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Abstract—Many-core GPUs provide high computing ability and 
substantial bandwidth; however, optimizing irregular applications 
like SpMV on GPUs becomes a difficult but meaningful task. In this 
paper, we propose a novel method to improve the performance of 
SpMV on GPUs. A new storage format called HYB-R is proposed to 
exploit GPU architecture more efficiently. The COO portion of the 
matrix is partitioned recursively into a ELL portion and a COO 
portion in the process of creating HYB-R format to ensure that there 
are as many non-zeros as possible in ELL format. The method of 
partitioning the matrix is an important problem for HYB-R kernel, so 
we also try to tune the parameters to partition the matrix for higher 
performance. Experimental results show that our method can get 
better performance than the fastest kernel (HYB) in NVIDIA’s 
SpMV library with as high as 17% speedup. 

Keywords—GPU, HYB-R, Many-core, Performance Tuning,  
SpMV 

I. INTRODUCTION 

ANY-CORE architectures like GPUs become more and 
more popular, because they can offer both high peak 

computational throughput and high peak bandwidth, which are 
much higher than those of conventional multi-core platforms 
based on general-purpose CPUs. That is good news for high 
performance computing community, but there is no free lunch. 
We can get high performance more easily with regular 
applications like dense matrix multiplication on GPUs, while it 
is more difficult to efficiently exploit the advantages of GPUs 
for irregular applications like Sparse Matrix Vector 
Multiplication (SpMV).  

SpMV can be described as follows. y←Ax+y, where A is a 
sparse matrix, x and y are both dense vectors. SpMV is a very 
important kernel used in scientific and engineering 
computations. Methods for efficiently computing SpMV are 
often critical to the performance of many applications.  

SpMV is memory bandwidth-bound and GPUs offer 
sufficiently high bandwidth, so it is an opportunity to improve 
the performance of SpMV on GPUs. But it is also a challenge 
to optimize SpMV on GPUs because SpMV is an irregular 
computation which requires many indirect and irregular 
memory accesses. Irregular memory accesses usually lead to 
low bandwidth efficiency on GPUs, so we need to develop new 
data formats to store sparse matrices on GPUs in order to make 
good use of GPUs’ high bandwidth.  

There are three contributions in this paper.  
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First, after analyzing the experimental data, we find that the 

best kernel in NVIDIA’s SpMV library, HYB[7], does not 
work perfectly, and there is still some space to improve the 
performance of HYB kernel because there are still a large 
number of non-zeros in the COO portion of HYB for some 
matrices. 

Second, we propose a new storage format called HYB-R. 
HYB partitions a matrix into two parts, ELL and COO, while 
HYB-R partitions a matrix recursively into ELL and COO. 
That means the COO portion of the matrix can be partitioned 
into ELL and COO recursively to form the HYB-R format only 
if there are enough non-zeros in the COO portion. So there are 
usually more non-zeros placed in ELL portion for HYB-R 
format than HYB format. Because the ELL kernel is roughly 
three times faster than COO kernel, we can conclude that the 
HYB-R kernel is faster than HYB kernel. Experimental results 
also show that HYB-R kernel can get better performance than 
HYB kernel, with as high as 17% improvement. 

Third, we find that the partition method used in HYB format 
is not the optimal, so we try to tune the parameters on how to 
partition the matrix. The parameter K is used to partition the 
matrix into ELL and COO. K is the number of columns in the 
ELL portion. Two methods are used to choose K in the 
experiment, but it is found that neither method is the optimal 
and further efforts are still needed to tune the parameter K. 

II. SPMV ON GPUS 

In this section, several storage formats for sparse matrices 
are introduced, CSR, COO, ELL and HYB. Optimization 
methods using these storage formats on GPUs are also 
represented. 

A. CSR 

The compressed sparse row (CSR) format is one of the most 
popular general-purpose sparse matrix representations. The 
CSR format stores a variable number of non-zeros per row 
without wasting memory space to store zeros. Fig. 1 (b) 
illustrates the CSR representation of an example matrix. CSR 
explicitly stores column indices and non-zero values in arrays 
col_idx and values. The row_ptr array stores the pointers to the 
first non-zero of each row.  

The scalar CSR kernel [7] assigns one thread to each matrix 
row. Each thread reads the elements of its row sequentially. 
The problems of the scalar CSR kernel are (1) Threads within a 
warp access the arrays, col_idx and values, with uncoalesced 
memory accesses. That leads to low memory bandwidth 
efficiency. (2) When the scalar kernel is applied to a matrix 
with a highly variable number of non-zeros per row, many 
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threads within a warp may stay idle while the threads with 
longer rows continue running. 

The vector kernel [7] assigns one warp to process each 
matrix row. The vector kernel accesses indices and data 
contiguously. Therefore, it overcomes the first deficiency of 
the scalar approach. The problems of the vector kernel are (1) 
It requires an additional intra-warp parallel reduction to sum 
per-thread results together. (2) Efficient execution of the vector 
kernel demands that matrix rows contain a number of 
non-zeros greater than the warp size, so the performance of the 
vector kernel is sensitive to matrix row size. 

B. COO 

The coordinate (COO) format is another general-purpose 
sparse matrix representation. As shown in Fig. 1(c), the three 
arrays values, row_idx and col_idx store the values, row indices 
and column indices, respectively, of the non-zeros.  

COO kernel [7] assigns one thread to each non-zero, and 
then performs a segmented reduction operation to sum values 
across threads. The primary advantage of the COO kernel is 
that its performance is insensitive to irregularity of the data 
structure. Therefore, COO method offers robust performance 
across a wide variety of sparse matrices. One drawback of 
COO format is that it needs more storage space to store 
row_idx array than CSR format. 

C. ELL 

The ELL format is well-suited to GPUs. As shown in Fig. 
1(d), an M-by-N sparse matrix with at most K non-zeros per 
row is stored as a denser M-by-K values array and a 
corresponding M-by-K col_idx array. All rows with less than K 
non-zeros are zero-padded to length K.  

The two ELL arrays are stored in column-major order and 
zero-padded for alignment. ELL is most efficient when the 
maximum number of non-zeros per row does not substantially 
differ from the average. Otherwise, more zeros are padded, the 
memory space and bandwidth are not used efficiently and the 
performance degrades. 

D. HYB 

Hybrid (HYB, Fig. 1(e)) format [7] overcomes the drawback 
of ELL. The purpose of HYB format is to store the typical 
number of non-zeros per row in the ELL format and the 
remaining entries of the rows with more than the typical 
number of non-zeros in the COO format.  

It is important to determine how to partition the original 
matrix. Based on empirical results, the fully-occupied ELL 
format is roughly three times faster than COO, except when the 
number of rows is approximately less than 4K. So it is 
profitable to add a K-th column to the ELL portion when the 
number of matrix rows with K (or more) non-zeros is at least 
max(4096, M/3), where M is the total number of matrix rows. 
The remaining non-zeros in the rows with more than K 
non-zeros are put into COO. 

HYB is the fastest kernel in NVIDIA’s SpMV library, but 
the HYB format needs to be improved further, which will be 
analyzed in section IV. 

 
Fig. 1 Storage formats for an example matrix. 

III.  RELATED WORK 

There are a lot of researches on optimizing SpMV because 
of its importance. Many optimizing methods on various 
platforms have been proposed.  

Eun-Jin Im [1] proposed two techniques, register blocking 
and cache blocking, to reuse the data in registers and cache 
respectively and reduce the traffic between on-chip and 
off-chip memory. A performance model was created to choose 
the block size in the register blocking method. A variation of 
basic SpMV in which a sparse matrix is multiplied by a set of 
dense vectors is also considered. Vuduc [2] proposed an 
improved heuristic for the tuning parameter of register 
blocking optimization, developed performance bounds for a 
specific matrix on a specific architecture and auto-tuned 
performance on single-core CPUs.  

Williams [3] presented a performance model called Roofline 
Model to guide the performance auto-tuning for SpMV on 
multi-core platforms. Williams et al. [4] tested SpMV kernels 
with many kinds of optimizing methods on five 
multi-core/many-core platforms. 

The research on GPU-based SpMV started in 2003[5]. 
Sengupta, et al. developed more generic approaches using 
parallel prefix/scan primitives [6], though this implementation 
did not outperform CPU. Bell and Garland [7] proposed 
parallel algorithms for several storage formats on GPU 
platform, including CSR, COO, ELL, HYB, DIA and PKT. 
HYB is the most closely related work to our research, in which 
the matrix is empirically partitioned into two portions, ELL and 
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COO. Baskaran and Bordawekar [8] optimized SpMV with 
four techniques on two GPU platforms. Ali Cevahir et al. [9] 
optimized SpMV with the jagged diagonal format (JAD) on 
GPUs. JAD is a more general format than DIA and ELL, but 
JAD can still guarantee coalesced memory access. But JAD 
kernel demands that the matrix should be preprocessed. 
ELLPACK-R[10] and Sliced ELLPACK[11] are two variants 
of ELL, which were proposed to save the storage space and 
reduce useless operations on zeros. Choi et al. [12] proposed 
BELLPACK format and used the register blocking method on 
GPUs. A model-driven auto-tuning framework was also 
proposed. Ping Guo, et al. [13] tuned CUDA parameters like 
BLOCK_SIZE, NUM_THREADS and WARP_SIZE for 
SpMV on GPUs to achieve higher performance. Xintian Yang, 
et al. [17] tried to use cache blocking method to optimize 
SpMV on GPU. 

There are also some researches on new storage formats for 
sparse formats in recent years [14, 15, 16, 19]. 

IV. F

A. Observations:Problems of HYB Format 

HYB format, which was introduced in section II, may not 
fully exploit the characteristics of some matrices. Two 
observations below show the problems of HYB format. 

TABLE I 
NON-ZEROS RATIO IN HYB FORMAT (%) 

Matrices COO ELL 
1 0.3 99.7 
2 0.0 100.0 
3 17.2 82.8 
4 18.9 81.1 
5 0.0 100.0 
6 4.0 96.0 
7 0.6 99.4 
8 0.0 100.0 
9 99.1 0.9 
10 18.7 81.3 
11 21.8 78.2 
12 6.9 93.1 
13 35.8 64.2 

 
Observation 1: A large number of non-zeros may be left in 

the COO portion of the HYB format for some matrices. Table I 
shows that non-zeros left in the COO portion account for more 
than 17% of the whole matrix for 6 out of the 13 matrices when 
the partition method in HYB format is used. As a result, we can 
conclude that the performance of the COO portion can be 
improved further if we continue to partition the COO portion 
into two parts, ELL and COO. 

Observation 2: The partition method used in HYB may not 
be the best choice. As mentioned in section II D, the number 
of columns in the ELL portion is K, which is determined 
empirically. But there are some other choices for K, such as 
average non-zeros per row. 

B. HYB-R Format and HYB-R Kernel 

In this section, we represent a new storage format for sparse 
matrices, recursive hybrid (HYB-R) format. HYB-R format is 
proposed based on observation 1 in section IV A to put as 
many non-zeros as possible in the ELL portion. HYB-R kernel 

aims to fully exploit the advantage of ELL kernel on GPUs. 
Experimental results show that HYB-R kernel can improve the 
performance of HYB kernel further. HYB-R format and 
HYB-R kernel are represented below separately. 

1. HYB-R Format 

There are one COO portion and one ELL portion in HYB 
format, while there are one COO portion and more than one 
ELL portions in HYB-R format (Fig. 3 (a)). So the number of 
non-zeros in ELL format is usually larger for HYB-R format 
than HYB format.  

The process of creating HYB-R format is described in Fig. 
2(b). The matrix is first partitioned into two parts, ELL portion 
and COO portion. Then the COO portion is partitioned 
recursively into ELL portion and COO portion until there are 
few non-zeros left in COO portion or the number of rows left is 
less than 4096.  

 
a) Reorder the matrix 

 
 

b) The process of creating HYB-R format. 

Fig. 2 Rorder the matrix and create HYB-R format 

After several partitions, there are usually no non-zeros left 
for many rows which should not be stored in the next ELL 
portion to save the memory space. As a result, the matrix rows 
are reordered in decreasing order of length before the process 
of creating the HYB-R format if the matrix will be partitioned 
at least twice. For example, only Row 11, 8 and 3 are stored in 
the second ELL portion after reordering in Fig. 2 (a), but all the 
rows should be stored in the second ELL portion if the matrix 
rows are not reordered previously so that each matrix row 
corresponds with the right element of vector y. The reorder 
information of the matrix rows is recorded in a permutation 
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array. After the HYB-R kernel finishes, vector y is reordered 
according to the permutation array.  

2. HYB-R Kernel 
The HYB-R kernel is divided into several ELL kernels and 

one COO kernel, which are launched one by one. Fig. 3 (a) 
shows the pseudo-code for HYB-R data structure, and Fig. 3 
(b) shows the execution process of HYB-R kernel. The matrix 
in HYB-R format and the vectors are first transferred to the 
global memory, then the kernels are started one by one, and at 
last the vector y is copied from the global memory to the host 
memory. The number of threads in the ELL kernels becomes 
smaller gradually because the number of matrix rows left 
becomes smaller.  

 
struct hyb-r_matrix{  
 ell_matrix   ell1; 
 ell_matrix   ell2; 

… 
 coo_matrix  coo; 
} ; 

 
(a) HYB-R data structure 

 
ELL kernel1 
ELL kernel2 

… 
COO kernel 

 
(b) HYB-R kernel 
 

   Fig. 3 HYB-R data structure and HYB-R kernel  

C. Parameter Tuning 

First, we should decide when to stop the partition process. In 
other words, when the number of non-zeros in COO portion is 
less than X% of the number of non-zeros in the whole matrix, 
the process of partitioning the matrix should be stopped. In the 
implementation, the partition process is stopped when X=0.5 or 
the number of rows left is less than 4096, but X can be 
carefully tuned to get better performance. 

Second, as mentioned in observation 2 in section IV A, we 
should decide how to choose the parameter K, which is used to 
partition the matrix into ELL portion and COO portion. 
Besides the method mentioned in Section II D (Method 1), 
there are two other methods to determine the value of K as 
follows.  

1. K equals average non-zeros per row (Method 2). This is a 
simple method but it can be effective when the numbers of 
non-zeros per row do not highly vary across the matrix. 

2. If the non-zeros account for more than 1/3 storage space of 
ELL portion after the column is added to the ELL portion, 
the column should be added (Method 3). Method 3 
characterizes the non-zeros ratio in the ELL portion more 
exactly than Method 1. 

V. EXPERIMENTS SETUP 

A. Introduction to NVIDIA CUDA 

A NVIDIA GPU usually consists of several streaming 
multiprocessors, and each streaming multiprocessors consists 

of eight streaming processors. There is a private local memory 
in the form of registers for each thread and a low-latency 
on-chip memory called the shared memory for a group of 
threads. The main memory of a GPU is a high-bandwidth 
DRAM shared by all threads. There are also two types of 
read-only memory called constant memory and texture 
memory both with on-chip cache. 

NVIDIA’s CUDA is a programming model designed for 
NVIDIA GPUs. A CUDA program consists of a host program 
running on the CPU, and a kernel program running on the 
GPU. The host program transfers the data from CPU to GPU, 
the kernel program processes that data, and then the host 
program transfers the results from GPU to CPU. The kernel 
program is partitioned into a grid of thread blocks, each 
including a group of threads. A warp is a group of 32 threads, 
and a thread block may include several warps. The execution of 
the threads follows a single instruction multiple threads (SIMT) 
model. Threads within a block share the shared memory and 
can synchronize via barriers. But there is no such 
synchronization mechanism for threads in different thread 
blocks. 

There are many techniques to improve performance on 
GPUs. We just list three of them and suggest the CUDA 
Programming Guide [18] for more information. (1) Maximize 
the bandwidth of global memory with aligned and coalesced 
accesses. (2) Reuse data in on-chip memories, such as registers, 
shared memory, texture cache and constant cache. (3) Reduce 
thread divergence. 

PLATFORMS USED IN THE EXPERIMENTS 
GPU GeForce 9800 GX2 GeForce GTX 295 

CUDA Cores 256 (128 per GPU) 480 ( 240 per GPU ) 

GPU clock 1500 MHz 1242 MHz 

Memory Clock 1000MHz 999 MHz 

Memory capacity 1GB (512MB per GPU) 1792 MB  ( 896MB  per 
GPU ) 

Memory Bandwidth 128 (64 per GPU) GB/sec 223.8 GB/sec 

Compute Capability 1.1 1.3 

B. Experiment Platform 

The experiments in this paper were run on the two systems 
listed in Table II. There are two GPUs on a single card for both 
GPU platforms, but only one GPU was used in the 
experiments.  

C. Sparse Matrices in the Experiments 

The sparse matrices used in the experiments are listed in 
Table III, which are also used in prior work [7]. Every matrix 
in the table is given a serial number so that we can use the 
number to represent the matrix. The column Rows and 
Columns shows the number of rows and columns for each 
matrix. The column NNZ represents the total number of 
non-zeros for each matrix. The column NNZ/R represents the 
number of non-zeros per row on average. 

 
 

TABLE II 



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:1, 2012

27

TABLE III 
MATRICES USED IN THE EXPERIMENTS 

No. Matrix Name Rows Columns NNZ NNZ/R 

1 FEM/Cantilever 62,451 62,451 4,007,383 64.1 

2 FEM/Spheres 83,334 83,334 6,010,480 72.1 

3 FEM/Accelerator 121,192 121,192 2,624,331 21.6 

4 Economics 206,500 206,500 1,273,389 6.1 

5 Epidemiology 525,825 525,825 2,100,225 3.9 

6 Protein 36,417 36,417 4,344,765 119.3 

7 Wind Tunnel 217,918 217,918 11,634,424 53.3 

8 QCD 49,152 49,152 1,916,928 39.0 

9 LP 4,284 1,092,610 11,279,748 2632.9 

10 FEM/Harbor 46,835 46,835 2,374,001 50.6 

11 Circuit 170,998 170,998 958,936 5.6 

12 FEM/Ship 140,874 140,874 7,813,404 55.4 

13 Webbase 1,000,005 1,000,005 3,105,536 3.1 

 

VI.  EXPERIMENTAL RESULTS AND ANALYSES 

The experiments were carried out with the matrices and the 
platforms which were introduced in section III.  

TABLE IV 
NON-ZEROS RATIO IN HYB-R FORMAT AFTER THE                                           

MATRIX IS PARTITIONED TWICE 
Matrices ELL1 ELL2 COO  

1 99.7 0.0 0.3 

2 100.0 0.0 0.0 

3 82.8 15.2 2.0 

4 81.1 9.7 9.2 

5 100.0 0.0 0.0 

6 96.0 3.2 0.8 

7 99.4 0.5 0.1 

8 100.0 0.0 0.0 

9 0.9 0.0 99.1 

10 81.3 16.2 2.5 

11 78.2 12.1 9.7 

12 93.1 5.9 1.0 

  13 64.2 8.2 27.6 

 
In the experiments, the matrices were only partitioned twice 

(Table IV) for simplicity. But we can conclude that 
performance will be better for some matrices if the matrices are 
partitioned three or more times, because there are still a lot of 
non-zeros left in COO portion for some matrices after two 
partitions, such as Matrix 4, 11 and 13,  all with more than 9% 
of the non-zeros in the COO portion. 

As shown in Table I and IV, non-zeros of COO portion are 
less than 0.5% of non-zeros in the whole matrix for Matrix 1, 2, 
5 and 8, which are partitioned only one time, so there are no 
non-zeros in ELL2 portion in Table IV for these matrices. 
There are only 4284 rows in Matrix 9, and less than 4096 rows 
are left after the first partition, so there is also no non-zero in its 
ELL2 portion. As a result, the HYB-R kernel is approximately 

as fast as the HYB kernel for the above five matrices (Fig. 4 
and 5). 

Fig. 4 Single precision performance without cache on        
GeForce 9800 GX2 

Fig. 5 Single precision performance with cache on                  
GeForce 9800 GX2. 

 
Vector x can be put in texture memory so that some 

elements of x will be reused in texture cache by different 
threads. Fig. 4 shows the single precision performance without 
cache(x was placed in global memory) on GeForce 9800 GX2, 
and Fig. 5 shows the single precision performance with cache(x 
was placed in texture memory) on GeForce 9800 GX2. Both 
HYB kernel and HYB-R kernel can achieve higher 
performance with cache than without cache. From Fig. 4 and 5, 
we can find that the HYB-R kernel is faster than the HYB 
kernel for all the eight matrices which are partitioned twice. If 
there are enough non-zeros and enough rows in COO portion, 
the performance can always be further improved by another 
partition to the COO portion.  

Table V shows the speedup of HYB-R kernel over HYB 
kernel on GeForce 9800 GX2. HYB-R kernel outperformed 
HYB kernel obviously both with cache and without cache. In 
HYB-R kernel with cache, 5 out of the 13 matrices achieved 
more than 13% speedup over the HYB kernel. For the best 
case, Matrix 12, performance was improved by 14.5% with 
cache. The average speedups of the eight matrices which are 
partitioned twice are 3.9% without cache and 10.4% with cache 
respectively. 

More performance improvement can be achieved with cache 
than without cache. The possible reason is that ELL2 kernel 
can reuse vector x in texture cache better than ELL1 kernel. 
ELL2 kernel only accesses a part of the vector x and ELL1 
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kernel may access the whole vector x, while the texture cache 
cannot hold the whole vector x. From this point of view, 
carefully tuning the parameter K may also lead to better reuse 
of vector x. 

TABLE V 
PERFORMANCE IMPROVEMENT OF HYB-R OVER HYB (%)                                        

ON GEFORCE 9800 GX2 
Matrices without cache with cache 

1 0 0 
2 0 0 
3 5.7 7.7 
4 6.0 13.8 
5 0 0 
6 1.2 4.0 
7 0.4 2.5 
8 0 0 
9 0 0 
10 0.9 14.4 
11 8.7 13.3 
12 2.0 13.0 
13 5.9 14.5 

Average Speedup 3.9 10.4 

 

Fig. 6 shows the bandwidth of HYB kernel and HYB-R 
kernel without cache on GeForce 9800 GX2, and Fig. 7 with 
cache. More bandwidth improvement of HYB-R over HYB can 
also be achieved with cache than without cache, just as the case 
of single precision performance. 

 
Fig. 6 Bandwidth without cache on GeForce 9800 GX2 

 

Fig. 7 Bandwidth with cache on GeForce 9800 GX2 

Fig. 8 Single precision performance without cache on                     
GeForce GTX 295 

 

Figure 9 Single precision performance with cache on                
GeForce GTX 295 

 
Fig. 8 shows the single precision performance without 

cache(x in global memory) on GeForce GTX 295. Fig. 9 shows 
the single precision performance with cache(x in texture 
memory) on GeForce GTX 295.  The HYB-R kernel is also as 
fast as the HYB kernel for Matrix 1,2,5,8 and 9 with the same 
reason as on GeForce 9800 GX2. The performance of the 
HYB-R kernel is higher than the HYB kernel without using 
texture cache for all the other eight matrices. It is surprising 
that the HYB-R kernel is slower than the HYB kernel for 
Matrix 3 and 7 with texture cache. The possible reason is that 
one more ELL kernel is launched in HYB-R kernel than in 
HYB kernel, and the cost of launching one more ELL kernel 
can lead to lower performance on GeForce GTX 295. 

TABLE VI 
PERFORMANCE IMPROVEMENT OF HYB-R OVER HYB (%)                                       

ON GEFORCE GTX 295 
Matrices without cache with cache 

1 0 0 
2 0 0 
3 0.5 -2.5 
4 5.5 3.7 
5 0 0 
6 0.9 3.1 
7 0.2 -2.6 
8 0 0 
9 0 0 
10 0.4 7.5 
11 13.5 4.5 
12 12.7 16.5 
13 6.0 9.2 

Average Speedup 5.0 4.9 
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Table VI shows the speedup of HYB-R kernel over HYB 
kernel on GeForce GTX 295. For the best case, Matrix 12, 
performance was improved by 16.5% with cache. The average 
speedup of the eight matrices is 5.0% without cache, and 4.9% 
with cache. Minus signs are used for Matrix 3 and 7 because of 
the lower performance. Combining Table V with Table VI, we 
can find that higher speedup was achieved without cache on 
GeForce GTX 295, 5.0% versus 3.9%, while higher speedup is 
achieved with cache on GeForce 9800 GX2, 10.4% versus 
4.9%.  

Fig. 10 shows the bandwidth of HYB kernel and HYB-R 
kernel without cache on GeForce GTX 295, and Fig. 11 with 
cache.  

 

Fig. 10 Bandwidth without cache on GeForce GTX 295 
 

Fig. 11 Bandwidth with cache on GeForce GTX 295 
 

Table VII shows the parameter tuning results of two 
methods and the best value of K which was found 
exhaustively. In this experiment, each matrix was partitioned 
only once, and only the GeForce 9800 GX2 platform was used. 
Method 1 is the method used in HYB format. Method 2 is the 
average non-zeros per row method. Because average non-zeros 
per row is not a decimal, the value of K in Method 2 includes a 
smaller integer and a greater integer. Each entry of the table 
includes the single precision performance with cache and the 
value of K (in parenthesis). The best performances of the three 
methods are shown in red. If the best performance was 
achieved by Method 1 or 2, the content of Best column would 
not be in red. 

 

TABLE VII 
PERFORMANCE OF TUNING K - GFLOPS(K) 

Matrices Method 1 Method 2 Best 
1 9.75   (75) 7.97(64) 8.15(65) 9.75   (75) 
2 11.97  (81) 8.59(72) 8.47(73) 11.97  (81) 
3 4.15   (23) 3.15(21) 3.99(22) 4.15   (23) 
4 3.91   (7) 3.77(6) 3.91(7) 4.31   (9) 
5 9.52   (4) 3.02(3) 9.51(4) 9.52   (4) 
6 8.60  (138) 8.00(119) 8.41(120) 8.80  (140) 
7 12.27  (54) 10.43(53) 12.27(54) 12.27  (54) 
8 12.08  (39) 12.08(39) 11.93(40) 12.08  (39) 
9 3.12   (23) 1.39(2632) 1.39(2633) 3.12   (23) 
10 6.24   (55) 5.92(50) 6.07(51) 6.24   (55) 
11 3.45   (5) 3.46(5) 3.76(6) 3.76   (6) 
12 9.93   (54) 9.92(55) 9.61(56) 9.93   (54) 
13 3.44   (2) 3.61(3) 3.69(4) 3.69   (4) 

 
It can be found that neither method is optimal, 9 matrices 

using Method 1 get best performances, 2 matrices using 
Method 2. Method 1 seems better than Method 2 for the 13 
matrices. But the value of K still needs to be better tuned to 
achieve higher performance, which is mainly determined by 
the characteristics of the specific matrix and the GPU 
architecture. Maybe the Method 3 represented in section IV C 
is a better choice, which is not included in the experiment.  

VII. CONCLUSIONS AND FUTURE WORK 

In this paper, a novel method is proposed to improve the 
performance of SpMV on GPUs. A new storage format called 
HYB-R is proposed to fully exploit GPU architecture. 
Experiments were carried out with thirteen matrices on two 
GPU platforms. Experimental results show that our method can 
get better performance than the fastest kernel (HYB) in 
NVIDIA’s SpMV library. We also tried to tune the parameters 
on how to partition the matrix into ELL and COO, and find that 
the partition method used in HYB format is better than the 
non-zeros per row method for the 9 out of13 matrices. 

However, the partition method used in HYB format is not 
perfect. So we will test other methods to partition the matrix 
into ELL and COO for the HYB-R format, considering the best 
reuse of vector x in texture cache. And we will also try cache 
blocking method with different storage formats to represent 
sub-blocks on GPUs in future. 

ACKNOWLEDGMENT 

This work is in part supported by the National Grand 
Fundamental Research 973 Program of China under Grant No. 
2011CB302500, State Key Program of National Natural 
Science Foundation of China under Grant No. 60736012, 
National Science Foundation for Distinguished Young Scholars 
of China under Grant No. 60925009, Foundation for Innovative 
Research Groups of the National Natural Science Foundation 
of China under Grant No. 60921002, Beijing Natural Science 
Foundation under Grant No.4092044, National Core-High 
Tech-basic Program under Grant No.2011ZX01028-001-002. 

REFERENCES 
[1] E.-J. Im, “Optimizing the performance of sparse matrix-vector 

multiplication” , PhD thesis, University of California, Berkeley, May 
2000. 

30

40

50

60

70

80

90

1 2 3 4 5 6 7 8 9 10111213

G
B
/s

Matrices

HYB

HYB-R

30

50

70

90

110

130

1 2 3 4 5 6 7 8 9 10111213

G
B
/s

Matrices

HYB_TEX

HYB-R_TEX



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:1, 2012

30

[2] R. Vuduc, “ Automatic Performance Tuning of Sparse Matrix Kernels”, 
PhD thesis, University of California, Berkeley, December 2003. 

[3] S. Williams , “Auto-tuning Performance on Multicore Computers”, PhD 
thesis, University of California, Berkeley, 2008. 

[4] Sam Williams, Richard Vuduc, Leonid Oliker, John Shalf, Katherine 
Yelick, and James Demmel, “Optimizing sparse matrix-vector multiply 
on emerging multicore platforms,” Journal of Parallel Computing, vol. 
35, no. 3, pp.178–194, March 2009. 

[5] Jeff Bolz, Ian Farmer, et al. , “Sparse matrix solvers on the GPU: 
Conjugate gradients and multigrid,” In Proc. Special Interest Group on 
Graphics Conf. (SIGGRAPH), San Diego, CA, USA, July 2003. 

[6] Shubhabrata Sengupta, Mark Harris, Yao Zhang, and John D. Owens, 
“Scan primitives for GPU computing,” In Proc. ACM Dense Protein 
QCD Cantilever Spheres Harbor Ship Wind Tunnel 
SIGGRAPH/EUROGRAPHICS Symp. Graphics Hardware, San Diego, 
CA, USA, 2007. 

[7] Nathan Bell and Michael Garland, “Efficient sparse matrix-vector 
multiplication on CUDA,” In Proc. ACM/IEEE Conf. Supercomputing 
(SC), Portland, OR, USA, November 2009. 

[8] Muthu Manikandan Baskaran and Rajesh Bordawekar, “Optimizing 
sparse matrix-vector multiplication on GPUs using compile-time and 
run-time strategies,” Technical Report RC24704 (W0812-047), IBM 
T.J.Watson Research Center, Yorktown Heights, NY, USA, December 
2008. 

[9] Ali Cevahir , Akira Nukada , Satoshi Matsuoka, “Fast Conjugate 
Gradients with Multiple GPUs,” Proceedings of the 9th International 
Conference on Computational Science: Part I, Baton Rouge, LA, May 
25-27, 2009. 

[10] F. Vazquez, E. M. Garzon, J.A.Martinez, and J.J.Fernandez, “The sparse 
matrix vector product on GPUs,” Technical report, University of 
Almeria, June 2009. 

[11] Monakov, A., A. Lokhmotov, and A. Avetisyan, “Automatically tuning 
sparse matrix-vector multiplication for GPU architectures,” High 
Performance Embedded Architectures and Compilers, Lecture Notes in 
Computer Science, Vol. 5952, pp.111–125, 2010. 

[12] J. W. Choi, A. Singh, and R. Vuduc, “Model-driven autotuning of sparse 
matrix-vector multiply on gpus,” In PPOPP, pp.115–126, 2010. 

[13] Ping Guo, Liqiang Wang, “Auto-Tuning CUDA Parameters for Sparse 
Matrix-Vector Multiplication on GPUs,” The 2010 International 
Conference on Computational and Information Sciences, Chengdu, 
China. 

[14] A. Buluç, J. T. Fineman, M. Frigo, J. R. Gilbert, and E. Leiserson, 
“Parallel sparse matrix-vector and matrixtranspose-vector multiplication 
using compressed sparse blocks,” In SPAA, pp. 233–244, 2009. 

[15] A. Buluç, et.al., “Reduced-Bandwidth Multithreaded Algorithms for 
Sparse Matrix-Vector Multiplication,” In IPDPS, 2011. 

[16] K. Kourtis, V. Karakasis, G. Goumas, and N. Koziris, “CSX: An 
Extended Compression Format for SpMV on Shared Memory 
Systems,”In PPoPP, pp. 247–256, San Antonio, Texas, USA, 2011. 

[17] Xintian Yang, Srinivasan Parthasarathy, P. Sadayappan, “Fast Sparse 
Matrix-Vector Multiplication on GPUs: Implications for Graph Mining,” 
In VLDB, 2011. 

[18] NVIDIA CUDA (Compute Unified Device Architecture): Programming 
Guide, Version 2.1, December 2008. 

[19] J. Willcock, A. Lumsdaine, “Accelerating sparse matrix computations 
via data compression,” In ICS, Cairns, Australia, June 2006. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 


