
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:1, 2012

23

Abstract—Many-core GPUs provide high computing ability and
substantial bandwidth; however, optimizing irregular applications
like SpMV on GPUs becomes a difficult but meaningful task. In this
paper, we propose a novel method to improve the performance of
SpMV on GPUs. A new storage format called HYB-R is proposed to
exploit GPU architecture more efficiently. The COO portion of the
matrix is partitioned recursively into a ELL portion and a COO
portion in the process of creating HYB-R format to ensure that there
are as many non-zeros as possible in ELL format. The method of
partitioning the matrix is an important problem for HYB-R kernel, so
we also try to tune the parameters to partition the matrix for higher
performance. Experimental results show that our method can get
better performance than the fastest kernel (HYB) in NVIDIA’s
SpMV library with as high as 17% speedup.

Keywords—GPU, HYB-R, Many-core, Performance Tuning,
SpMV

I. INTRODUCTION

ANY-CORE architectures like GPUs become more and
more popular, because they can offer both high peak

computational throughput and high peak bandwidth, which are
much higher than those of conventional multi-core platforms
based on general-purpose CPUs. That is good news for high
performance computing community, but there is no free lunch.
We can get high performance more easily with regular
applications like dense matrix multiplication on GPUs, while it
is more difficult to efficiently exploit the advantages of GPUs
for irregular applications like Sparse Matrix Vector
Multiplication (SpMV).

SpMV can be described as follows. y←Ax+y, where A is a
sparse matrix, x and y are both dense vectors. SpMV is a very
important kernel used in scientific and engineering
computations. Methods for efficiently computing SpMV are
often critical to the performance of many applications.

SpMV is memory bandwidth-bound and GPUs offer
sufficiently high bandwidth, so it is an opportunity to improve
the performance of SpMV on GPUs. But it is also a challenge
to optimize SpMV on GPUs because SpMV is an irregular
computation which requires many indirect and irregular
memory accesses. Irregular memory accesses usually lead to
low bandwidth efficiency on GPUs, so we need to develop new
data formats to store sparse matrices on GPUs in order to make
good use of GPUs’ high bandwidth.

There are three contributions in this paper.

Authors are with Key Lab of Computer System and Architecture, Institute of

Computing Technology, Chinese Academy of Sciences. (e-mail: { xuweizhi,
zyliu,fandr,jiaoshuai,yexiaochun,songfenglong,yanchenggang} @ict.ac.cn).

Weizhi Xu, Shuai Jiao and Chenggang Yan are also with Graduate
University of Chinese Academy of Sciences, Beijing, China.

First, after analyzing the experimental data, we find that the

best kernel in NVIDIA’s SpMV library, HYB[7], does not
work perfectly, and there is still some space to improve the
performance of HYB kernel because there are still a large
number of non-zeros in the COO portion of HYB for some
matrices.

Second, we propose a new storage format called HYB-R.
HYB partitions a matrix into two parts, ELL and COO, while
HYB-R partitions a matrix recursively into ELL and COO.
That means the COO portion of the matrix can be partitioned
into ELL and COO recursively to form the HYB-R format only
if there are enough non-zeros in the COO portion. So there are
usually more non-zeros placed in ELL portion for HYB-R
format than HYB format. Because the ELL kernel is roughly
three times faster than COO kernel, we can conclude that the
HYB-R kernel is faster than HYB kernel. Experimental results
also show that HYB-R kernel can get better performance than
HYB kernel, with as high as 17% improvement.

Third, we find that the partition method used in HYB format
is not the optimal, so we try to tune the parameters on how to
partition the matrix. The parameter K is used to partition the
matrix into ELL and COO. K is the number of columns in the
ELL portion. Two methods are used to choose K in the
experiment, but it is found that neither method is the optimal
and further efforts are still needed to tune the parameter K.

II. SPMV ON GPUS

In this section, several storage formats for sparse matrices
are introduced, CSR, COO, ELL and HYB. Optimization
methods using these storage formats on GPUs are also
represented.

A. CSR

The compressed sparse row (CSR) format is one of the most
popular general-purpose sparse matrix representations. The
CSR format stores a variable number of non-zeros per row
without wasting memory space to store zeros. Fig. 1 (b)
illustrates the CSR representation of an example matrix. CSR
explicitly stores column indices and non-zero values in arrays
col_idx and values. The row_ptr array stores the pointers to the
first non-zero of each row.

The scalar CSR kernel [7] assigns one thread to each matrix
row. Each thread reads the elements of its row sequentially.
The problems of the scalar CSR kernel are (1) Threads within a
warp access the arrays, col_idx and values, with uncoalesced
memory accesses. That leads to low memory bandwidth
efficiency. (2) When the scalar kernel is applied to a matrix
with a highly variable number of non-zeros per row, many

Accelerating Sparse Matrix Vector
Multiplication on Many-Core GPUs

Weizhi Xu, Zhiyong Liu, Dongrui Fan, Shuai Jiao, Xiaochun Ye, Fenglong Song, and Chenggang Yan

M

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:1, 2012

24

threads within a warp may stay idle while the threads with
longer rows continue running.

The vector kernel [7] assigns one warp to process each
matrix row. The vector kernel accesses indices and data
contiguously. Therefore, it overcomes the first deficiency of
the scalar approach. The problems of the vector kernel are (1)
It requires an additional intra-warp parallel reduction to sum
per-thread results together. (2) Efficient execution of the vector
kernel demands that matrix rows contain a number of
non-zeros greater than the warp size, so the performance of the
vector kernel is sensitive to matrix row size.

B. COO

The coordinate (COO) format is another general-purpose
sparse matrix representation. As shown in Fig. 1(c), the three
arrays values, row_idx and col_idx store the values, row indices
and column indices, respectively, of the non-zeros.

COO kernel [7] assigns one thread to each non-zero, and
then performs a segmented reduction operation to sum values
across threads. The primary advantage of the COO kernel is
that its performance is insensitive to irregularity of the data
structure. Therefore, COO method offers robust performance
across a wide variety of sparse matrices. One drawback of
COO format is that it needs more storage space to store
row_idx array than CSR format.

C. ELL

The ELL format is well-suited to GPUs. As shown in Fig.
1(d), an M-by-N sparse matrix with at most K non-zeros per
row is stored as a denser M-by-K values array and a
corresponding M-by-K col_idx array. All rows with less than K
non-zeros are zero-padded to length K.

The two ELL arrays are stored in column-major order and
zero-padded for alignment. ELL is most efficient when the
maximum number of non-zeros per row does not substantially
differ from the average. Otherwise, more zeros are padded, the
memory space and bandwidth are not used efficiently and the
performance degrades.

D. HYB

Hybrid (HYB, Fig. 1(e)) format [7] overcomes the drawback
of ELL. The purpose of HYB format is to store the typical
number of non-zeros per row in the ELL format and the
remaining entries of the rows with more than the typical
number of non-zeros in the COO format.

It is important to determine how to partition the original
matrix. Based on empirical results, the fully-occupied ELL
format is roughly three times faster than COO, except when the
number of rows is approximately less than 4K. So it is
profitable to add a K-th column to the ELL portion when the
number of matrix rows with K (or more) non-zeros is at least
max(4096, M/3), where M is the total number of matrix rows.
The remaining non-zeros in the rows with more than K
non-zeros are put into COO.

HYB is the fastest kernel in NVIDIA’s SpMV library, but
the HYB format needs to be improved further, which will be
analyzed in section IV.

Fig. 1 Storage formats for an example matrix.

III. RELATED WORK

There are a lot of researches on optimizing SpMV because
of its importance. Many optimizing methods on various
platforms have been proposed.

Eun-Jin Im [1] proposed two techniques, register blocking
and cache blocking, to reuse the data in registers and cache
respectively and reduce the traffic between on-chip and
off-chip memory. A performance model was created to choose
the block size in the register blocking method. A variation of
basic SpMV in which a sparse matrix is multiplied by a set of
dense vectors is also considered. Vuduc [2] proposed an
improved heuristic for the tuning parameter of register
blocking optimization, developed performance bounds for a
specific matrix on a specific architecture and auto-tuned
performance on single-core CPUs.

Williams [3] presented a performance model called Roofline
Model to guide the performance auto-tuning for SpMV on
multi-core platforms. Williams et al. [4] tested SpMV kernels
with many kinds of optimizing methods on five
multi-core/many-core platforms.

The research on GPU-based SpMV started in 2003[5].
Sengupta, et al. developed more generic approaches using
parallel prefix/scan primitives [6], though this implementation
did not outperform CPU. Bell and Garland [7] proposed
parallel algorithms for several storage formats on GPU
platform, including CSR, COO, ELL, HYB, DIA and PKT.
HYB is the most closely related work to our research, in which
the matrix is empirically partitioned into two portions, ELL and

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:1, 2012

25

COO. Baskaran and Bordawekar [8] optimized SpMV with
four techniques on two GPU platforms. Ali Cevahir et al. [9]
optimized SpMV with the jagged diagonal format (JAD) on
GPUs. JAD is a more general format than DIA and ELL, but
JAD can still guarantee coalesced memory access. But JAD
kernel demands that the matrix should be preprocessed.
ELLPACK-R[10] and Sliced ELLPACK[11] are two variants
of ELL, which were proposed to save the storage space and
reduce useless operations on zeros. Choi et al. [12] proposed
BELLPACK format and used the register blocking method on
GPUs. A model-driven auto-tuning framework was also
proposed. Ping Guo, et al. [13] tuned CUDA parameters like
BLOCK_SIZE, NUM_THREADS and WARP_SIZE for
SpMV on GPUs to achieve higher performance. Xintian Yang,
et al. [17] tried to use cache blocking method to optimize
SpMV on GPU.

There are also some researches on new storage formats for
sparse formats in recent years [14, 15, 16, 19].

IV. F

A. Observations:Problems of HYB Format

HYB format, which was introduced in section II, may not
fully exploit the characteristics of some matrices. Two
observations below show the problems of HYB format.

TABLE I
NON-ZEROS RATIO IN HYB FORMAT (%)

Matrices COO ELL
1 0.3 99.7
2 0.0 100.0
3 17.2 82.8
4 18.9 81.1
5 0.0 100.0
6 4.0 96.0
7 0.6 99.4
8 0.0 100.0
9 99.1 0.9
10 18.7 81.3
11 21.8 78.2
12 6.9 93.1
13 35.8 64.2

Observation 1: A large number of non-zeros may be left in

the COO portion of the HYB format for some matrices. Table I
shows that non-zeros left in the COO portion account for more
than 17% of the whole matrix for 6 out of the 13 matrices when
the partition method in HYB format is used. As a result, we can
conclude that the performance of the COO portion can be
improved further if we continue to partition the COO portion
into two parts, ELL and COO.

Observation 2: The partition method used in HYB may not
be the best choice. As mentioned in section II D, the number
of columns in the ELL portion is K, which is determined
empirically. But there are some other choices for K, such as
average non-zeros per row.

B. HYB-R Format and HYB-R Kernel

In this section, we represent a new storage format for sparse
matrices, recursive hybrid (HYB-R) format. HYB-R format is
proposed based on observation 1 in section IV A to put as
many non-zeros as possible in the ELL portion. HYB-R kernel

aims to fully exploit the advantage of ELL kernel on GPUs.
Experimental results show that HYB-R kernel can improve the
performance of HYB kernel further. HYB-R format and
HYB-R kernel are represented below separately.

1. HYB-R Format

There are one COO portion and one ELL portion in HYB
format, while there are one COO portion and more than one
ELL portions in HYB-R format (Fig. 3 (a)). So the number of
non-zeros in ELL format is usually larger for HYB-R format
than HYB format.

The process of creating HYB-R format is described in Fig.
2(b). The matrix is first partitioned into two parts, ELL portion
and COO portion. Then the COO portion is partitioned
recursively into ELL portion and COO portion until there are
few non-zeros left in COO portion or the number of rows left is
less than 4096.

a) Reorder the matrix

b) The process of creating HYB-R format.

Fig. 2 Rorder the matrix and create HYB-R format

After several partitions, there are usually no non-zeros left
for many rows which should not be stored in the next ELL
portion to save the memory space. As a result, the matrix rows
are reordered in decreasing order of length before the process
of creating the HYB-R format if the matrix will be partitioned
at least twice. For example, only Row 11, 8 and 3 are stored in
the second ELL portion after reordering in Fig. 2 (a), but all the
rows should be stored in the second ELL portion if the matrix
rows are not reordered previously so that each matrix row
corresponds with the right element of vector y. The reorder
information of the matrix rows is recorded in a permutation

AST SPMV BASED ON HYB-R FORMAT

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:1, 2012

26

array. After the HYB-R kernel finishes, vector y is reordered
according to the permutation array.

2. HYB-R Kernel
The HYB-R kernel is divided into several ELL kernels and

one COO kernel, which are launched one by one. Fig. 3 (a)
shows the pseudo-code for HYB-R data structure, and Fig. 3
(b) shows the execution process of HYB-R kernel. The matrix
in HYB-R format and the vectors are first transferred to the
global memory, then the kernels are started one by one, and at
last the vector y is copied from the global memory to the host
memory. The number of threads in the ELL kernels becomes
smaller gradually because the number of matrix rows left
becomes smaller.

struct hyb-r_matrix{
 ell_matrix ell1;
 ell_matrix ell2;

…
 coo_matrix coo;
} ;

(a) HYB-R data structure

ELL kernel1
ELL kernel2

…
COO kernel

(b) HYB-R kernel

 Fig. 3 HYB-R data structure and HYB-R kernel

C. Parameter Tuning

First, we should decide when to stop the partition process. In
other words, when the number of non-zeros in COO portion is
less than X% of the number of non-zeros in the whole matrix,
the process of partitioning the matrix should be stopped. In the
implementation, the partition process is stopped when X=0.5 or
the number of rows left is less than 4096, but X can be
carefully tuned to get better performance.

Second, as mentioned in observation 2 in section IV A, we
should decide how to choose the parameter K, which is used to
partition the matrix into ELL portion and COO portion.
Besides the method mentioned in Section II D (Method 1),
there are two other methods to determine the value of K as
follows.

1. K equals average non-zeros per row (Method 2). This is a
simple method but it can be effective when the numbers of
non-zeros per row do not highly vary across the matrix.

2. If the non-zeros account for more than 1/3 storage space of
ELL portion after the column is added to the ELL portion,
the column should be added (Method 3). Method 3
characterizes the non-zeros ratio in the ELL portion more
exactly than Method 1.

V. EXPERIMENTS SETUP

A. Introduction to NVIDIA CUDA

A NVIDIA GPU usually consists of several streaming
multiprocessors, and each streaming multiprocessors consists

of eight streaming processors. There is a private local memory
in the form of registers for each thread and a low-latency
on-chip memory called the shared memory for a group of
threads. The main memory of a GPU is a high-bandwidth
DRAM shared by all threads. There are also two types of
read-only memory called constant memory and texture
memory both with on-chip cache.

NVIDIA’s CUDA is a programming model designed for
NVIDIA GPUs. A CUDA program consists of a host program
running on the CPU, and a kernel program running on the
GPU. The host program transfers the data from CPU to GPU,
the kernel program processes that data, and then the host
program transfers the results from GPU to CPU. The kernel
program is partitioned into a grid of thread blocks, each
including a group of threads. A warp is a group of 32 threads,
and a thread block may include several warps. The execution of
the threads follows a single instruction multiple threads (SIMT)
model. Threads within a block share the shared memory and
can synchronize via barriers. But there is no such
synchronization mechanism for threads in different thread
blocks.

There are many techniques to improve performance on
GPUs. We just list three of them and suggest the CUDA
Programming Guide [18] for more information. (1) Maximize
the bandwidth of global memory with aligned and coalesced
accesses. (2) Reuse data in on-chip memories, such as registers,
shared memory, texture cache and constant cache. (3) Reduce
thread divergence.

PLATFORMS USED IN THE EXPERIMENTS
GPU GeForce 9800 GX2 GeForce GTX 295

CUDA Cores 256 (128 per GPU) 480 (240 per GPU)

GPU clock 1500 MHz 1242 MHz

Memory Clock 1000MHz 999 MHz

Memory capacity 1GB (512MB per GPU) 1792 MB (896MB per
GPU)

Memory Bandwidth 128 (64 per GPU) GB/sec 223.8 GB/sec

Compute Capability 1.1 1.3

B. Experiment Platform

The experiments in this paper were run on the two systems
listed in Table II. There are two GPUs on a single card for both
GPU platforms, but only one GPU was used in the
experiments.

C. Sparse Matrices in the Experiments

The sparse matrices used in the experiments are listed in
Table III, which are also used in prior work [7]. Every matrix
in the table is given a serial number so that we can use the
number to represent the matrix. The column Rows and
Columns shows the number of rows and columns for each
matrix. The column NNZ represents the total number of
non-zeros for each matrix. The column NNZ/R represents the
number of non-zeros per row on average.

TABLE II

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:1, 2012

27

TABLE III
MATRICES USED IN THE EXPERIMENTS

No. Matrix Name Rows Columns NNZ NNZ/R

1 FEM/Cantilever 62,451 62,451 4,007,383 64.1

2 FEM/Spheres 83,334 83,334 6,010,480 72.1

3 FEM/Accelerator 121,192 121,192 2,624,331 21.6

4 Economics 206,500 206,500 1,273,389 6.1

5 Epidemiology 525,825 525,825 2,100,225 3.9

6 Protein 36,417 36,417 4,344,765 119.3

7 Wind Tunnel 217,918 217,918 11,634,424 53.3

8 QCD 49,152 49,152 1,916,928 39.0

9 LP 4,284 1,092,610 11,279,748 2632.9

10 FEM/Harbor 46,835 46,835 2,374,001 50.6

11 Circuit 170,998 170,998 958,936 5.6

12 FEM/Ship 140,874 140,874 7,813,404 55.4

13 Webbase 1,000,005 1,000,005 3,105,536 3.1

VI. EXPERIMENTAL RESULTS AND ANALYSES

The experiments were carried out with the matrices and the
platforms which were introduced in section III.

TABLE IV
NON-ZEROS RATIO IN HYB-R FORMAT AFTER THE

MATRIX IS PARTITIONED TWICE
Matrices ELL1 ELL2 COO

1 99.7 0.0 0.3

2 100.0 0.0 0.0

3 82.8 15.2 2.0

4 81.1 9.7 9.2

5 100.0 0.0 0.0

6 96.0 3.2 0.8

7 99.4 0.5 0.1

8 100.0 0.0 0.0

9 0.9 0.0 99.1

10 81.3 16.2 2.5

11 78.2 12.1 9.7

12 93.1 5.9 1.0

 13 64.2 8.2 27.6

In the experiments, the matrices were only partitioned twice

(Table IV) for simplicity. But we can conclude that
performance will be better for some matrices if the matrices are
partitioned three or more times, because there are still a lot of
non-zeros left in COO portion for some matrices after two
partitions, such as Matrix 4, 11 and 13, all with more than 9%
of the non-zeros in the COO portion.

As shown in Table I and IV, non-zeros of COO portion are
less than 0.5% of non-zeros in the whole matrix for Matrix 1, 2,
5 and 8, which are partitioned only one time, so there are no
non-zeros in ELL2 portion in Table IV for these matrices.
There are only 4284 rows in Matrix 9, and less than 4096 rows
are left after the first partition, so there is also no non-zero in its
ELL2 portion. As a result, the HYB-R kernel is approximately

as fast as the HYB kernel for the above five matrices (Fig. 4
and 5).

Fig. 4 Single precision performance without cache on
GeForce 9800 GX2

Fig. 5 Single precision performance with cache on
GeForce 9800 GX2.

Vector x can be put in texture memory so that some

elements of x will be reused in texture cache by different
threads. Fig. 4 shows the single precision performance without
cache(x was placed in global memory) on GeForce 9800 GX2,
and Fig. 5 shows the single precision performance with cache(x
was placed in texture memory) on GeForce 9800 GX2. Both
HYB kernel and HYB-R kernel can achieve higher
performance with cache than without cache. From Fig. 4 and 5,
we can find that the HYB-R kernel is faster than the HYB
kernel for all the eight matrices which are partitioned twice. If
there are enough non-zeros and enough rows in COO portion,
the performance can always be further improved by another
partition to the COO portion.

Table V shows the speedup of HYB-R kernel over HYB
kernel on GeForce 9800 GX2. HYB-R kernel outperformed
HYB kernel obviously both with cache and without cache. In
HYB-R kernel with cache, 5 out of the 13 matrices achieved
more than 13% speedup over the HYB kernel. For the best
case, Matrix 12, performance was improved by 14.5% with
cache. The average speedups of the eight matrices which are
partitioned twice are 3.9% without cache and 10.4% with cache
respectively.

More performance improvement can be achieved with cache
than without cache. The possible reason is that ELL2 kernel
can reuse vector x in texture cache better than ELL1 kernel.
ELL2 kernel only accesses a part of the vector x and ELL1

1.5

2

2.5

3

3.5

1 2 3 4 5 6 7 8 9 10111213

G
F
LO

P
S

Matrices

HYB

HYB-R

3

5

7

9

11

13

15

1 2 3 4 5 6 7 8 9 10111213

G
F
LO

P
S

Matrices

HYB_TEX

HYB-R_TEX

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:1, 2012

28

kernel may access the whole vector x, while the texture cache
cannot hold the whole vector x. From this point of view,
carefully tuning the parameter K may also lead to better reuse
of vector x.

TABLE V
PERFORMANCE IMPROVEMENT OF HYB-R OVER HYB (%)

ON GEFORCE 9800 GX2
Matrices without cache with cache

1 0 0
2 0 0
3 5.7 7.7
4 6.0 13.8
5 0 0
6 1.2 4.0
7 0.4 2.5
8 0 0
9 0 0
10 0.9 14.4
11 8.7 13.3
12 2.0 13.0
13 5.9 14.5

Average Speedup 3.9 10.4

Fig. 6 shows the bandwidth of HYB kernel and HYB-R
kernel without cache on GeForce 9800 GX2, and Fig. 7 with
cache. More bandwidth improvement of HYB-R over HYB can
also be achieved with cache than without cache, just as the case
of single precision performance.

Fig. 6 Bandwidth without cache on GeForce 9800 GX2

Fig. 7 Bandwidth with cache on GeForce 9800 GX2

Fig. 8 Single precision performance without cache on
GeForce GTX 295

Figure 9 Single precision performance with cache on
GeForce GTX 295

Fig. 8 shows the single precision performance without

cache(x in global memory) on GeForce GTX 295. Fig. 9 shows
the single precision performance with cache(x in texture
memory) on GeForce GTX 295. The HYB-R kernel is also as
fast as the HYB kernel for Matrix 1,2,5,8 and 9 with the same
reason as on GeForce 9800 GX2. The performance of the
HYB-R kernel is higher than the HYB kernel without using
texture cache for all the other eight matrices. It is surprising
that the HYB-R kernel is slower than the HYB kernel for
Matrix 3 and 7 with texture cache. The possible reason is that
one more ELL kernel is launched in HYB-R kernel than in
HYB kernel, and the cost of launching one more ELL kernel
can lead to lower performance on GeForce GTX 295.

TABLE VI
PERFORMANCE IMPROVEMENT OF HYB-R OVER HYB (%)

ON GEFORCE GTX 295
Matrices without cache with cache

1 0 0
2 0 0
3 0.5 -2.5
4 5.5 3.7
5 0 0
6 0.9 3.1
7 0.2 -2.6
8 0 0
9 0 0
10 0.4 7.5
11 13.5 4.5
12 12.7 16.5
13 6.0 9.2

Average Speedup 5.0 4.9

10

12

14

16

18

20

22

24

1 2 3 4 5 6 7 8 9 10111213

G
B
/s

Matrices

HYB

HYB-R

20

30

40

50

60

70

80

1 2 3 4 5 6 7 8 9 10111213

G
B
/s

Matrices

HYB_TEX

HYB-R_TEX

3.5

5.5

7.5

9.5

11.5

13.5

1 2 3 4 5 6 7 8 9 10111213

G
F
LO

P
S

Matrices

HYB

HYB-R

3

8

13

18

23

1 2 3 4 5 6 7 8 9 10111213

G
F
LO

P
S

Matrices

HYB_TEX

HYB-R_TEX

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:1, 2012

29

Table VI shows the speedup of HYB-R kernel over HYB
kernel on GeForce GTX 295. For the best case, Matrix 12,
performance was improved by 16.5% with cache. The average
speedup of the eight matrices is 5.0% without cache, and 4.9%
with cache. Minus signs are used for Matrix 3 and 7 because of
the lower performance. Combining Table V with Table VI, we
can find that higher speedup was achieved without cache on
GeForce GTX 295, 5.0% versus 3.9%, while higher speedup is
achieved with cache on GeForce 9800 GX2, 10.4% versus
4.9%.

Fig. 10 shows the bandwidth of HYB kernel and HYB-R
kernel without cache on GeForce GTX 295, and Fig. 11 with
cache.

Fig. 10 Bandwidth without cache on GeForce GTX 295

Fig. 11 Bandwidth with cache on GeForce GTX 295

Table VII shows the parameter tuning results of two
methods and the best value of K which was found
exhaustively. In this experiment, each matrix was partitioned
only once, and only the GeForce 9800 GX2 platform was used.
Method 1 is the method used in HYB format. Method 2 is the
average non-zeros per row method. Because average non-zeros
per row is not a decimal, the value of K in Method 2 includes a
smaller integer and a greater integer. Each entry of the table
includes the single precision performance with cache and the
value of K (in parenthesis). The best performances of the three
methods are shown in red. If the best performance was
achieved by Method 1 or 2, the content of Best column would
not be in red.

TABLE VII
PERFORMANCE OF TUNING K - GFLOPS(K)

Matrices Method 1 Method 2 Best
1 9.75 (75) 7.97(64) 8.15(65) 9.75 (75)
2 11.97 (81) 8.59(72) 8.47(73) 11.97 (81)
3 4.15 (23) 3.15(21) 3.99(22) 4.15 (23)
4 3.91 (7) 3.77(6) 3.91(7) 4.31 (9)
5 9.52 (4) 3.02(3) 9.51(4) 9.52 (4)
6 8.60 (138) 8.00(119) 8.41(120) 8.80 (140)
7 12.27 (54) 10.43(53) 12.27(54) 12.27 (54)
8 12.08 (39) 12.08(39) 11.93(40) 12.08 (39)
9 3.12 (23) 1.39(2632) 1.39(2633) 3.12 (23)
10 6.24 (55) 5.92(50) 6.07(51) 6.24 (55)
11 3.45 (5) 3.46(5) 3.76(6) 3.76 (6)
12 9.93 (54) 9.92(55) 9.61(56) 9.93 (54)
13 3.44 (2) 3.61(3) 3.69(4) 3.69 (4)

It can be found that neither method is optimal, 9 matrices

using Method 1 get best performances, 2 matrices using
Method 2. Method 1 seems better than Method 2 for the 13
matrices. But the value of K still needs to be better tuned to
achieve higher performance, which is mainly determined by
the characteristics of the specific matrix and the GPU
architecture. Maybe the Method 3 represented in section IV C
is a better choice, which is not included in the experiment.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, a novel method is proposed to improve the
performance of SpMV on GPUs. A new storage format called
HYB-R is proposed to fully exploit GPU architecture.
Experiments were carried out with thirteen matrices on two
GPU platforms. Experimental results show that our method can
get better performance than the fastest kernel (HYB) in
NVIDIA’s SpMV library. We also tried to tune the parameters
on how to partition the matrix into ELL and COO, and find that
the partition method used in HYB format is better than the
non-zeros per row method for the 9 out of13 matrices.

However, the partition method used in HYB format is not
perfect. So we will test other methods to partition the matrix
into ELL and COO for the HYB-R format, considering the best
reuse of vector x in texture cache. And we will also try cache
blocking method with different storage formats to represent
sub-blocks on GPUs in future.

ACKNOWLEDGMENT

This work is in part supported by the National Grand
Fundamental Research 973 Program of China under Grant No.
2011CB302500, State Key Program of National Natural
Science Foundation of China under Grant No. 60736012,
National Science Foundation for Distinguished Young Scholars
of China under Grant No. 60925009, Foundation for Innovative
Research Groups of the National Natural Science Foundation
of China under Grant No. 60921002, Beijing Natural Science
Foundation under Grant No.4092044, National Core-High
Tech-basic Program under Grant No.2011ZX01028-001-002.

REFERENCES
[1] E.-J. Im, “Optimizing the performance of sparse matrix-vector

multiplication” , PhD thesis, University of California, Berkeley, May
2000.

30

40

50

60

70

80

90

1 2 3 4 5 6 7 8 9 10111213

G
B
/s

Matrices

HYB

HYB-R

30

50

70

90

110

130

1 2 3 4 5 6 7 8 9 10111213

G
B
/s

Matrices

HYB_TEX

HYB-R_TEX

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:1, 2012

30

[2] R. Vuduc, “ Automatic Performance Tuning of Sparse Matrix Kernels”,
PhD thesis, University of California, Berkeley, December 2003.

[3] S. Williams , “Auto-tuning Performance on Multicore Computers”, PhD
thesis, University of California, Berkeley, 2008.

[4] Sam Williams, Richard Vuduc, Leonid Oliker, John Shalf, Katherine
Yelick, and James Demmel, “Optimizing sparse matrix-vector multiply
on emerging multicore platforms,” Journal of Parallel Computing, vol.
35, no. 3, pp.178–194, March 2009.

[5] Jeff Bolz, Ian Farmer, et al. , “Sparse matrix solvers on the GPU:
Conjugate gradients and multigrid,” In Proc. Special Interest Group on
Graphics Conf. (SIGGRAPH), San Diego, CA, USA, July 2003.

[6] Shubhabrata Sengupta, Mark Harris, Yao Zhang, and John D. Owens,
“Scan primitives for GPU computing,” In Proc. ACM Dense Protein
QCD Cantilever Spheres Harbor Ship Wind Tunnel
SIGGRAPH/EUROGRAPHICS Symp. Graphics Hardware, San Diego,
CA, USA, 2007.

[7] Nathan Bell and Michael Garland, “Efficient sparse matrix-vector
multiplication on CUDA,” In Proc. ACM/IEEE Conf. Supercomputing
(SC), Portland, OR, USA, November 2009.

[8] Muthu Manikandan Baskaran and Rajesh Bordawekar, “Optimizing
sparse matrix-vector multiplication on GPUs using compile-time and
run-time strategies,” Technical Report RC24704 (W0812-047), IBM
T.J.Watson Research Center, Yorktown Heights, NY, USA, December
2008.

[9] Ali Cevahir , Akira Nukada , Satoshi Matsuoka, “Fast Conjugate
Gradients with Multiple GPUs,” Proceedings of the 9th International
Conference on Computational Science: Part I, Baton Rouge, LA, May
25-27, 2009.

[10] F. Vazquez, E. M. Garzon, J.A.Martinez, and J.J.Fernandez, “The sparse
matrix vector product on GPUs,” Technical report, University of
Almeria, June 2009.

[11] Monakov, A., A. Lokhmotov, and A. Avetisyan, “Automatically tuning
sparse matrix-vector multiplication for GPU architectures,” High
Performance Embedded Architectures and Compilers, Lecture Notes in
Computer Science, Vol. 5952, pp.111–125, 2010.

[12] J. W. Choi, A. Singh, and R. Vuduc, “Model-driven autotuning of sparse
matrix-vector multiply on gpus,” In PPOPP, pp.115–126, 2010.

[13] Ping Guo, Liqiang Wang, “Auto-Tuning CUDA Parameters for Sparse
Matrix-Vector Multiplication on GPUs,” The 2010 International
Conference on Computational and Information Sciences, Chengdu,
China.

[14] A. Buluç, J. T. Fineman, M. Frigo, J. R. Gilbert, and E. Leiserson,
“Parallel sparse matrix-vector and matrixtranspose-vector multiplication
using compressed sparse blocks,” In SPAA, pp. 233–244, 2009.

[15] A. Buluç, et.al., “Reduced-Bandwidth Multithreaded Algorithms for
Sparse Matrix-Vector Multiplication,” In IPDPS, 2011.

[16] K. Kourtis, V. Karakasis, G. Goumas, and N. Koziris, “CSX: An
Extended Compression Format for SpMV on Shared Memory
Systems,”In PPoPP, pp. 247–256, San Antonio, Texas, USA, 2011.

[17] Xintian Yang, Srinivasan Parthasarathy, P. Sadayappan, “Fast Sparse
Matrix-Vector Multiplication on GPUs: Implications for Graph Mining,”
In VLDB, 2011.

[18] NVIDIA CUDA (Compute Unified Device Architecture): Programming
Guide, Version 2.1, December 2008.

[19] J. Willcock, A. Lumsdaine, “Accelerating sparse matrix computations
via data compression,” In ICS, Cairns, Australia, June 2006.

