
International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:2, No:9, 2008

1025

Abstract—Complex engineering design problems consist of
numerous factors of varying criticalities. Considering fundamental
features of design and inferior details alike will result in an extensive
waste of time and effort. Design parameters should be introduced
gradually as appropriate based on their significance relevant to the
problem context. This motivates the representation of design
parameters at multiple levels of an abstraction hierarchy. However,
developing abstraction hierarchies is an area that is not well
understood. Our research proposes a novel hierarchical abstraction
methodology to plan effective engineering designs and processes. It
provides a theoretically sound foundation to represent, abstract and
stratify engineering design parameters and tasks according to
causality and criticality. The methodology creates abstraction
hierarchies in a recursive and bottom-up approach that guarantees no
backtracking across any of the abstraction levels. The methodology
consists of three main phases, representation, abstraction, and
layering to multiple hierarchical levels. The effectiveness of the
developed methodology is demonstrated by a design problem.

Keywords—Hierarchies, Abstraction, Loop-free, Engineering
Design

I. INTRODUCTION

ESIGN Abstraction Hierarchies (DAHs) are used
commonly to represent various large-scale and complex

problems[1, 2]. Their values have been realized across a wide
spectrum of applications mainly to reduce the complexity of
problems and to improve solution efficiency [3]. DAHs are
also used to speed up the development time, save resources,
and provide aggregate intelligent output[4]. In addition, DAH
produces designs that are easier to interpret validate and
update compared to not using hierarchies. Moreover, DAHs
help explore design alternatives and produce intelligent
decisions at an early stage of the design or plan [5-7].
Furthermore, DHA assist in focusing on important aspects of
the design problem [8, 9]. For computational efficiency,
DAHs have also allows parallel execution of models [10],
facilitates the utilization of the off-shelf models legacy [11],
and enhances model reusability and rapid prototyping [12-16].
However, despite DAHs’ significant benefits, there is a lack
of formal methodologies for hierarchical abstraction
generation suitable for design. In fact, hierarchical abstraction

Manuscript received October 15, 2008

E. A. Author is with the Department of Industrial and Management
Systems at Kuwait University, Kuwait. (phone: 965-498-5249; fax: 965-481-
6137; e-mail: aleisa@kuniv.edu).

in general has been described as a “black art” [17]. In this
research we aim to provide a formal hierarchical abstraction
methodology to represent and plan engineering design
problems at multiple levels of abstraction. Such that partial
design solutions obtained at some abstraction level is
preserved while the design is augmented at more detailed
levels. The objectives of the methodology are three fold:

1. to develop a representation for engineering design
that supports hierarchical abstraction,

2. to specify the clustering criteria according to which
the abstraction process is defined, and

3. to develop a layering method, by which clusters of
abstracted design parameters should be stratified in a
hierarchy, without inducing any backtracking in the
design process.

The reminder of this paper is structured as follows: first we
provide a brief literature review of some of the most persistent
abstraction systems and the reason why they are cumbersome
when applied to engineering designs. This necessitates the
need for this research. Next we dedicate a separate section to
explain each of the three developmental phases of our
hierarchical abstraction methodology. Then we provide some
analysis on the methodology and theoretically proof that it is
loop-free. Finally, we demonstrate the effectiveness of the
methodology on the design process of a chemical processing
system.

II. LITERATURE REVIEW

Although the nature of research on abstraction
hierarchies is broad and multi-disciplinary, the most
detailed work and thorough analysis of abstraction was
conducted in the field of Artificial Intelligence (AI)
[18, 19]. Abstraction models and systems were
classified in various research efforts such as in [4, 6, 8,
11, 18, 20-24]. One of the earliest semi-automatic
abstraction systems was ABSTRIPS [5, 25]. Based on a
STRIPS (Stanford University Research Institute
Planning System) framework, ABSTRIPS uses a state-
space representation to create abstraction hierarchies by
removing symbols from the formal language [22]. The
successors of ABSTRIPS are many, including
PRODIGY/EBL [26], ABTWEAK [27], PABLO [28],
ALPINE [17], HIGHPOINT [29], STAR [22] and
HW[19]. Other extensions incorporate the
probabilistic distribution of the operators effects and a

Abstraction Hierarchies
for Engineering Design

Esra E. Aleisa and Li Lin

D

International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:2, No:9, 2008

1026

distribution of probabilities on the possible initial states
of a certain domain [30, 31], which incorporates the
probabilistic distribution of the operators effects and a
distribution of probabilities on the possible initial states
of a certain domain. The main contribution of AI-
based abstraction systems was in identifying properties
that would render a hierarchical abstraction
methodology effective. These include characterizing
abstraction hierarchical methodology to be formal,
complete, computable, produces simpler models,
tractable and inexpensive to develop. Research efforts
such as in [17, 32]. Bacchus and Yang [29, 33] have
established properties that guarantee the effectiveness
of abstraction methodologies. The essence of these
properties is to maintain the structure of the solution
that is obtained at more abstract levels while refining
the solution quality at more detailed levels. The
Downward Refinement Property (DRP) [33, 34]and the
Ordered Monotonicity Property (OMP) [17] are two
examples of such. Both properties have the advantage
of being computable, tractable and capture a large
spectrum of abstraction models [35]. However, these
properties are heuristics that cannot guarantee a
significant reduction in search space.

Despite their valuable contributions in characterizing
effective abstraction practices, AI-based abstraction
systems do not offer a convenient tool to construct
abstraction hierarchies suitable for engineering design.
That is because most of these systems are based on a
STRIPS framework. The nature of primitive elements
in the STRIPS language is cumbersome when used to
describe engineering design. In fact, in some cases
STRIPS representation can result in combinatorial
issues [36]. Furthermore, most of AI-based abstraction
systems require a goal state to be identified a priori
which, presents a significant challenge for design
problems. This is due to the fact that a designer might
not be aware in advance what will be the final features
of the design. For these reasons, there is an urgent
need to develop hierarchical abstraction methodologies
that utilize the AI-based abstraction advances but is
tailored to the engineering design representation and
requirements. For that we propose hierarchical
abstraction methodology that consists of three phases:
the representation phase, the abstraction phase, and
finally the development of a design hierarchy. The
details of the methodology are explained in the
following sections.

III. METHODOLOGY FOR GENERATING ABSTRACTION
HIERARCHIES FOR ENGINEERING DESIGN

The developed abstraction methodology is based on the
belief that details of a given design problem are not of equal
importance. Design details need to be considered in sequent
relative to one another for effective design planning. Failing

to consider some precedence requirements when solving a
design problem will result in resolving large parts of the
problem if not the entire problem. This obviously will waste
time and effort.

The methodology prescribes a partial order of design
parameters under consideration, in a hierarchical
representation. Such that no backtracking (looping) occurs
throughout the design process. Eliminating backtracking
implies that the structure of partial design solutions obtained
at abstract levels need not be altered as more design details are
introduced gradually, while the design process is evolving.
The developed hierarchical abstraction methodology is
depicted in Fig. 1.

Define Parameter Space

Identify All Causal
relations

Construct the R matrix

Irreducible
?

Cannot obtain
multiple levels of

abstraction

yes

no

Identify ADECs

Transform into Canonical Form C

Identify aggregate interaction
and construct C matrix

Update
(if possible)

Construct
Abstraction LAA

ECFA

k k

kk ij
i c j c

c r

I.
R

ep
re

se
nt

at
io

n
II.

 A
bs

tra
ct

in
g/

C
lu

st
er

in
g

III
. L

ay
er

in
g

Fig. 1 Hierarchical abstraction methodology for design

As shown in Fig. 1, the methodology of developing
abstraction hierarchies for engineering design consists of three
phases:
1. Representation,
2. Abstraction/clustering, and
3. Layering.

In the representation phase, the design parameters’ space,
denoted by , is represented in a manner that would support
the abstraction process [37]. This is accomplished by
identifying the causal relationships between the different
design parameters of which are represented by what is so
called the R matrix.

In the abstraction phase, design parameters are clustered
into their abstract design equivalence classes (ADECs) using

International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:2, No:9, 2008

1027

an equivalence class formation algorithm (ECFA) and the
interaction matrix R as an input. In this phase, if the
parameter space is found to be irreducible, i.e., belongs to a
single equivalence class, then, we conclude that all the design
parameters of communicate with one another. This means
that all the design parameters need to be considered
simultaneously. If this is the case, then we conclude that
using a DAH will add no benefit to the original problem
representation. The analysts can choose not to consider
hierarchical abstraction or revise the problem definition to
eliminate some of the interactions causing irreducibility.
However, in some cases this may sacrifice the problem
integrity or even might not be possible, due to the criticality of
some interactions among some design parameters. For that
reason this part is illustrated by dashed lines in Fig. 1. On the
other hand, if is not irreducible, the aggregate flows or
interactions among ADECs are calculated (using Eq.(10)) and
the aggregate flow matrix denoted by C is constructed
accordingly. Then the C matrix is transformed into its
canonical form written as C to prepare it for the layering
phase.

Finally, in the layering phase, all the ADECs of are
assigned to their appropriate abstraction level in a hierarchy in
a way that would eliminate any backtracking or looping. The
assignment of ADECs to the different hierarchical levels is
accomplished using a level assignment algorithm (LAA). The
details of the three methodology phases are explained in the
following sections.

IV. PHASE I: REPRESENTATION OF ENGINEERING DESIGN FOR
ABSTRACTION

To achieve efficiency in abstraction, the engineering design
representation should support the clustering criteria according
to which the abstraction is defined. Since our aim is to
develop abstraction hierarchies that eliminate backtracking,
the representation scheme should focus on causal relationships
among the different design parameters. Therefore, we will
use a parametric design representation that highlights the
causal relationships between the design parameters under
consideration.

A. The Parametric Representation of Design
A parameter design space is a finite (countable) space of

all design parameters under consideration. We use ip to
denote parameter i that belongs to , such that

1 2{ , , ..., }np p pW= or .nW = . If the determination of
design parameter ip affects the value of the design
parameter jp , we say that that parameter ip accesses
parameter jp , through causal link ijr . Therefore, ijr denotes
the weight or the extent of causality from ip to jp , such that,

 0 affect s

 0 otherwise
i j

ij

p p
r

ì >ïïï= íïïïî
 (1)

To maintain the direction of causal link ijr , we restrict it to
be nonnegative, i.e., 0ijr ³ for all i and j .

Since we can define ijr between every pair of parameters in
, it is convenient to represent these weights in a two

dimensional matrix
(n× n)

R . To be able to trace indirect
accessibility (or simply accessibility) we can use matrix
multiplication. Let ()s

R denote that matrix R is multiplied s
times by itself. Based on matrix theory we can interpret

() 0s
ijr > as the ability to reach jp from ip passing through s

causal links (interactions). This is shown by Theorem 1
provided below. The proof for Theorem 1 provided in the
appendix.

Theorem 1: Interpretation of () 0s
ijr >

If () 0s
ijr > for some 0s > , then jp is accessible from ip

by passing throughs interactions(causal links).

The theorem leads to the definition of accessibility and
communication provided next.

B. Accessibility between Design Parameters
Definition IV.1: Parameter accessibility
Let ,i jp p Î W, jp is accessible from ip

((,)i jaccessible p p) if and only if () 0s
ijr$ > for a some

1, 2, ...s = .

In this research we refer to (1)
ijr by ijr for simplicity. Also, it

is reasonable to assume that each parameter affects itself, so
we state that every parameter is at least accessible by itself,
that is:

0ijr > , i j" = (2)
Moreover, accessibility is transitive, since:

, ,i j kp p p" Î W,
(,) (,)

(,)
i j j k

i k

accessible p p accessible p p

accessible p p

Ç

Þ
 (3)

Reflexiveness and transitivity makes accessibility a weak
ordering relation [38] that can have a partial ordering relation
induced onto it. This has the significance of enabling partial
ordering for the parameters of W, which is the basis for our
developed abstraction methodology. When two parameters are
accessible to each other, we say that they communicate.
Communication is defined below.

C. Communication among Design Parameters
Definition IV.2: Parameter communication
Let ,i jp p Î W, ip and jp communicate

((,)i jcommunicate p p) if and only if the following holds:

(,) (,)i j j iaccessible p p accessible p pÇ (4)

International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:2, No:9, 2008

1028

Alternatively, we can say that ,i jp p Î W communicate if

there exists () 0s
ijr > and () 0s

jir > for some 1, 2, ...s = .
Communication has the following properties:

1. (,)i icommunicate p p , ip" Î W (5)

2.
(,)

(,)
i j

j i

communicate p p

communicate p pÛ
, ,i jp p" Î W (6)

3.

(,) (,)

(,),

, ,

i j j k

i k

i j k

communicate p p communicate p p

communicate p p

p p p

Ç

Þ

" Î W

 (7)

Equation (5) indicates that communication is reflexive,
which is legitimate due to the reflexiveness of accessibility.
Equation(6) shows that communication is symmetric, which is
true by definition. Moreover, Eq.(7) points to the transitivity
of communication that is directly deduced from applying
Eq.(3) to the communication definition.

A relation that is reflexive, transitive and symmetric such as
communication is an equivalence relation[38]. According to
[39], an equivalence relation has the ability to partition the
problem space upon which it is defined to disjoint partitions.
We will use the communication partitioning ability to cluster
communicating group of parameters into abstract equivalence
classes. This will be achieved in phase II of the methodology
explained in the next section.

V. PHASE II: CLUSTERING TO ABSTRACT DESIGN CLASSES

We construct the abstract design space by clustering related
design parameters into their abstract design equivalence
classes (ADECs) according to specified clustering criteria.
In this research, we utilize communication relations as the
criteria to cluster design parameters into ADECs. ADECs are
formally defined below.

Definition V.1: Abstract design equivalence class (ADEC)
An ADEC denoted by kc Í W, 1, 2...k = is a set of design

parameters, by which all the members belonging to it
communicate with one another.

Hence determining the value of a design parameter affects
the values of all other design parameters that are members of
the same class. Moreover, because the clustering is based on
an equivalence relation, that is communication, the fowling
must hold for all ADECs:

1. k
k

c
"

= ÆI , k" (8)

2. k
k

c
"

= WU , k" (9)

Definition V.2: Irreducible parameter space
The parameter space W is said to be irreducible if: kc$

such that kc = W.

Irreducibility implies that the entire parameter space
communicates with one another, hence belongs to a single
ADEC. We will later show that there will be no gain when
applying the developed abstraction methodology to domains
with an irreducible parameter space.

A. Algorithm for Clustering Design Parameters into ADECs

In this section we explain an Equivalence Class Formation
Algorithm (ECFA) that identifies communicating design
parameters, and clusters them into their subsequent, disjointed
ADECs. Developed by Gaver and Thompson [40]1, ECFA
identifies ADECs by calculating to-lists and from-lists. The
to-lists of parameter i , denoted by iT , contains all the
parameter that ip can access in one or more steps. Similarly a
from-list of ip called iF contains all the parameters from
which ip is accessible in one or more steps. Gaver and
Thompson [40] showed that an equivalence class containing

ip denoted by ic is the intersection of the sets iT and iF :

i i ic T F= Ç , i" (10)

B. Aggregate Interactions Among ADECs
The classification of design parameters into ADECs leads

to the discussion on aggregate interactions or flows that result
among them. In previous sections, we used matrices to
represent the interactions among parameters; we intend to
carry on the same process for the aggregate interactions.

Definition V.3: ADEC Interaction matrix
Let kc and kc ¢ be two ADECs. The interaction matrix C is

a two dimensional matrix such that each entry kkc ¢of C is
defined as follows:

k k

ijkk
i c j c

c r
¢

¢
Î Î

= å å (11)

C is a square matrix of sizem m´ , where m is the
number of ADECs in . Each kkc ¢represents the amount of
aggregate interactions that exists among the subsequent
parameters of the two ADECs k andk ¢, which are
mathematically the summation of corresponding rows and
columns of the R matrix. We use ()s

C to denote the C

matrix multiplied s times by itself. Based on the proof of
Theorem 1 given in the appendix (we did not include a
separate theorem for () 0s

kkc ¢ > to avoid repetition), we can

1 ECFA algorithm was originally used to obtain the communication classes
of different states in the state-space of Markov chains. We shall modify the
description of that algorithm to what best suits the problem representation of
design parameter space.

International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:2, No:9, 2008

1029

easily show that if () 0s
kkc ¢ > for some 1, 2, ...s = , then there is

an interaction between the two ADECs k and k ¢ passing
through s aggregate interactions. Hence we say that
ADECk ¢ is accessible from ADECk . This leads to the
definition of ADEC accessibility.

Definition V.4: Accessibility of ADECs
If ,k kc c ¢ Ì W are two ADECs, then we say that kc ¢ is

accessible from kc ((,)k kclassaccessible c c ¢) if and only if
there exists:

() 0s
kkc ¢ > , for some 1, 2, ...s =

 (12)

As for parameter accessibility, class accessibility has the
following properties:

1. Reflexive, since:
(,)k kclassaccessible c c ¢ , k k ¢" = (13)

2. Transitive, due to:
(,) (,)

(,)

, ,

k k k k

k k

classaccessible c c classaccessible c c

classaccessible c c

k k k

¢ ¢ ¢¢

¢¢

Ç

Þ

¢ ¢¢"

 (14)

As indicated earlier a relation that exhibits reflexiveness
and transitivity is a weak ordering relationship [38]. This
property will be used later to partially order the design
parameters of the design space in a DAH. The details of
this process will be explained in the analysis section of this
paper.

Another important characterization of ADECs is whether a
class is absorbing or transient. The distinction between these
types of classes is provided in the following definitions.

Definition V.5: Absorbing ADEC (AADEC)
An AADEC kc Í W is one where:

0kkc ¢ = , k k ¢" ¹ (15)

Definition V.6: Transient ADEC (TADEC)
A TADEC kc Ì Wis one where:

 0kkc ¢$ > , k k ¢¹ (16)

In other words, an AADEC is a class that does not access
any class other than itself. However, a TADEC as one that is
able to access other classes beside itself.

C. Canonical Form of the C Matrix
To prepare the C matrix for the layering phase we

rearrange its rows and columns, such that the first m t- ones
contain the AADECs, while the remaining t ones contain the
TADECs. When this segregation is applied to the C matrix,

then it is said to be in the canonical form denote it by C . A
general structure of a C matrix is given in the matrix below:

 m t t

m t

t

-

æ ö÷ç ÷ç ÷ç ÷ç ÷- ç ÷ç ÷÷ç ÷ç ÷ç ÷ç ÷= ç ÷ç ÷ç ÷ç ÷÷ç ÷ç ÷ç ÷ç ÷ç ÷ç ÷ç ÷çè ø

D 0

C

T Q

The resultant submatrices of C are as follows:
1. () ()m t m t- ´ -D is a diagonal matrix, because it depicts

the interaction among AADECs only. Note that an
AADEC has access to no other class but itself (see
Eq.(15)).

2. () ()m t t- ´0 consists entirely of zeros, since it is not
possible to have interaction from AADECs to
TADECs.

3. () ()t m t´ -T depicts the interactions from each TADEC
to each AADEC.

4. () ()t t´Q depicts the interactions among all the
TADECs of .

The canonical form has been used requisitely in the
literature of Markov Chains to study the behavior of the chain
until absorption. Here the canonical form will be used as an
effective tool to organize the aggregate interactions between
different ADECs. This will shortly be used to assign each
ADEC to its appropriate level of abstraction in a DAH.

VI. PHASE III: LAYERING ADECS TO MULTIPLE
HIERARCHICAL LEVELS

Having defined the relational properties that characterize
different ADECs, we are now ready to assign each ADEC to
its appropriate level of abstraction in a DAH. The layering
process is designed to eliminate any backtracking in the
design plan.

The construction of a DAH is conducted in a recursive and
bottom-up manner. It starts building the hierarchy from the
lowest level of detail (level zero) and subsequently builds
higher levels based on the abstract class accessibility
relationships that exist among different ADECs.

Level zero is designated to include the details that can be
postponed until the end when solving the problem
hierarchically. However, leveln , the highest level of
abstraction, includes the details that need to be considered in
the beginning. Therefore, the algorithm executes the hierarchy
in a last in first out (LIFO) basis, as it builds the hierarchy in a

International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:2, No:9, 2008

1030

bottom-up fashion, but expects it to be executed in a top-down
fashion (see Fig. 2).

c c c c…

c c c c…

cij

....

...

 (Most abstracted)

 (Most Detailed)

Level=i

Level=n

Level=i-1

Level=0
Bottom-up

Abstract model
 building

Top-bottom
Abstract model

 execution

Fig. 2 Bottom-up abstract model building and top-bottom execution

The assignment of design parameters to levels is based on
the theorems given below. The proof for each of these
theorems is provided in the appendix.

Theorem 2: The assignment of design parameter to
abstraction levels

Let ()klevel p denote the level of the design parameter kp in

a DAH. For all ,i jp p Î W, if () 0s
ijr > for some 0s > , then

we must have () ()i jlevel p level p³ to avoid backtracking.

The above theorem indicates that if ip affects jp , then ip
should at least be at the same or a higher level than jp .

Theorem 3: The assignment of communicating design
parameters to abstraction levels

Let ()klevel p denote the level of design parameter kp in the
DAH. For all ,i jp p Î W, if (,)i jcommunicate p p , then

() ()i jlevel p level p= .

Theorem 3 indicates that communicating parameters are
equivalent in terms of level. Therefore, they need to be
assigned the same level to avoid backtracking.

Theorem 4: The assignment of ADECs to abstraction levels
Let ()klevel c denote the level of ADECk in a DAH. For

all ,i jc c Ì W where i j¹ , if 0ijc > , then

() ()i jlevel c level c> to avoid backtracking.

Based on the above theorems, we can conclude that
considering ADECs (not parameters) is sufficient to produce a
DAH with no backtracking. Next, we incorporate the above
theorems into a level assignment algorithm that is able to
generate automatic loop-free DAHs.

A. The Level Assignment Algorithm
The Level Assignment Algorithm (LAA) will generate

DAHs by assigning ADECs to their appropriate level of
abstraction. LAA works on the premises of the level
assignment theorems provided in the previous section. The
input for LAA is an that is not irreducible. If was
irreducible, then based on the definition of irreducibility, the
design parameters of the entire design space would
communicate with one another. In that case, according to
Theorem 3, all the ADECs and their subsequent parameters
are assigned to the same level. Therefore, we can conclude
that a hierarchy cannot be generated, as it would be pointless
to have a hierarchy of a single abstraction level.

As shown in
Fig. 3, the LAA first initializes the level variable to zero and

the ADEC index i to one. Moreover, initially the unassigned
array will contain all the ADECs while the assigned array is
empty. LAA first assigns all AADECs to the lowest level of
detail, and then assigns TADECs to higher levels of
abstraction, according to the ADEC accessibility relationship.
The details of these assignments are discussed below.

1) The Assignment of AADECs
By definition, an AADEC does not access to classes other

than itself. Therefore, the design parameters that belong to an
AADEC do not affect any parameters of other ADECs. For
that reason, they can be considered as late as possible while
solving the problem. Therefore, LAA places them in the
lowest level of the DAH, that is, level zero. This complies
with the establishment of Theorem 1. The assignment of
AADECs is depicted in the shaded part of LAA in

Fig. 3. In this part, the algorithm scans all kc ,
1, 2, ...,k m= for AADECs. If kc is absorbing, then, and kc is

removed from the unassigned array and added to the assigned
array. The process repeats until no more AADECs are found.
Then, the level is raised by one.

2) The Assignment of TADECs
After assigning all AADECs to level zero, LAA scans the

C matrix for any classes in the unassigned array that access
any of the classes in the assigned array and assigns them to
the current level. This assignment is based on Theorem 4.

International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:2, No:9, 2008

1031

Start
Input : C (not irreducible)

Initialization
level =0, 1k , assigned= {}, unassigned= { mkck ,...,2,1: }

assigned=assigned + {ck}
unassigned=unassigned - {ck}

k=m?

k=k+1

yes

yes no

no

level=level+1

ck
absorbing?

level(ck) =0

All ck assigned?

Stop
Output: All classes
assigned to levels

For all
k,i unassigned

j assigned
is there

0and0 kikj cc ,

ik ?

assigned=assigned + {ck}
unassigned=unassigned - {ck}

level(ck)=level

no yes

no

yes

Fig. 3 The level assignment algorithm

In particular, due to accessibility, if 0ijc > then ic contains
at least one design parameter that affects some parameter
in jc . This means that ic needs to be considered before jc
and is hence placed in a higher abstraction level
(() ()i jlevel c level c>). However, we need to make sure that

there is no other TADEC kc that is accessed by ic , where,

0ikc > . This is because we must have () ()i klevel c level c> ,
which is one level higher than the current level. In addition,
we must have () () ()j i klevel c level c level c> > to guarantee no
backtracking (see Theorem 4). If this is the case (0ikc$ >),
then we postpone the assignment of the level of ic until an
appropriate time, otherwise ()ilevel c level= which is
currently equal to one. Accordingly, we update the unassigned
array by removing ic and adding it to the assigned array.
The variable level is raised by one again. And the process
repeats until all TADECs are in the assigned array.

The next section provides analysis to prove that any DAH
produced using the developed methodology is loop-free.

VII. ANALYSIS ON THE HIERARCHICAL ABSTRACTION
METHODOLOGY

In the previous sections we presented an integrated
recursive bottom-up methodology to build DAHs of a
parameter space. The objective of the methodology was to
produce loop-free abstractions. A loop-free abstraction is one
where backtracking never occurs across the levels of the
DAH, which is the key to the success of the developed
methodology. In this section we will theoretically
demonstrate that DAHs developed by the methodology in
hand are loop-free.

Definition VII.1: Backtracking
Let ,i jc c Ì Wbe two ADECs, a backtrack b occurs if:

1. (,)i jclassaccessible c c holds, and

2. () ()j ilevel c level c>

Therefore, a backtrack b implies that jc was solved

before ic , because () ()j ilevel c level c> . However, as ic

affects jc , due to (,)i jclassaccessible c c , it will require
resolving jc , hence a backtrack.

Definition VII.2: Loop-Free
A DAH is loop-free if backtracking never occurs across any

of its abstraction levels.

The following definitions will assist will assist in proving
that the developed hierarchical abstraction methodology
produces loop-free DAHs.

Definition VII.3: Weak ordering relation
A relation T that is reflexive and transitive is called a weak

ordering relation.

Definition VII.3 was obtained from the theory of ordered
relations [39]. In previous sections we have shown that
accessibility in general and class accessibility in particular are
reflexive and transitive, and thus are weak ordering relations
(WOR). The significance of WOR lies in their ability to order
the design parameters of according to the relation upon
which it is defined. In our case, this relation is the accessibility
relationship.

It is worthwhile to discuss the relation between parameter
accessibility and class accessibility in terms of the ordered
relations theory. This will help justify why class accessibility
is sufficient enough to produce loop-free abstractions. This
discussion will be based on the following definition, which is
also obtained from the theory of ordered relations [39].

International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:2, No:9, 2008

1032

Definition VII.4: Induced relation
Let T be a WOR, and *T is a relation defined on the

equivalence classes of T so that *uT v hold between two
equivalence classes if and only if xT y , whenever
x uÎ andy vÎ , then *T is an induced relation onT .

Based on Definition VII.4, class accessibility is a WOR
induced on accessibility, because it is defined on the
equivalence classes of accessibility. Specifically,

(,)k kclassaccessible c c ¢ hold if and only if ,i k j kp c p c ¢¢$ Î Î ,

where (,)i jaccessible p p holds.

Definition VII.5: Partial ordering
A WOR whose equivalence relation is the identity relation

is called a partial ordering.

We have shown earlier that communicating parameters are
equivalent in terms of order (see Theorem 3) such that,
if (,)i jcommunicate p p , then () ()i jlevel p level p= . Since
ADECs are constructed based on the communication
relationship, then the induced class accessibility relation is a
partial ordering (PO). A PO obtains its name due to the fact
that the elements of each equivalence class are not ordered
with respect to one another [41]. Note that PO is a special
case of WOR as it has the property that none of its elements
are alike. In other words, we cannot have an identity relation
among ADECs. Therefore, the resultant DAH based on PO is
loop-free (i.e. no loops among classes). This result was also
indicated in Theorem 4, where if 0ijc > , then we must have

() ()i jlevel c level c> to avoid backtracking. We can also reach
the same result by defining minimal and maximal elements.

Definition VII.6: Maximal and minimal elements
Let T be a WOR, an element x Î W is called a maximal

if yØ$ Î W, for whichyT x . If x is unique then it is called a
maximum. Similarly, x is a minimal element if yØ$ Î W for
which xT y holds, if x is unique then it is called a minimum.

Applying the above definition to class accessibility, we
conclude that an AADEC is a minimal, since 0kkc ¢ = for

allk k ¢¹ . On the other hand, a TADEC kc that is not
accessed by an ADEC other than itself (0k kc ¢ = for

allk k ¢¹) is a maximal.

Theorem 5: Loop-Free abstraction
Any DAH developed using class accessibility is loop-free

Proof
Looping (backtracking) occur if ,i jc c$ Ì W, where

(,)i jclassaccessible c c and () ()j ilevel c level c> . We will show

that this never occurs, considering the three cases of minimal,
maximal and intermediate elements.

Case I (minimal): if ic is absorbing, then, it is a minimal
element, and () 0ilevel c = . Then jcØ$ Ì W,

where (,)i jclassaccessible c c , thus () ()j ilevel c level c> cannot
occur.

Case II (maximal): if ic is a maximal element,
then ()ilevel c n= . Thus jcØ$ Ì W, where

() ()j ilevel c level c> .
Case III (intermediate): if ic is an element neither a

maximal nor a minimal, then it must be true that jc$ Ì W,

where (,)j iclassaccessible c c . And it also must be true

that kc$ Ì W, such that (,)i kclassaccessible c c . Since class
accessibility is a PO then () () ()k i jlevel c level c level c< < and
a reverse order can never occur.

From these three cases, we conclude that
() ()j ilevel c level c> will never occur for

all (,)i jclassaccessible c c . Hence it is loop-free.

By providing this proof, we have demonstrated that a DAH
developed by the methodology in hand will always produce
loop-free hierarchical abstractions. Now we will apply our
methodology to an engineering design example.

VIII. AN ILLUSTRATIVE EXAMPLE

We now demonstrate the development of a DAH using the
hierarchical abstraction methodology on an engineering
design of a chemical processing system.

A. Phase I: Representation
As shown in Fig. 1, in the representation phase, we need to

identify and represent the parameters for the design of the
chemical processing system. Moreover, we need to represent
interactions among all design parameters according to the R

matrix representation.

1) Design Parameters of the Chemical Processing System
in [16, 42] provided a high level description of twenty

design elements for a design of a chemical system. These
elements represent the parameter space and are shown in
Table I.

International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:2, No:9, 2008

1033

TABLE I
DESIGN PARAMETERS OF THE CHEMICAL PROCESSING SYSTEM

Design Parameters

1p : Operating structure
design

11p : Seismic design

2p : Vessel design 12p : Piping design

3p : Plant layout/general
arrangement

13p : Process and instrumentation
diagram

4p : Shipping design 14p : Equipment support

5p : Structure lifting design 15p : Pipe flexibility analysis

6p : Pressure drop analysis 16p : Design documentation

7p : Process engineering 17p : Foundation load design

8p : Structural documentation 18p : Insulation structural design

9p : Size valves 19p : Structural bill of material

10p : Wind load design 20p : Assembly design

2) The R Matrix for the Chemical Processing System
Based on the causal relations among the design parameters

that were discussed in Chen and Lin [42], we can develop the
corresponding R matrix using Eq. (1), where we use 1 to
indicate a parameter accessibility between two design
parameters, and zero otherwise. The R matrix is provided
below:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1

1 1 1 1 1 1

1 1

1 1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1 1

1 1 1 1 1 1 1

1 1 1

1 1

1 1 1 1 1

1

1 1 1 1

1 1 1 1 1

1 1 1 1

1 1

p p p p p p p p p p p p p p p p p p p p

æçççççççççççççççççççççççççççççççççç

=

è

R

ö÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷ç ÷ç ÷ç ÷÷ç ÷ç ÷ç ÷ç ÷ç ÷ç ÷ç ÷÷ç ÷ç ÷ç ÷ç ÷ç ÷ç ÷ç ÷ç ÷÷ç ÷ç ÷ç ÷ç ÷ç ÷ç ÷ç ÷ç ÷÷ç ÷ç ÷ç ÷ç ÷ç ÷ç ÷ç ÷÷ç ÷ç ÷ç ÷ç ÷ç ÷ç ÷ç ÷ç ÷÷ç ÷ç ÷ç ÷ç ÷ç ø

The above R matrix is the transpose of the design matrix
provided in Chen and Lin [42]. This is because the causal
relations in Chen and Lin [42] were defined in reversed order
compared to the way they are defined in this research.

B. Phase II: Clustering and Abstraction
In this phase we cluster communicating design parameters

into their subsequent mutually exclusive ADECs and calculate
the subsequent aggregate flow.

1) Clustering the Design Parameters into ADECs
The clustering process for the design parameters is

accomplished using ECFA. The corresponding design
parameters’ to-lists, from-lists and the resultant ADECs
obtained using ECFA are listed in Table II.

In Table II, the design parameters for the chemical
processing system have been abstracted to ten distinct
ADECs. These are 1 {1, 4, 5, 8,10,11,17,18,19}c = , 2 {2}c = ,

3 {3}c = , 4 {6,14, 20}c = , 5 {7}c = , 6 {9}c = , 7 {12}c = ,

8 {13}c = , 9 {15}c = and 10 {16}c = . The abstract design
space includes two AADECs or minimal elements, these are c4

and c10, while the remaining are TADECs. Since we have
more than a single ADEC, we can conclude that the design
parameter space is not irreducible. As discussed earlier, this
provides an early indication that DAHs will be beneficial to
the problem in hand. One distinctive benefit of applying
DAHs to the design of the chemical processing system is the
reduction of the problem size to half of its original parametric
problem representation.

2) The C Matrix for the Chemical Processing System
Now we calculate the aggregate interactions among the

AADECs and the TADECs of the chemical processing system
using Eq.(10). The corresponding C matrix is provided
below:

51 2 3 4 6 7 8 9 10

34 0 0 4 0 0 0 0 0 4

2 1 0 1 0 0 0 1 1 1

1 0 1 0 0 1 0 0 1 1

0 0 0 6 0 0 0 0 0 0

2 1 0 1 1 0 0 1 0 0

2 1 0 1 0 1 0 0 0 0

1 0 0 1 0 1 1 1 1 0

2 0 0 0 0 0 0 1 0 0

2 0 0 2 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 1

c c c c c c c c c c

æ ö÷çççççççççççççççççç= ççççççççççççççççççççè ø

C

÷÷

The canonical form C of the C segregates the AADECs
of C in the first two rows and columns from the TADECs,
which are transferred to the remaining eight rows and columns
of C . C matrix for the chemical processing system is:

International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:2, No:9, 2008

1034

54 10 1 2 3 6 7 8 9

6 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

4 4 34 0 0 0 0 0 0 0

1 1 2 1 0 0 0 0 1 1

0 1 1 0 1 0 1 0 0 1

1 0 2 1 0 1 0 0 1 0

1 0 2 1 0 0 1 0 0 0

1 0 1 0 0 0 1 1 1 1

0 0 2 0 0 0 0 0 1 0

2 0 2 0 0 0 0 0 0 1

c c c c c c c c c c

æ ö÷ç ÷ççççççççççççççççç= ççççççççççççççççççççè ø

C

÷÷÷

TABLE II
CREATING ADECS USING TO AND FROM LISTS

pi To–Lists From–Lists ADECs

p1
{1, 4, 5, 10, 14, 16, 8, 17, 20, 11,

19, 6, 18}

1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 15,

17, 18, 19

{1, 4, 5, 8, 10,

11, 17, 18, 19}

p2
{2, 10, 13, 14, 15, 16, 18, 5, 19, 1,

17, 20, 4, 6, 8, 11}
2, 3, 7, 9, 12 {2}

p3
{3, 8, 9, 11, 15, 16, 1, 4, 6, 10, 18,

2, 5, 17, 20, 14, 19, 13}
3 {3}

p4 {4, 1, 8, 17, 20, 5, 10, 14, 16, 6, 18}
1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 15,

17, 18, 19

{1, 4, 5, 8, 10,

11, 17, 18, 19}

p5
{5, 4, 8, 11, 16, 19, 1, 17, 20, 6, 10,

18, 14}

1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 15,

17, 18, 19

{1, 4, 5, 8, 10,

11, 17, 18, 19}

p6 {6, 14, 20}
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,

14, 15, 17, 18, 19, 20
{6, 14, 20}

p7
{7, 2, 5, 11, 13, 14, 18, 10, 15, 16,

4, 8, 19, 1, 17, 20, 6}
7 {7}

p8
{8, 1, 4, 6, 10, 18, 5, 14, 16, 19, 11,

17, 20}

1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 15,

17, 18, 19

{1, 4, 5, 8, 10,

11, 17, 18, 19}

p9
{9, 2, 5, 17, 20, 10, 13, 14, 15, 16,

18, 4, 8, 11, 19, 6, 1}
3, 9, 12 {9}

p10
{10, 5, 16, 19, 4, 8, 11, 1, 17, 20, 6,

18, 14}

1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 15,

17, 18, 19

{1, 4, 5, 8, 10,

11, 17, 18, 19}

p11
{11, 1, 5, 8, 18, 4, 10, 14, 16, 19, 6,

17, 20}

1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 15,

17, 18, 19

{1, 4, 5, 8, 10,

11, 17, 18, 19}

p12
{12, 5, 9, 11, 13, 15, 20, 4, 8, 16,

19, 2, 17, 1, 18, 6, 14, 10}
12 {12}

p13
{13, 1, 17, 4, 5, 10, 14, 16, 6, 8, 20,

11, 19, 18}
2, 3, 7, 9, 12, 13 {13}

p14 {14, 20, 6}
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,

14, 15, 17, 18, 19, 20
{6, 14, 20}

p15
{15, 1, 4, 6, 14, 5, 10, 16, 8, 17, 20,

11, 19, 18}
2, 3, 7, 9, 12, 15 {15}

p16 {16}
1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 15,

16, 17, 18, 19
{16}

p17
{17, 4, 5, 6, 1, 8, 20, 11, 16, 19, 14,

10, 18}

1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 15,

17, 18, 19

{1, 4, 5, 8, 10,

11, 17, 18, 19}

p18
{18, 8, 11, 16, 19, 1, 4, 6, 10, 5, 17,

14, 20}

1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 15,

17, 18, 19

{1, 4, 5, 8, 10,

11, 17, 18, 19}

p19
{19, 1, 10, 17, 4, 5, 14, 16, 6, 8, 20,

11, 18}

1, 12, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13,

15, 17, 18, 19

{1, 4, 5, 8, 10,

11, 17, 18, 19}

p20 {20, 6, 14}
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,

14, 15, 17, 18, 19, 20
{6, 14, 20}

C. Phase III: Constructing the DAH for the Design Problem
In this phase, we utilize the interactions among the different

ADECs to recursively develop a DAH for the design of the
chemical processing system. As indicated in the
methodology, DAHs are designed to be loop-free. In terms of
the problem in hand, obtaining partial design solutions by
determining the values of some design parameters obtained at
a given abstraction level need not be altered as the design
process progresses hierarchically to more detailed levels.

Each ADEC is assigned to its appropriate abstraction level
using LAA. Here we shall illustrate a step-by-step application
of LAA to the design of a chemical processing system.

1. Initialization: According to LAA, the DAH is
constructed in a bottom-up manner, and executed top-down.
Therefore, the first level to be created is level zero, which is
the lowest level in the DAH. Hence, initially the variable level
is bound to zero (level=0). Moreover, in the initialization step
the unassigned array is set to contain all the classes while the
assigned array is set to be empty.

2. Level Assignment of AADECs: Scanning the C , we will
find that the submatrix D contains only two AADECs, which
are 4c and 10c . Thus, according to LAA they need to be
assigned to level zero (4 10() () 0level c level c= =). The
assigned array and the unassigned array are both updated to
include the recently assigned classes to the former and delete
them from the latter (assigned= 4 10{ , }c c ,
unassigned= 1 2 3 5 6 7 8 9{ , , , , , , , }c c c c c c c c).When no more
AADECs are found, the variable level is raised by one
(level=1).

3. Level Assignment of TADECs: In this part of LAA, we
iteratively assign each TADEC to its appropriate level of
detail, according to two attributes : its relation to the recently
assigned classes (currently depicted in the T submatrix of
C), and the way TADECs interact with one another
(illustrated in the Q submatrix of C). If an unassigned
TADEC k accesses to an assigned class j (0kjc >) that
belongs to the assigned array, but does not access any other
unassigned class i (0kicØ > , ,i k i" ¹) that belongs to the
unassigned array, it is then assigned to the current level. The
process repeats until all classes are assigned to some level in
the DAH. Fig. 4 shows the iterations of LAA applied to the
ADECs of the design problem of the chemical system.

4. Output: The output of the LAA is a complete
specification of the level assignment of each ADEC in the
design problem, which constitutes the DAH shown in Fig. 5.
Fig. 1also illustrates the causal links among different levels of
the DAH, where the solid lines are the ones between two
consecutive levels and the dashed line depicts the ones
otherwise. Moreover, the Fig shows no backtracking among
any of the abstraction levels developed.

International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:2, No:9, 2008

1035

Unassigned cells (k,i) Iteration= 0 ,level= 0
(j)assigned={ } c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

Is absorbing? x x
Level(c4)=0, Level(c10)=0

Unassigned cells (k,i) Iteration= 1 ,level= 1
(j)assigned={c4,c10} c1 c2 c3 c5 c6 c7 c8 c9

Is ckj>0? x x x x x x x
Is not cki>0? (k i) x x
Assign to current level x
Level(c1)=1

Unassigned cells (k,i) Iteration= 2 ,level= 2
(j)assigned= {c1,c4,c10} c2 c3 c5 c6 c7 c8 c9

Is ckj>0? x x x x x x x
Is not cki>0? (k i) x x
Assign to current level x x
Level(c8)=2, Level(c9)=2

Unassigned cells (k,i) Iteration= 3 ,level= 3
(j)assigned= {c1,c4,c8,c9,c10} c2 c3 c5 c6 c7

Is ckj>0? x x x x x
Is not cki>0? (k i) x
Assign to current level x
Level(c2)=3

Unassigned cells (k,i) Iteration= 4 ,level= 4
(j)assigned= { c1,c2,c4,c8,c9,c10} c3 c5 c6 c7

Is ckj>0? x x x x
Is not cki>0? (k i) x x
Assign to current level x x
Level(c5)=4, Level(c6)=4

Unassigned cells (k,i) Iteration= 5 ,level= 5
(j)assigned= { c1,c2,c4,c5,c6 ,c8,c9,c10} c3 c7

Is ckj>0? x x
Is not cki>0? (k i) x x
Assign to current level x x
Level(c3)=5, Level(c7)=5
assigned= {c1,c2,c3 ,c4,c5,c6 ,c7,c8,c9,c10}
unassigned={}
STOP

Fig. 4 Application of the level assignment algorithm to the design of
the chemical processing system

Bottom-up
Abstract model

 building

Top-down
Abstract model

 execution

c4 c1

c3c7

level=0

level=1

level=2

level=3

level=4

level=5

c5 c6

c2

c8 c9

c1

Fig. 5 Abstraction hierarchy for the design of the chemical
processing system

IX. CONCLUSION

We have presented a hierarchical abstraction methodology
suitable for engineering design. The developed hierarchical
abstraction methodology consists of three phases:
representation, abstraction, and layering of clustered abstract
design parameters at multiple levels of the abstraction
hierarchy. The methodology guarantees that partial design
solutions obtained at higher levels of the hierarchy need not be
altered as the design accrues gradually at lower detail levels.
The developed abstraction hierarchies are recursively built
bottom-up, but are executed top-down. A successful
application of the methodology will facilitate improved
decisions at early stages of the design, and allow the use of
resources to focus on critical aspects of the design at its
different phases. Moreover, the presented methodology
identifies design tasks that are possible to accomplish
concurrently. However, the extent of the gained efficiency
largely depends on the context to which this methodology is
applied. A design problem with an irreducible parameter
space will result in an ineffective application, as the benefits
of hierarchical representation will not be realized. Future
research is directed towards identifying special cases of the
parameter space that possess certain desirable characteristics,
such as parallel execution. Moreover, further work will also
examine the magnitude of causal relations to establish
thresholds above which an interaction is considered
significant enough to be accounted for when constructing
abstraction hierarchies for engineering design.

X. APPENDIX

Theorem 1: Interpretation of () 0s
ijr >

If () 0s
ijr > for some 0s > , then jp is accessible from ip

by passing throughs interactions(causal links).

Proof
Consider getting from ip to jp passing through two

interactions. Then, there must be an intermediate parameter
kp to pass through to get to jp , hence (2)

ij ik kj
k

r r r= å . This is

the same as if we multiplied R by itself. Specifically (2)
ijr is

the ij th entry of the (2)
R matrix. Similarly, getting from ip to

jp passing through three interactions. Then,
(3) (2)

ij ij kj
k

r r r= å . By matrix multiplication, (3)
ijr is the ij th

entry of the (3)
R matrix. Therefore, by mathematical

induction ()s
ijr is the ij th entry of the ()s

R . Hence,
() 0s

ijr > indicates that we can reach jp from ip passing
through s interactions.

International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:2, No:9, 2008

1036

Theorem 2: The assignment of design parameters to
abstraction levels

Let ()klevel p denote the level of the design parameter kp in

a DAH. For all ,i jp p Î W, if () 0s
ijr > for some 0s > , then

we must have () ()i jlevel p level p³ to avoid backtracking.

Proof
The above theorem indicates that if jp is accessible

from ip , then, ip should be at that same or a higher level

than jp . By definition, if () 0s
ijr > for some 0s > holds, then

design parameter ip affects design parameter jp . If we

let () ()i jlevel p level p< , then based on the top-bottom
execution jp will be solved before ip . But ip affects jp , hence

solving ip requires resolving jp . Since () ()i jlevel p level p< ,
then this results in backtracking. Therefore, if 0ijr > for

some 0s > , then () ()i jlevel p level p³ must hold to avoid
backtracking.

Theorem 3: The assignment of communicating design
parameters to abstraction level

Let ()klevel p denote the level of design parameter kp in the
DAH. For all ,i jp p Î W, if (,)i jcommunicate p p , then

() ()i jlevel p level p= .

Proof
If (,)i jcommunicate p p , then by definition there exists
1() 0s

ijr > and 2() 0s
jir > for some 1 2, 0s s > . Hence, by

Theorem 2, () ()i jlevel p level p³ and () ()i jlevel p level p£ ,

which implies () ()i jlevel p level p= .

Theorem 4: The assignment of ADECs to abstraction levels
Let ()klevel c denote the level of ADECk in a DAH. For

all ,i jc c Ì W where i j¹ , if 0ijc > , then

() ()i jlevel c level c> to avoid backtracking.

Proof
The proof of this theorem is a direct result of applying

Theorem 2 and Theorem 3. Theorem 4 indicates that if class
ic accesses jc , then ic should be placed at least one level

higher than the level of jc . Based on the definition of
accessibility, if 0ijc > then, and k i l jp c p c$ Î $ Î such

that () 0s
klr > for some 0s > . Based on Theorem 4,
() ()k llevel p level p³ . Since classes consists of

communicating parameters, then () ()i jlevel c level c³ . But
classes cannot communicate, then, it is not possible to have

() ()i jlevel c level c= when 0ijc > . Therefore,

() ()i jlevel c level c> for 0ijc > , and hence ic need to be
considered before jc to avoid backtracking.

REFERENCES

[1] Lam, K.P., "Hierarchical Method for Large-Scale Two-Dimensional
Layout". Journal of Mechanical Design, 1983. 105(2): p. 242-248.

[2] Sebastia, L., E. Onaindia, and E. Marzal, "Decomposition of planning
problems". Ai Communications, 2006. 19(1): p. 49-81.

[3] Holte, R.C. and B.Y. Choueiry, "Abstraction and reformulation in
artificial intelligence". Philosophical Transactions of the Royal Society
of London Series B-Biological Sciences, 2003. 358(1435): p. 1197-
1204.

[4] Goldin, S.E. and P. Klahr. Learning and Abstraction in Simulation. in
International Joint Conference on Artificial Intelligence. 1981: American
Assoc for Artificial Intelligence.

[5] Sacerdoti, E., "Planning in a Hierarchy of Abstraction Spaces". Artificial
Intelligence, 1974. 5(2): p. 115-135.

[6] Taylor, L.E. and M.R. Henderson. Roles of features and abstraction in
mechanical design. in 6th International Conference on Design Theory
and Methodology American Society of Mechanical Engineers, Design
Engineering Division (Publication) DE. 1994. New York, NY: ASME.

[7] Reddy, S.Y., "Learning abstract models for system design". Ai Edam-
Artificial Intelligence for Engineering Design Analysis and
Manufacturing, 1996. 10(2): p. 167-169.

[8] Hoover, S.P. and J.R. Rinderle. Abstractions, design views and focusing.
in 6th International Conference on Design Theory and Methodology
American Society of Mechanical Engineers, Design Engineering
Division (Publication) DE. 1994: ASME, New York, NY.

[9] Sarjoughian, H.S., B.P. Zeigler, and F.E. Cellier. Evaluating model
abstractions: A quantitative approach. in Proceedings of SPIE Enabling
Technology for Simulation Science II. 1998. Orlando, FL, United States.

[10] Kiran, A.S., T. Cetinkaya, and J. Cabrera, "Hierarchical modeling of a
shipyard integrated with an external scheduling application". Winter
Simulation Conference Proceedings, 2001. 2: p. 877-881 (IEEE cat n
01CH37304).

[11] McGraw, R.M. and R.A. MacDonald, "Abstract modeling for
engineering and engagement level simulations". Winter Simulation
Conference Proceedings, 2000. 1: p. 326-334.

[12] Zeigler, B.P., "Hierarchical, Modular Discrete-Event Modelling in an
Object-Oriented Envirionment". Simulation, 1987. 49(5): p. 219-230.

[13] Lin, J.T., K.C. Yeh, and L.C. Sheu, "A context-based object-oriented
application framework for discrete event simulation". Computers &
Industrial Engineering, 1996. 30(4): p. 579-597.

[14] Praehofer, H., "Object oriented, modular hierarchical simulation
modeling: towards reuse of simulation code". Simulation Practice &
Theory, 1996. 4(4): p. 4.

[15] Pidd, M. and R.B. Castro. Hierarchical modular modelling in discrete
simulation. in Winter Simulation Conference. 1998: IEEE, Piscataway,
NJ.

[16] Chen, S.-J., "Project task coordination and team organization in
concurrent engineering", in Department of Industrial Engineering. 1999,
State University of New York at Buffalo: Buffalo, NY.

[17] Knoblock, C., "Automatically generating abstractions for planning".
Artificial Intelligence, 1994. 68(2 Aug): p. 243-302.

[18] Giunchiglia, F. and T. Walsh, "A Theory of Abstraction". Artificial
Intelligence, 1992. 57(2-3): p. 323-389.

[19] Armano, G., G. Cherchi, and E. Vargiu, "Planning by abstraction using
HW[], in Book" in Planning by abstraction using HW[]. 2003. p. 349-
361.

[20] Fishwick, P.A., "Role of Process Abstraction in Simulation". IEEE
Transactions on Systems, Man & Cybernetics, 1988. 18(1): p. 18-39.

[21] Fishwick, P.A., Simulation model design and execution : building digital
worlds. Prentice-Hall international series in industrial and systems
engineering. 1995, Englewood Cliffs, N.J.: Prentice Hall. xvi, 448 p.

[22] Holte, R.C., et al., "Speeding up problem solving by abstraction: a graph
oriented approach". Artificial Intelligence, 1996. 85(1-2 Aug): p. 321-
361.

International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:2, No:9, 2008

1037

[23] Caughlin, D. and A.F. Sisti. A summary of model abstraction techniques.
in Proceedings of SPIE - The International Society for Optical
Engineering. 1997: SPIE.

[24] Sisti, A.F. and S.D. Farr. Model abstraction techniques: an intuitive
overview. in National Aerospace and Electronics Conference,
Proceedings of the IEEE 1998. 1998: IEEE, Piscataway, NJ.

[25] Giunchiglia, F., "Using Abstrips abstractions - Where do we stand?".
Artificial Intelligence Review, 1999. 13(3): p. 201-213.

[26] Minton, S., "Learning Effective Search Control Knowledge: An
Explanation-Based Approach". 1988, Carnegie-Mellon University. p.
231.

[27] Yang, Q. and J. Tenenberg. Abtweak: Abstracting a Nonlinear, Least
Commitment Planner. in Proceedings of the 8th National Conference on
Artificial Intelligence. 1990. Boston, MA.

[28] Christensen, J., "Automatic Abstraction in Planning", in Department of
Computer Science. 1991, Stanford University: Stanford, Ca. p. 153.

[29] Bacchus, F. and Q. Yang. Expected value of hierarchical problem-
solving. in AAAI-92. 1992.

[30] Friske, L.M. and C.H.C. Ribeiro, "Planning under uncertainty with
abstraction hierarchies, in Book" in Planning under uncertainty with
abstraction hierarchies. 2006. p. 1057-1066.

[31] Marie, d., R. Priyang, and G. Lise, "Learning structured Bayesian
networks: combining abstraction hierarchies and tree-structured
conditional probability tables". Computational Intelligence, 2008. 24(1):
p. 1.

[32] Knoblock, C. Search reduction in hierarchical problem solving. in
AAAI. 1991. Anaheim, CA.

[33] Bacchus, F. and Q. Yang, "Downward refinement and the efficiency of
hierarchical problem solving". Artificial Intelligence, 1994. 71(1 Nov):
p. 43-100.

[34] Helmert, M., "The Fast Downward planning system". Journal of
Artificial Intelligence Research, 2006. 26: p. 191-246.

[35] Gimenez, O. and A. Jonsson, "The complexity of planning problems
with simple causal graphs". Journal of Artificial Intelligence Research,
2008. 31: p. 319-351.

[36] Bylander, T., "Computational complexity of propositional STRIPS
planning". Artificial Intelligence, 1994. 69(1-2): p. 165-204.

[37] Kemke, C. and E. Walker, "Planning with action abstraction and Plan
Decomposition Hierarchies". 2006 Ieee/Wic/Acm International
Conference on Intelligent Agent Technology, Proceedings, 2006: p. 447-
451.

[38] Kemeny, J.G. and J.L. Snell, Finite markov chains. 1960, Princeton,
N.J.,: Van Nostrand. 210 p.

[39] Dartmouth College Writing Group and E. Cogan, Modern mathematical
methods and models; a book of experimental text materials. Vol. 2.
1958, Ann Arbor, MI.

[40] Gaver, D.P. and G.L. Thompson, Programming and probability models
in operations research. 1973, Monterey, Ca: Brooks/Cole Pub. Co. xiii,
683 p.

[41] Russell, S.J. and P. Norvig, Artificial intelligence : a modern approach.
Prentice Hall series in artificial intelligence. 1995, Englewood Cliffs,
N.J.: Prentice Hall. xxviii, 932 p.

[42] Chen, S.J. and L. Lin, "A project task coordination model for team
organization in concurrent engineering". Concurrent Engineering-
Research and Applications, 2002. 10(3): p. 187-202.

Esra E. Aleisa is an assistant professor of Industrial and Management
Systems Engineering (IMSE) at Kuwait University. She has received her
Masters and PhD in Industrial Engineering and production systems from the
department of Industrial Engineering at the State University of New York at
Buffalo in 2001 and 2005 respectively. In 1998, she has earned her B.S.
degree in industrial engineering from Kuwait University.

Dr. Esra Aleisa research interests include, Planning and design of large scale
facilities, simulation and improvement of manufacturing and service systems,
multilevel planning and design of complex engineering design, group
technology (GT), and design structured matrices (DSM). She is a member of
Omega Rho, the international operations research honor society, IEEE,
INFORMS, IIE, ASEE.

LI LIN is Professor of Industrial Engineering at the University at Buffalo, the
State University of New York. His research interests include concurrent
engineering and product life cycle design, computer simulation, and
manufacturing systems design and control. Dr. Lin s research has been
supported by the National Science Foundation (NSF), the Environmental
Protection Agency (EPA) and several industrial companies. He has published
over forty papers in refereed research journals.

