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Abstract—Global approximation using metamodel for complex 

mathematical function or computer model over a large variable 
domain is often needed in sensibility analysis, computer simulation, 
optimal control, and global design optimization of complex, multi-
physics systems. To overcome the limitations of the existing 
response surface (RS), surrogate or metamodel modeling methods for 
complex models over large variable domain, a new adaptive and 
regressive RS modeling method using quadratic functions and local 
area model improvement schemes is introduced.  The method applies 
an iterative and Latin hypercube sampling based RS update process, 
divides the entire domain of design variables into multiple cells, 
identifies rougher cells with large modeling error, and further divides 
these cells along the roughest dimension direction.  A small number 
of additional sampling points from the original, expensive model are 
added over the small and isolated rough cells to improve the RS 
model locally until the model accuracy criteria are satisfied.  The 
method then combines local RS cells to regenerate the global RS 
model with satisfactory accuracy.  An effective RS cells sorting 
algorithm is also introduced to improve the efficiency of model 
evaluation.  Benchmark tests are presented and use of the new 
metamodeling method to replace complex hybrid electrical vehicle 
powertrain performance model in vehicle design optimization and 
optimal control are discussed. 
 

Keywords—Global approximation, polynomial response surface, 
domain decomposition, domain combination, multiphysics modeling, 
hybrid powertrain optimization 

I. INTRODUCTION 
ODAY design optimization and optimal control of a 
mechanical, electrical, mechatronics or vehicular system 

are often carried using complex and computation intensive 
multi-physics models.   

 

 

 

 

 

 

 

 

 

 
Due to the demanding and lengthy process for evaluating 

these original models, and the added complexity of global 
optimization, a simplified model or metamodel of the original 
model is often used. This approximation model substitutes the 
original complex nonlinear function or computer simulation 
model to make sensibility analysis, computer simulation, 
optimal control, and global design optimization of the 
complex, multi-physics systems feasible and efficient.  For 
instance, the use of a metamodel to approximate the large 
finite element analysis model of a complex mechanical 
structure can considerably speed up the search of optimal 
design parameters in global design optimization.  Another 
example is the model based powertrain design optimization of 
hybrid electrical vehicles.  The complex powertrain 
performance model, which is constructed using various 
powertrain components, including internal combustion engine 
(ICE), electric motor/generators, continuous variable 
transmission (CVT), vehicle control system, etc., and their 
interactions determined by different powertrain architectures, 
requires extensive computation using special powertrain 
performance modeling and simulation programs. These 
programs, often implemented using multi-physics modeling 
and simulation software, such as MATALB Simulink, or 
special powertrain modeling tools, such as Powertrain 
Simulation and Analysis Tools (PSAT), require extensive, 
recursive computation through a “black-box” simulation 
process.  It is very difficult to carry out vehicle powertrain 
design optimization using these black-box simulations as 
objective or constraint functions.  The use of computation 
efficient metamodels to approximate these complex black-box 
functions makes system level design analysis and optimization 
more feasible. The research on global design optimization of 
next-generation hybrid electric vehicle powertrain system, 
carried out by the authors, calls for these metamodels.  The 
aim of this work is to introduce a new method that can 
generate the needed metamodel efficiently with high modeling 
accuracy. The approximate model represents the inputs-
outputs relations of the modeled complex vehicle system.  
Different from a simple look-up table that only functions well 
for low-dimension problems; the metamodel is introduced to 
capture more complex, non-linear, large dimensional input-
output relations.  
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Response surface method (RSM) is one of the well 
established and widely used global approximation tools, in 
which the approximate the substitutes the original model is 
called a response surface (RS), a surrogate or a metamodel.  
Researches on RSM developments can be further divided into 
several key techniques [1], Kriging, Radial Basis Functions 
(RBF), Polynomial Response Surface (PRS), Support Vector 
Regression (SVR), Multivariate Adaptive Regression Spline 
(MARS) and their combinations.  A brief overview of these 
techniques is presented below.  

A. Kriging 
Kriging technique was named after the South African 

mining engineer D. G. Krige [2] and was first used in 
computer experiments by Sacks et al [3]. Kriging model 
estimates the value of an original complex model using the 
combination of a known function and the departures captured 
by a stochastic process from a Bayesian perspective [4]. A 
conventional Kriging model interpolates the sampling points, 
which is an important characteristic for design and analysis of 
computer experiments. Kriging is also a flexible technique 
since different instances can be generated by choosing 
different pairs of regression and correlation functions [5]. In 
addition, Kriging is suitable for both high order functions and 
low dimensional problems, and it can approximate the original 
model smoothly with relatively fewer sampling points. 

B. Radial Basis Functions 
RBF technique was firstly introduced by Hardy R. L. to fit 

irregular topographic contours of geographical data [6]. A 
RBF model is expressed as the linear sum of a series of basis 
functions about the sampling points [7].  RBF performs well 
for high dimensional and high-order nonlinear problems.  The 
accuracy of RBF falls between PRS and Kriging, while RBF 
model is easier to build than Kriging model [8]. Radial Basis 
Neural Network (RBNN) is a combination of RBS and the 
artificial neural network (ANN), which uses radial basis 
functions as the transfer functions of ANN [9]. Compared 
with the standard feed-forward or back-propagation networks, 
RBNN may require more neurons, but it can be generated in a 
fraction of the time that takes to train standard networks.  

C. Polynomial Response Surface 
PRS approximation is another well established meta- 

modeling technique, which is first developed and described by 
Box and Wilson [10]. In PRS modeling, a second-order 
polynomial function is commonly used to approximate the 
original model [11]. The coefficients of the polynomial 
functions can be obtained using least square approximation 
and the fitting is unbiased with minimum variance. PRS can 
uniquely identify the significance of different design factors 
directly from the coefficients in the normalized regression 
model [12]. 

D.  Support Vector Regression 
SVR, a special implementation of Support Vector Machines 

[13], was introduced as an alternative technique for 

approximating complex engineering analyses [14, 15]. 
Searching for the optimal hyperplane of the training data, the 
aim of SVR is to find a fitting function that has minimum 
deviation from training data points.  Mathematically, SVR is 
expressed as a constant and the sum of a series of kernel 
functions about the training points. The parameters are 
obtained from a fitting process during which SVR minimizes 
an upper bound on the expected risk using alternative loss 
functions. According to S. M. Clarke et al [16], SVR had the 
best overall performance for the test bed of 26 engineering 
analysis functions in comparison to other approximating 
techniques. SVR also gives a robust approximation, providing 
a good compromise between prediction accuracy and 
robustness. 

E. Multivariate Adaptive Regression Spline 
MARS is a non-parametric regression technique that 

constructs the relationship from inputs to outputs variables 
through spline curve [17]. The input space is divided into 
regions containing their own regression equation which 
contains knots vectors which need to be optimized. MARS is 
suitable for problems with high input dimensions and has been 
applied in stochastic dynamic programming [18] and global 
optimization [19]. S. Richardson also implemented a 
multivariate adaptive regression B-spline algorithm 
(BMARS) for solving a class of nonlinear optimal feedback 
control problems [20].  

F. Analysis 
In introducing a RS approximation, needed original model 

evaluation, as well as modeling accuracy, model update 
computation time, needed memory space for holding the 
model, and speed of model evaluation are major concerns.  
The number of the evaluations for the original model should 
be limited since these evaluations may be computation 
expensive. The approximation processes is carried out through 
refining iterations, and time spent in each iteration should be 
minimized.  

Kriging technique works well for high order functions and 
low dimensional problems, but is less efficient for low order 
functions and high dimensional problems [21]. As an 
interpolation method, it is highly sensitive to the noisy data. In 
addition, when the number of sampling points goes beyond 
two thousands, the computation time needed to construct a 
Kriging model becomes unacceptable. Tests of the DACE 
code [22] were carried out. Improperly selected initial values 
of the correlation function parameters often led to poor results. 
Proper matching of the regression and correlation functions is 
another challenge.  

RBF technique performs well for high dimension and high-
order nonlinear problems. Meanwhile the technique has 
trouble in dealing with linear problems, and is less efficient 
for low dimensional problems due to its slow convergence 
[23]. Like Kriging, when the number of sampling points is 
large, the computation time needed in constructing a RBF 
model becomes too long and unacceptable. For RBNN, its 
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drawback for some applications is the need of a large number 
of training points [1]. 

PRS technique is particularly suitable for lower order 
functions and low-to-medium dimensional problems near a 
local area.  Some adaptive response surface methods have 
been proposed [24, 25], but these improved algorithms still 
encounter performance challenges for high order functions 
and highly nonlinear models over a large global domain. 

Due to the need of a search on the upper bound of expected 
risk, SVR technique appears to be less efficient due to the 
constructing and refining procedure of the fitting process.  

All these approximation techniques needs sampling points 
to construct metamodel. Classical design of experiments based 
sampling methods, such as central composite design, 
fractional/full factorial design or D-optimal design, have 
difficulty in meeting the tight accuracy requirement when the 
domain of the inputs variables is large. Space filling sampling, 
such as grid design, random sampling or Latin hypercube 
sampling, cannot adaptively allocate sampling data points 
according to the nonlinear characteristic of the original model. 
In the work, we do not attempt to construct one single 
response surface upon a global large domain. Under most 
occasions, the global domain is split into a number of smaller 
cells to support adaptive sampling. 

MARS algorithm uses decomposition to construct an 
interpolation response surface over the global domain.  When 
there are not enough sampling points, precision of the MARS 
model becomes less dissatisfactory. The algorithm includes 
calculations of lack-of-fit procedure for finding the optimal 
knots vector.  This computation expensive procedure leads to 
low modeling efficiency [17]. 

Armin Iske and Jeremy Levesley [26] studied a method for 
multilevel scattered data approximation by using compactly 
supported radial basis functions with adaptive domain 
decomposition. The numerical examples showed improvement 
on the accuracy of approximation over the well-established 
multilevel interpolation schemes. Other researchers studied 
the adaptive sampling and global approximation for RBF [27-
28]. For a large domain and high dimension problem requiring 
a large number of sampling points, the RBF refining process 
remains is inevitably less efficient.  

D. Busby et al [29] proposed a hierarchical nonlinear 
approximation method for experimental design and statistical 
data fitting. The iterative method combines suitable evaluation 
points using Kriging for statistical data analysis at each 
refinement step.  Other recent improvements on Kriging 
technique can be found in [30-31]. Like domain 
decomposition with RBF, the computation demanding refining 
process appears to be less efficient, the metamodel occupies 
large memory space, and evaluation of given points is slow. 

For PRS, D. Shahsavani and A. Grimvall [32] introduced 
an adaptive design and interpolation technique for extracting 

highly nonlinear response surfaces from deterministic models. 
“A sequential design algorithm for cuboid domains is initiated 
by selecting an extended corner/centre point design for the 
entire domain, and then updated by decomposing this domain 
into disjoint cuboids and taking the corners and centre of these 
cuboids as new design points”. The numbers of corner and 
center points for a p-dimension cubic is  

pn 211 +=  
while the quadratic polynomial items of the p-dimension is 

2
2 21 pCpn ++=  

When p ≤ 3, n1 < n2, interpolation can be done upon the cubic 
cell by adding additional points.  But if p>3; n1>n2, it is 
impossible to interpolate the cell with a quadratic polynomial 
function, an issue in modeling multi-dimension problems.  

G. Proposed method and organization of this paper 
To overcome the drawbacks of the existing RS modeling 

methods for complex models over large variable domain, a 
new adaptive and regressive RS modeling method using 
quadratic functions and local area model improvement 
schemes is introduced in this work.  The method applies an 
iterative and Latin hypercube sampling based RS update 
process, divides the entire domain of design variables into 
multiple cells, identifies rougher cells with large modeling 
error, and further divides these cells along the roughest 
dimension direction.  A small number of additional sampling 
points from the original, expensive model are added over the 
small and isolated rough cells to improve the RS model locally 
until the model accuracy criteria are satisfied.  The method 
then combines local RS cells to regenerate the global RS 
model with satisfactory accuracy.  An effective RS cells 
sorting algorithm is also introduced to improve the efficiency 
of model evaluation.  Benchmark tests are presented and 
applications of the new method in design optimization and 
optimal control are discussed. 

II. MATHEMATICAL FOUNDATIONS OF THE METHOD 
For an original model with k outputs and p inputs: 

)(xy f= , 

where y: kℜ⊂Ω , x: pℜ⊂Ω ; and  f : pk ℜ→ℜ . 

The k outputs y are expressed by k function sets: 

y = [y1(x), y2(x), … , yk(x)] 

For each of the ith scalar output (1≤i≤k) yi, a response surface 
can be built using the quadratic response surface of the form: 

∑ ∑∑
= <≤=

++=
p

i ji
jiij

p

i
iii xxxy

1 11

2
0)(ˆ βββx       (1) 

whereβare coefficients determined using least squares 
regression.  

For the entire global domain of the design variables, it is 
infeasible to construct a simple polynomial quadratic response 
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surface. A recursive partitioning procedure is then introduced 
to divide/decompose the cells with poor modeling accuracy 
along the roughest dimension into two separated cells.  
Additional sampling points are added to the newly formed 
cells.  The recursive process continues until the accuracy of 
the metamodel meets desired criteria. 

A. The Poor Performing Cells 
In principle, the roughness of a cubic cell C can be evaluated 
according to the coefficients of the quadratic PRS and side 
dimensions of the cubic cell C [32]: 

⎥
⎦

⎤
⎢
⎣

⎡
+= ∑ ∑

= <

p

j kj
kjjkjjj lllCVCR

1

222 )(2)2()()(ˆ ββ  

where V(C) represents the volume of C, and lj is the length of 
the jth side of C. 

However, in order to take the sampling data into account and 
to be compatible with other techniques or high order 
polynomial functions, a sample point container-box method is 
introduced.  The worst performing cell is thus the one with the 
largest container box of the sampling points. As illustrated by 
the one dimension problem shown in Fig.1 (a), the area (2D 
volume) of the container box can be calculated by the distance 
a times height h, where a is the length of the vector a which is 
measured from the left-down corner point to the right-up point 
of the cell; and h is the height of two line which are parallel to 
vector a. 

Sampling points 

Container Box 

ha 

 
(a)          (b) 

Fig.1 Roughness calculation of a cell 

For the multi-dimensional problem, it is difficult to 
calculate the volume of the container box. Its value is then 
approximated using a simple expression as shown in Fig. 1 
(b), i.e. 

)()( ChVCR =                    (2) 
where )(min)(max

11 iNiiNi
yyh

≤≤≤≤
−= , and yi is the response value of 

ith point of the N sampling points. 

B. The splitting dimension 
Similarly, the roughest dimension is determined following the 
splitting direction criterion calculated using the coefficients of 
quadratic PRS [32],  

∑ ∑
<≤ >≥

++=
jk jkp

kjjkjkkjjjj llllljS
1

2222 )()()2()(ˆ βββ  

and the splitting dimension js is: 
)(ˆ(maxarg

1
jSj

pj
s

≤≤
=  

Using sampling data, the criterion can be simplified as 
)(max)(

1 iNi
hjS

j≤≤
=          (3) 

hi is the height of the ith sample point along jth dimension. As 
shown in Fig 2, hi can be calculated by 

'iii yyh −=  
yi is the response value of the ith sampling point of the cell, yi' 
is the interpolation of the two side points of the cell which 
have the same coordinates except the jth dimension, and can 
be evaluated by the PRS function. 

Then the splitting dimension js is 
)((maxarg

1
jSj

pj
s

≤≤
=                     (4) 
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Fig.2 approximation of the splitting dimension 

C. Re-composing the RS Set 
After all the cells are refined and the models become accurate 
enough, some adjacent cells are combined into one cell to 
reduce the number of cells while maintaining modeling 
accuracy.  As shown in Fig 3 (a), the original domain was 
divided into 5 cells during recursive partitioning.  These cells 
are recomposed into 3 cells later as shown in Fig 3 (b). 

  
(a)                                               (b) 

Fig.3 Cells recomposing 

Two cells can be combined or re-composed into one if the 
following two conditions are satisfied: 

1) Domain adjacent constraint: 

We assume that XL, XU are the left-down (with minimum 
values of all dimensions), and right-top (with maximum 
values of all dimensions) points of the cell container, 
respectively. If two combinable cells C1 and C2 should 
satisfies the following relations:  

∀  j ∈{1, 2, …, p} 

XL1(j) = XU2(j) or XL2(j) = XU1(j) 

XL1(i) = XL2(i) and XU1(i) = XU2(i)      (i ≠ j) 

2) Accuracy constraint 

hi 
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Assuming fnew is the regressive quadratic PRS function using 
all the N sampling points of the two cells; pti is the ith 
sampling points, then the root square mean error (RSME) of 
the new RS should be no larger than a given threshold 
RSME0: 

0)'(
1

2 RSMENyyRSME
N

i
ii ≤⎟

⎠

⎞
⎜
⎝

⎛
−= ∑

=

 

where yi is the response value of pti;  

)(' inewi ptfy =  

D.  Sorting the RS set 
The number of cells generated by the recursive RS scheme 

may be very large, ranging from hundreds to thousands, for a 
large variable domain and highly nonlinear model.  Evaluation 
the metamodel value at a given point x using the RS set 
should use the proper cell (XL, XU), i.e. 

XL ≤ x ≤ XU 

For RS set with a large number of cells, locating the cell 
also demands computation time.  A cell sorting binary search 
scheme has been introduced to speed up the process. 

In order to sort the cells, we can define the ‘≥’ operation, 

Definition 1:  For two cells C1, C2, we have C1 ≥ C2, when p1 
(the left-down corner point of the cell C1) is greater and equal 
than p2 (that of C2), p1 ≥ p2, if the coordinate p1(j) > p2(j), 
where 1 ≤ j ≤ p. 

III. GENERATION OF RS SET THROUGH A STEP-BY-STEP 
PROCESS  

Generation of the RS set, RS0, is initiated with the entire 
domain Ω – a RS model covers the whole domain hypercube. 
Sampling points include corners and center testing points.  

Definition 2: A cell is a basic domain that includes a 
hypercube and a response surface. 

The data structure of RS has the following fields: 

Cube:  scope of the RS defined by XL, XU; 
B:     coefficients of RS; 
R:     residue of regression; 
FC:    number of fittings executed  
SD:   sampling data (sample points and response values) 

used to form the RS function through regression 
TD:   testing data not used in regression  

A.  Algorithm steps 
The step-by-step refining procedure consists of: 

Step1: construct an initial RS0 over Ω, and carry out the first 
recursive partitioning for RS0, and generate initial RS set 
RSS = RSS0; 

Step2: exit if stopping criterion is satisfied; else go to next 
step; 

Step3: identify the worst cells CS from the RSS using Eq. (2); 
and divided it by the RS’s fitting counts powers of p; 

FCRSp
CRCR .

)()( =            (5) 

where C is one of CS, and RS is one element of RSS. 
Step4: for each cell C in CS, apply LHC sampling on C with p 

points, run the original model to obtain response points, 
<vals, pts>, and add the pairs to TPS and TV of the RS; 
check whether the sampling points and their response 
values satisfy the RS function of C.  If satisfied, increase 
the fitting counts of RS upon C; otherwise add the RS to 
the poor cells RCS; 

Step5: for each cell in RCS, carry out recursive partitioning, 
obtaining subsets SS of RCS; 

Step6: update the RSS with SS. 

B. Recursive domain partitioning 
If the RS is unable to meet the accuracy criterion, recursive 
domain partitioning is needed. The partitioning function has 
the following steps: 

function BinarySplit 
Input: rs – response surface 
Output: RSset – response surface set 
Step1: split domainΩ of rs into two equal ones:Ω1 andΩ2 

along the roughest dimension according to Eqs. (3) and 
(4); 

Step2: distribute the sampling data and testing data of rs into 
the two sun-domains according to their coordinates; 

Step3: get the corners and centers of the two sub-domains, 
calculates their response values through running the 
original model if some of them are not calculated;  

Step4: call regression procedure with key data (corners and 
center), sampling and testing data to generate two RSs of 
the two sub-domains respectively; update the sampling 
data with all the above data and reset the testing data to 
null; 

Step5: for each one RS of the two RSs, if the residue error is 
not accurate, call BinarySplit function recursively; 

Step6: record all the RSs into RSset. 

C.  Regression or interpolation 
The center and the corners are key points of a domain, which 
should be used for RS regression.  These critical data points 
heavily influence the accuracy of the RS model.  

For a domain with p dimensions, if p ≤ 3 and there are not 
enough other sampling points over the domain, the regression 
procedure carries out interpolation automatically.  For p > 3 or 
for cases with enough sampling points over the domain for 
regression, the RS will be regressed. 

D.  Stopping criterion  
Four stop criteria are used in the refining procedure of RS set: 

i)  Number of iterations. 
ii)  Number of runs of the original model. 
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iii)  Dimensions of all the RS cells; when these values 
reach a small threshold, all cells are small enough and 
the iteration terminates. 

iv)  Fitting count of all the RS in RS set. When it becomes 
greater than a given integer M, the iteration stops. The 
RSs in the RS set fitted well with the sampling data and 
passed M random sampling tests. All these RSs are 
considered accurate enough. 

E.  About the probable worst cells 
In Step 3, the possible worst cells are selected from the RS set. 
The roughness of a cell is evaluated using Eq. (2).  However, 
roughness is not a unique criterion, if the RS has passed FC 
tests, this RS may be accurate.  Eq. (5) is thus used for 
roughness evaluation based upon results from many numerical 
experiments. Cells identified by Eq. (5), will go through 
additional sampling tests, and only when the candidates fail 
the sampling test, they are considered poor cell. 

F.  Testing the RS 
Before splitting the potential poor cells, a sampling test is 
carried out to verify the conditions of these cells.  The 
commonly-used random sampling technique, Latin hyper-
cubic sampling, is used.  Too many or too few sampling 
points are both undesirable.  The number of sampling points is 
set to be p, the dimensions of the domain. 

Four criteria are used to control the sampling test on the 
candidate cells: absolute error, relative error, cell dimension, 
and RSME of the sampling data. 

G.  Updating the RS set 
After the recursive partitioning on a cell, a new subset of RSs 
is generated.  The updating process substitutes the cell using 
the new subset. 

During each step of the binary splitting process one cell is 
divided into two cells. After each splitting, a subset including 
two RSs will be generated and the original one will be 
substituted with the subset of two RSs.  

IV. COMBINATION OF RS SET 
The number of resulting RS set produced during domain 
approximation determines the needed memory and 
computation cost of the metamodel.  After additional sampling 
data points have been added to the rough set and the accuracy 
of the modeling has been improved, some adjacent cells can 
be combined to reduce needed memory and computation 
while keeping the modeling accuracy.  A sorting scheme is 
introduced to speed up the cell combination process: 

Step1:  scan all RS in the current RS set RSS 
Step2: generate two testing points from the adjacent cells and 

introduce a small displace δ along the positive direction 
of all dimensions, as shown in Fig 4. 

δ 
δ

 
Fig.4 testing points to obtain the adjacent cells 

Step3: get the two cells most likely contains the two testing 
points. 

Step4: remove the cell(s) which has no common edge with the 
RS, RSsetA; 

Step5: for each cell rsi in RSsetA, if rsi and RSk can be 
combined according to 2-C, regress a new RS using the 
sampling and testing data upon the two cells; reset the 
sampling data of the combined cell and replace the two 
original cells with the new one; update the RSS. 

Step6: if the combination process is activated, go to step1; 
otherwise, exit. 

In the step3, we can determine whether a given point is in the 
RS cell according to the coordinate comparison. But because 
there may be many RS in the RS set, so we adopt a so-called 
quasi binary search to position the right RS quickly in the next 
part. 

V.  METAMODEL EVALUATION USING RS SET 
Quick calculation of the model value is the main objective of 
the approximation using the RS set. It is straightforward to 
evaluate the model value of a given point for a quadratic PRS 
using the Eq. (1).  However, when the variable domain is very 
large and the response surface is of high dimension, the 
number of the RSs in the resulting RS set may become very 
large, thus finding the corresponding RS model for a given 
point may be time-consuming, following the regular, 
sequential search process.  

The following quasi-binary search scheme is used to quickly 
identify the corresponding RS for a given point:  

Algorithm 1 (Binary-Positioning) 
midlen ← length(RSset) / 2; 
start ← 1 + midlen; 
while loop 
    RSMid ← RSset[start + midlen]; 
 if pt is in RSMid  
  RSMid is found and return; 

elseif pt is after RSMid 
    start ← start + midlen; 
    midlen ← midlen / 2; 
else  

midlen ← midlen / 2; 
end if 

end while loop. 
end algorithm 
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During this procedure, A pt after a cell C means that the pt 
follows the left-corner of C, or the point with least value of all 
dimensions in the cell, similar to Definition 2.  The algorithm 
is a typical binary search procedure. However, the right RS 
may not be found.  As shown in the example of Fig. 5, point 
pt is after the RS cell 8, but the real RS set that we want is RS 
cell 5, before 8. 

1 

2 

3 4 

5 

6 
7 

8 

9 

10 

pt 

 
Fig.5 position the cell which contains a given point 

The main reason of this problem is due to the fact that if a 
point pt is before a RS cell 10, the cell A containing pt is 
absolutely before 10; but if pt is after the cell B, A is not 
absolutely after B. The “absolute after” function from 
definition 2 is defined as: 

Definition 3: for a point pt and a cell C, 
pt >= C 

when pt(j) >= C.XL(j), where 1 ≤ j ≤ p. 
So we modify the binary search algorithm as following: 
Algorithm 2 (Quasi_Binary_Positioning) 
midlen ← length(RSset) / 2; 
start ← 1 + midlen; 
nFrom ← 1; 
while loop 

RSMid ← RSset[start + midlen]; 
if (start+midlen>len) or (midlen<=1) 

no results found and break; 
 if pt is in RSMid  
     RSMid is found and return; 

elseif pt is before RSMid 
    nTo ← start + midlen; 
    midlen ← midlen / 2; 
else  
   if pt is absolutely after RSMid 
     nFrom ← start + midlen; 
   end if absolutely after 
   start ← start + midlen; 
   midlen ← midlen / 2; 
end if 

end of while loop. 
if not found yet 

Search from nFrom to nTo cells one-by-one; 
end if 
end algorithm 

From this algorithm, sometimes the result cell can be found 
during the binary search process. Even if no results are found 
during the binary search, the scope of search can be reduced. 

The next one-by-one search can be carried out from nFrom to 
nTo after the binary search. 

VI. CASE STUDIES 

A.  Approximation for 1-D data model 
As shown in Fig. 6 shows, the Urban Dynamometer 

Driving Schedule (UDDS) vehicle driving cycle, mandated by 
the US Environmental Protection Agency (EPA) for vehicle 
dynamometer test is represented as a statistically obtained 1-D 
velocity-time curve.  The UDDS driving cycle represents 
typical city driving conditions for light duty vehicles.  
Normally, the driving cycles are recorded as a look-up table. 
There are 400 data points to describe the driving cycle, as 
shown in Fig 6.   

UDDS) vehicle driving cycle is used as input to vehicle 
performance modeling and simulation.  Now, we use it to 
demonstrate use of the adaptive response surface domain 
decomposition to approximate the given drive cycle model-
data.  During the initial domain decomposition, the 
approximate RS set contains 39 cells, as shown in Fig 6 (b); 
and after executing the re-composing algorithm, with RSME = 
0.1, the result RS set (29 cells) is shown in Fig 6 (c).  Now, 
the number of the data points which can approximately record 
the original driving cycle is 29×2+1=59, which is much less 
than the original number 400. 
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(a) 1-D driving cycle – UDDS curve 
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(b) Approximate result after decomposing 
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 (c) Approximate result after re-uniting 

Fig.6 approximation for 1-D problem 

Note that the result may be different with different runs 
because of the LHC random sampling. 

B. Approximation for 2-D function 
Two commonly used benchmark mathematical (2-D) 
functions for testing global modeling/optimization algorithms 
are also used to verify the proposed algorithm. 

1) Schaffer's Function 
The approximation result of the Schaffer's function is 
shown in Fig. 7 (41 cells with RSME=0.0132) 
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Fig.7 Approximation for Schaffer's Function 

 
2) Rastrigin Function 
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The approximation result of the Rastrigin function is 
shown in Fig. 8. (470 cells with RSME=0.0743) 
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Fig.8 The approximation for the Rastrigin function 

 
3) Peaks Function  x = [-3 -3; 3 3] 
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The approximation result of the Peaks function is shown in 
Fig. 9. (139 cells with RSME=0.062) 
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Fig.9 The approximation for the Peaks function 

 

C.  Approximation for multi-dimension function 
Two other commonly benchmark mathematical functions for 
testing multi dimensional, global modeling/optimization 
algorithms are also used to verify the proposed algorithm. 
 
1) Butterfly-like function in [29] 

zyx
yx

yx
zyxf 01.03

10)sin(
7),,( 2/1

22

722

+−+
+

++
=

−
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The approximation result for this three-dimension function 
is: Cells = 608, RSME=0.202.  If we set the value of Z to 0, 
then the result can be shown in Fig. 10. (Cells=201, 
RSME=0.236) 

 
2) Alpine function (p=5) 
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The approximation result for this five-dimensional function 
is: Cells = 59049, RSME=0.097. 

When 
2

...43
π

==== pxxx , the result can be shown in 

Fig. 11. (Cells = 237, RSME = 0.0551) 
 

VII. APPLICATIONS: APPROXIMATION FOR A POWERTRAIN 
MODEL 

During the development of new hybrid electric vehicles, 
high fidelity performance model of the hybrid powertrain is 
the foundation for both powertrain optimization in vehicle 
design and the optimal control during vehicle operation, to 
achieve best fuel economy and minimum emission.  The 
multi-physics model is normally built using MATLAB 
Simulink tools or special vehicle powertrain simulation 
software built on top of multi-physics modeling and 
simulation package.  In all cases, the modeling and simulation 
are implicit, complex, computationally intensive and high 
nonlinear.  To carry out optimal control in real time, the 
complex hybrid powertrain model needs to be evaluated 
quickly. For vehicle powertrain design optimization, a large 
number of evaluations of the hybrid powertrain model are 
required in searching for the design optimum.   

A quick, efficient and accurate metamodel of the original 
complex hybrid powertrain model can facilitate the design 
optimization and optimal control tasks. At present, 
Determinative Dynamic Program (DDP) is commonly used. 
The powertrain performance simulation model is called 
repeatedly to calculate the vehicle performance parameters 
based upon given vehicle input variables (control variables 
and state variables) for each small given time step, for 
instance, one second.  To cover a driving cycle or continuous 
operation, the approach is inevitably calculation intensive.  In 
this work, the newly introduced metamodeling method is 
introduced to address the problem. The method is 
demonstrated here using the Toyota Prius hybrid powertrain 
model example.  The MATLAB Simulink Prius powertrain 
model that consists of models of one internal combustion 
engine (ICE) and two motors/generators (M/G) and the power 
split hybrid architecture is shown in Fig.12. 
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Fig.12 Powertrain control model of Prius 

There are four system outputs in the model: fuel –fuel 
consumed, Vnext –vehicle speed of the next time step, WEnext –
engine speed of the next time step, SOCnext –state of charge of 
battery of the next time step. The system inputs include three 
control variables (cmd_engine - throttle of engine, command 
of the two motors: cmd_mc1 and cmd_mc2) and three state 
variables (V – current vehicle speed, WE – current engine 
speed, SOC –current SOC of the battery. 

For the four output variables, four corresponding response 
surface sets are generated respectively with respect to the 
same six inputs.  Using the stopping criterion with the 
maximum iterations N = 100, we have obtained four different 
RS sets of the outputs: fuel, Vnext, WEnext and SOCnext.  The 
number of formed modeling cells and the RSME are given in 
Table 1.  The metamodel supports the calculation of the 
vehicle performance parameters under different conditions 
quickly and accurately. 

TABLE I 
APPROXIMATION RESULT OF POWERTRAIN CONTROL MODEL OF PRIUS 

 fuel Vnext WEnext SOCnext 
Cells 1293 4323 3234 2344 

RSME 1E-6 0.10 10 0.001 
 

VIII.  DISCUSSION AND CONCLUSION 
Global approximation using metamodel for complex 

mathematical function or computer model over a large 
variable domain is often needed in sensibility analysis, 
computer simulation, optimal control, and global design 
optimization of complex, multi-physics systems. 

Today, design optimization of complex mechanical and 
vehicular systems requires repeated evaluation of the 
computationally extensive system performance model and 
simulation, demanding an effective metamodeling method to 
access the system performance quickly and accurately over 
the entire variable domain.  This need of high fidelity and 
highly efficient global approximation method led to this work 
on adaptive polynomial RSM. 
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The proposed approximate method is able to meet the five 
requirements: satisfactory modeling accuracy, low model 
update computation time, modest needed memory space for 
holding the model, and fast model evaluation.  To overcome 
the drawbacks of the existing RS modeling methods for 
complex models over large variable domain, the new adaptive 
and regressive RS modeling method uses new quadratic 
function and local area model improvement schemes.  The 
method applies an iterative and Latin hypercube sampling 
based RS update process, divides the entire domain of design 
variables into multiple cells, identifies rougher cells with large 
modeling error, and further divides these cells along the 
roughest dimension direction.  A small number of additional 
sampling points from the original, expensive model are added 
over the small and isolated rough cells to improve the RS 
model locally until the model accuracy criteria are satisfied.  
The method then combines local RS cells to regenerate the 
global RS model with satisfactory accuracy.  An effective RS 
cells sorting algorithm is also introduced to improve the 
efficiency of model evaluation.  

Benchmark tests are presented and use of the new 
metamodeling method to replace complex hybrid electrical 
vehicle powertrain performance model in vehicle design 
optimization and optimal control are discussed. 

The new method also tolerates few bizarre sampling data 
since regression instead of interpolation is used, and utilizes 
all available sampling data, obtained through expensive 
calculations, in forming the metamodel. The comprehensive 
stopping criteria make recursive partitioning and global 
modeling.  The decomposition method can also be used in 
other approximation techniques such as Kriging or RBF. 

At present there still exist some drawbacks in the method.  
The metamodel is discontinuous at the sub-region boundaries 
due to regression.  It cannot guarantee that all the points on 
the edge are continuous.  Another research might be done in 
developing a mechanism to handle multiple outputs using all 
sampling data to generate each RS set in parallel.  Further 
improvement of the technique may also include searching for 
the optimal split position along the roughest dimension instead 
of binary splitting; and heuristically sampling using the 
history sample data instead of LHD in random. 
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