions. This maximum voltage occurs when 

compensation level is maximum (4%) and both source 

impedances are minimum (75%). 

III.  SUPPORT VECTOR MACHINE 

A.  SVM 

A classification task usually involves training and testing of 

some data instances. Each instance in the training set contains 

one "target value" (class labels) and several "attributes" 

(features). The goal of SVM is to produce a model that 

predicts the target value of unseen data instances. This 

property is popularly termed as generalization. 

The discriminant function of SVM classifier is defined as 

bf +⋅= )()( xφwx  where w is weight vector, b is bias )(xφ  

is a mapping function to map the input pattern x into higher 

dimensional space H. Using principle of structural risk 

minimization following minimization problem is formulated 

with cost function: 
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where C is regularization parameter and ξi are measure of 

error in case of nonseparable data points and yi is the class 

label of i
th
 data point.The solution which minimizes the above 

cost function, subject to the constraints in Eq. (2) can be 

obtained using the following dual formulation. 
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where, αi’s are lagrangian multipliers, )( yx,K is known as 

kernel, it is a non-linear function and defined as 
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                          )( i

N

i

iio

S

yw xφ∑= α                                      (7) 

 where, NS is the number of support vectors. 

 If                0)( <
= o

f
ww

x             class-I 

 If               0)( >
= o

f
ww

x              class-II. 

Interested readers can further consult [16], [17], [19], [20]. 

B.  SVM Kernel Functions 

The kernel function in an SVM plays the crucial role of 

mapping the input vector into a high-dimensional kernel 

space. In the present study, radial basis function (RBFs) kernel 

has been used since by experiments authors have found that in 

this application RBF performs better than other popular valid 

kernels i.e. Linear, Polynomial. It is defined as follows: 

)exp(),(
2

yxyx −−= γK   where,
 2

2

1

σ
γ =                    (8) 

where, σ is width of Gaussian function. 

C.  Multi-class SVM 

SVM is essentially a binary classifier so different strategies 

are required to convert it into multi-class classifier. "One 

against one" and "one against all" strategies are widely used 

multi-class SVM methods. "One against one" is the most 

popular method, moreover numerical experiments in [21] have 

shown that 'one-against-one' method is more suitable for 

application similar to our problem (i.e. when both number of 

classes and number of attributes are small). So this method is 

used here for fault classification and section identification. 



International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:5, No:12, 2011

1871

 

D.  Parameter Selection and Training 

Once the training instances are obtained from simulation, 

the next step is to determine the optimal parametric setting of 

the any classifier (here SVM). For avoiding overfitting and 

giving correct measure of generalization capability of 

classifier, there are two standard procedures for selection of 

optimal parameters one is Validation and other is Cross-

Validation (CV) [16], [17]. In present work, SVM parameter 

associated with RBF kernel (γ) is adjusted along with 

regularization parameter C, by using 5-fold CV. Then using 

these parameters SVM is trained for complete training set and 

tested on separate testing set. 

 

IV.  SVM’S TRAINING AND TESTING 

A.  Data Generation 

The fault simulation studies have been carried out on 

PSCAD [18]. Variations in parameter values chosen in these 

studies are shown in Table I. 

 
TABLE I 

CHOSEN VALUES OF PARAMETERS FOR SIMULATION STUDY. 
S. No. Variation For Range No. of Runs 

1 Fault Type All 11 types of faults 11 

2 Firing angle 150° to 180° 1 

3 Fault resistance 5 Ω to 200 Ω 1 

4 Fault inception angle 0° to 360° 5 

5 Load angle at bus 1 10° to 30° 2 

6 Source impedance 
75%, 100%, 125% 

 (both sources) 
933 =×  

7 Fault Locations 
0 to 150 km  

(both sides of TCSC) 
1628 =×  

 Total Runs 15840169251111 =××××××  

 

Except source impedance, value of all the parameters were 

selected randomly (uniform random distribution) between 

their given range. Parameters 1 to 5 were changed using 

multiple-run component of PSCAD [18] while 6 and 7 are 

varied manually. Thus, total 15,840 combinations of above 

mentioned parameters have been simulated. Out of these 

15,840 data points, 10,000 are taken for testing and remaining 

5,840, for training. Taking such a large variation in training-

data points endows this SVM model with good prediction 

capability under real-life conditions. At the same time, taking 

large numbers of testing points ensures that the reported 

results are correct measure of generalization capability of 

classifier i.e. there is no overfitting or inflated accuracy. 

Extensive experiments are performed by taking different 

number of training instances at a time (500, 1000 … 5500 and 

5,840). 

B.  Feature Selection 

Selection of good features is very important aspect of 

designing any classifier [16], [17]. For different objectives, 

different parameters of a system can be selected as the input 

signals to the classifier. Here 10 samples of currents from each  

 
Fig. 2 Fault Current for ab-g fault 

Fig. 3 Fault Current for ac-g fault 

phase (total 30 samples, just after the inception of the fault) 

were selected at a sampling frequency of 1.0 kHz while power 

system frequency is 50-Hz i.e. 10 samples are taken from first 

half cycle duration of line current from each phase. The 

current instances were scaled properly (0 to 1) before feeding 

them to the classifier. It is obvious that increasing the number 

of samples of post fault period while keeping the sampling 

frequency fixed will give better accuracy but one cannot have 

the luxury of longer post fault duration since longer the fault 

period the larger will be its ill effects on the system. 

Consequently, there exists a trade-off between sampling 

length and accuracy. Hence it is decided to take 10 post fault 

current samples after experimentation. 

The feature set should contain most relevant information 

for better classification. In [14], current samples from different 

phases are fed into corresponding phase classifiers and in [13], 

samples only from single phase were taken as inputs. So, the 

input features do not allows the comparison between different 

phase currents which is very important discriminating feature 

for faults. The rationale behind this could be understood from 

Fig. 2 and 3. The figures show the three phase currents for ab-

g and ac-g fault respectively. It can be easily deduced that the 

current in phase 'a' is nearly the same in both faults. So, the 

current of phase 'a' only fails to discriminate between the two 

faults namely, ab-g and ac-g. The same holds for faults 'ab-g' 

and 'bc-g' when current samples of phase 'b' only are fed and 

so on. However, it is easy to distinguish between the two 

faults by observing all the three phase currents simultaneously. 

So, feeding current samples from all the three phases provides 

valuable discriminative information which leads to significant 

improvement in performance. So in proposed method, the 

current samples from all the three phases were fed to a single 

multi-class classifier enabling it to capture the discriminating  
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Fig. 4 Proposed protection scheme 

information in a better way. This resulted in improved speed 

and classification accuracy up to 100%. Moreover, this 

intelligent choice of feature set leads to several modifications 

and improvements in existing methods which are discussed at 

length in Section-VI. 

V.  CLASSIFICATION AND IDENTIFICATION SCHEME 

Since fault classification and section identification are two 

totally different tasks therefore they cannot be clubbed into 

one multiclass classifier. Hence the proposed method makes 

use of two SVM classifiers, one for classification of fault 

(multiclass SVM) and other for section identification (binary 

SVM classifier). The schematic diagram of proposed method 

is shown in Fig. 4. The fault classifier is a 10-class SVM 

which classifies the 10 types of fault namely, a-g, b-g, c-g, a-

b, b-c, c-a, a-b-g, b-c-g, c-a-g, a-b-c/a-b-c-g. The second SVM 

identifies the section in which the fault has occurred by using 

the same feature set. So, it determines whether fault has 

occurred in section-1 (between relaying end and TCSC) or it 

has occurred in section-2 (between TCSC and other terminal 

of transmission line). The use of only two classifiers reduces 

the model complexity significantly. It is assumed that the 

directional sensing and fault detection units take care of 

directional discrimination and fault detection problems. 

Training and testing is performed on libsvm-mat-2.88-1tool-

box [22]. 

VI.  IMPROVEMENTS ACHIEVED  

It should be noted that for all the performance graphs, 

testing is done on 10,000 testing instances while number of 

training instances is varied, to compare training efforts 

required for achieving required level of accuracy. 

A.  Better Ground Detection 

In [12]-[14] phase and ground detection are dealt separately 

for classification of fault i.e. the involved phase (a, b or c) is 

detected using one classifier and ground is detected using a 

separate. Detection of ground involvement in the fault requires 

zero-sequence-current component in one way or the other, 

which requires the zero-sequence current to be determined, 

adding an extra process to be dealt with. Proposed method can 

achieve nearly perfect accuracy without making explicit use of 

zero-sequence-current component, eliminating the additional 

processing needed to acquire the zero-sequence-current. 

 
Fig. 5 Accuracy of fault classification Vs no. of training instances 

 
Fig. 6 Accuracy of section identification Vs no. of training instances 

B.  Better Accuracy with Lesser Complexity 

The proposed method gives an accuracy of 100% (with 

5000 and above training instances) which is not achieved so 

far to the best of our knowledge. Various researchers have 

reported an accuracy of around 97% for the same task 

[10]-[13]. However, some others have achieved accuracy 

above 99% [23] on simpler power system configuration 

(TCSC at one end) but by significantly increasing the 

complexity of the fault classification system. On the other 

hand, proposed method is fairly simple. The relative 

performance of the proposed method can be observed from 

Fig. 5. The figure provides a variation of performance of the 

methods with the number of training instances. The figure 

clearly shows that proposed method outperforms previous 

SVM based method [13] in both cases; when firing angle (α) 

is taken as input and when it is not. The former is termed as 

‘With α’ and later is termed as ‘Without α’. It can be 

observed from the figure that proposed method outperforms 

other methods by a margin of more than 30% when only 500 

instances are taken for training. Moreover, near 100% 

accuracy is obtained by the proposed method using only 1500 

training instances while other methods are only 75% accurate. 

It signifies that the proposed method is significantly better 

than other methods even when small training data is available. 

Practically, the data available for training is not much so the 

proposed method is even more significant improvement in this 

aspect.For the purpose of comparison, TableII shows results of 

proposed method and Table-I shows results of one other SVM 

based method [14] for fault classification accuracy for 

different fault types. Although less complex system (using 

fixed capacitor) was used, the accuracy is less than the  
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TABLE II  

FAULT CLASSIFICATION ACCURACY FOR DIFFERENT FAULT TYPES BY 

PROPOSED METHOD (2500 TRAINING INSTANCES) 

Fault type 
No. of test 

cases 

no. of mis-

classification 

no. of correct 

classification 

Accuracy 

(%) 

L-g 3347 2 3345 99.94 

L-L-g 3109 7 3102 99.77 

L-L-L/L-L-L-g 1009 0 1009 100 

L-L-g 2535 0 2535 100 

Total 10000 9 9991 99.91 

TABLE-III  

FAULT CLASSIFICATION ACCURACY FOR DIFFERENT FAULT TYPES REPORTED 

IN [15] (FOR 3600 TRAINING INSTANCES) 

Fault type 
No. of test 

cases 

no. of mis-

classification 

no. of correct 

classification 

Accuracy 

(%) 

L-g 7560 193 7367 97.447 

L-L-g 7560 105 7455 98.611 

L-L-L/L-L-L-g 2520 0 2520 100 

L-L-g 7560 29 7531 99.616 

Total 25200 327 24873 98.703 

proposed method. Moreover, in [14] the results are reported 

with overfitting (without validation of cross validation) while 

method proposed in present paper is tested as per as the 

standard procedure and still exhibited better performance. 

Also the proposed method provides 99.85% accuracy in 

section identification (using 2000 training instances as shown 

in Table-IV) as compared to 91.53% provided by [14]. From 

Fig. 6 it can be seen that gap between the accuracy of 

proposed method and existing method reduces as number of 

training instances increases. 

C.  Better Speed 

The speed of proposed method is much better than previous 

SVM based method [13]. Fig. 7 shows the variation in testing 

time with the number of training data examples. It should be 

noted that the time shown in the Fig. 7 is not the actual time 

but the normalized time to facilitate better comparison. It 

clearly shows that proposed method takes around one third 

time for same performance. As far as the application of fault 

classification is concerned, time taken for training is not much 

important because training is performed offline but time taken 

in prediction of fault (testing time) is important because 

testing is performed in real-time (however time taken in 

training by proposed method is lesser).  

 
Fig. 7 Prediction time for fault classification 

 
Fig. 8 No. of support vectors for fault classificaton 

Prediction time not only depends on dimension of input vector  

but also on number of support vectors (number of evaluations 

of Kernel function), as number of support vectors (SV) 

increases time taken for predicting fault also increases. Fig. 8 

shows the variation in number of SVs selected against the 

number of training instances. It clearly shows that the number 

of SVs is fairly lesser than the other methods. Because of this 

proposed method takes lesser time for prediction. 

Comparatively lower number of SVs also indicate that there is 

no overfitting in the proposed case. 

Similarly proposed section identification scheme is faster 

owing to the lesser number of SVs. Table-IV gives summary 

of various results obtained by the proposed and existing SVM 

based method [13] for 2000 training instances to give glimpse 

of results in quantitative terms, as detailed results cannot be 

given due to space constraints. Since number of SVs are 

machine independent, but time given in Table-IV may vary on 

different machines, therefore training and testing time are 

given only for relative comparison. Specification of machine 

used is given in Appendix-B.  
TABLE-IV 

Description of feature (input) 

vector 

Description of label 

vector 
C γ 

Accuracy 

% 

Time (seconds) taken 

for training  

Prediction time for 

1 instance (ms)   

no. of 

SVs 

10Ia, 10Ib, 10Ic i.e.30  current 

samples (proposed) 
10 types of fault 32 8 99.84 0.144813717 0.9912739 458 

10Ia, 10Ib, 10Ic i.e.30  current 

samples (proposed) 
Section Identification 256 8 99.85 0.134575146 0.3025302 157 

10 Ia i.e. current samples from phase a 
+ firing angle (α) 

faulty phase 32 4 83.96 0.228417605 1.7325835 1263 

10 Ia i.e. current samples from phase a 

+ firing angle (α) 
section identification 256 16 91.53 0.374174669 0.837786 709 

10 Ia i.e. current samples from phase a faulty phase 512 8 78.06 0.621778222 1.6393754 1224 

10 Ia i.e. current samples from phase a section identification 512 8 89.84 0.355411802 0.94505 824 
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D.  Physical Feasibility 

The method proposed by [13] takes the firing angle as a 

crucial input which requires a communication system from 

TCSC to relaying end. Moreover, removal of firing angle from 

their input decreases the accuracy (Fig. 5) and increased the 

testing time (Fig. 7). It shows the dependence of performance 

on firing angle in [13]. On the other hand, the proposed 

method does not require firing angle as an input and this 

relieves from the burden of communication system. 

VII.  CONCLUSION 

A novel method for fault classification and section 

identification for series compensated lines having TCSC has 

been presented. This method uses more informative input 

feature vector for both purposes. As a result it achieved high 

accuracy under a wide variation in system conditions. 

Moreover, it significantly reduces the time required for 

successful operation. It requires local tree phase current 

measurement and does not require firing angle as input. 

Therefore it does not require communication infrastructure. It 

also does not require any preprocessing such as wavelet 

transform and zero-sequence-current component calculation 

etc. 

APPENDIX 

A.  System Parameters:  

(i) Source 1:  

Positive sequence impedance = 15.06∠85° (100%) 

Zero sequence impedance = 26.70∠85° (100%) 

Phase angle= varied between 10° to 30°  

Frequency =50 Hz 

Voltage at terminal = 400 kV. 

(ii) Source 2:  

Same as Source 1 only phase angle is kept constant (0°)  

(iii) Transmission-Line Data: 

Length = 300 km 

Voltage = 400 kV 

Positive-sequence impedance = 8.25+j94.50Ω 

Zero-sequence impedance = 82.50+j308.00 Ω 

Positive-sequence capacitive reactance = 224.97 MΩ*m 

Zero-sequence capacitive reactance = 374.67 MΩ*m 

B.  Specification of Machine Used: 

Intel® Core
TM

2 CPU, E7400@2.80 GHz, 4 GB RAM. 

Microsoft Windows, XP Professional 2002, Service Pack 2.  
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