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Abstract—Complex engineering design problems consist of 
numerous factors of varying criticalities. Considering fundamental 
features of design and inferior details alike will result in an extensive 
waste of time and effort. Design parameters should be introduced 
gradually as appropriate based on their significance relevant to the 
problem context. This motivates the representation of design 
parameters at multiple levels of an abstraction hierarchy. However, 
developing abstraction hierarchies is an area that is not well 
understood.  Our research proposes a novel hierarchical abstraction 
methodology to plan effective engineering designs and processes.  It 
provides a theoretically sound foundation to represent, abstract and 
stratify engineering design parameters and tasks according to 
causality and criticality.   The methodology creates abstraction 
hierarchies in a recursive and bottom-up approach that guarantees no 
backtracking across any of the abstraction levels. The methodology 
consists of three main phases, representation, abstraction, and 
layering to multiple hierarchical levels. The effectiveness of the 
developed methodology is demonstrated by a design problem. 

Keywords—Hierarchies, Abstraction, Loop-free, Engineering 
Design

I. INTRODUCTION

ESIGN Abstraction Hierarchies (DAHs) are used 
commonly to represent various large-scale and complex 

problems[1, 2].  Their values have been realized across a wide 
spectrum of applications mainly to reduce the complexity of 
problems and to improve solution efficiency [3].  DAHs are 
also used to speed up the development time, save resources, 
and provide aggregate intelligent output[4].  In addition, DAH 
produces designs that are easier to interpret validate and 
update compared to not using hierarchies. Moreover, DAHs 
help explore design alternatives and produce intelligent 
decisions at an early stage of the design or plan [5-7]. 
Furthermore, DHA assist in focusing on important aspects of 
the design problem [8, 9].  For computational efficiency, 
DAHs have also allows parallel execution of models [10], 
facilitates the utilization of the off-shelf models legacy [11], 
and enhances model reusability and rapid prototyping [12-16].  
However, despite DAHs’ significant benefits, there is a lack 
of formal methodologies for hierarchical abstraction 
generation suitable for design.  In fact, hierarchical abstraction 
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in general has been described as a “black art” [17]. In this 
research we aim to provide a formal hierarchical abstraction 
methodology to represent and plan engineering design 
problems at multiple levels of abstraction.  Such that partial 
design solutions obtained at some abstraction level is 
preserved while the design is augmented at more detailed 
levels.  The objectives of the methodology are three fold: 

1. to develop a representation for engineering design 
that supports hierarchical abstraction,  

2. to specify the clustering criteria according to which 
the abstraction process is defined, and  

3. to develop a layering method, by which clusters of 
abstracted design parameters should be stratified in a 
hierarchy, without inducing any backtracking in the 
design process. 

The reminder of this paper is structured as follows: first we 
provide a brief literature review of some of the most persistent 
abstraction systems and the reason why they are cumbersome 
when applied to engineering designs.  This necessitates the 
need for this research. Next we dedicate a separate section to 
explain each of the three developmental phases of our 
hierarchical abstraction methodology.  Then we provide some 
analysis on the methodology and theoretically proof that it is 
loop-free.  Finally, we demonstrate the effectiveness of the 
methodology on the design process of a chemical processing 
system.   

II. LITERATURE REVIEW

Although the nature of research on abstraction 
hierarchies is broad and multi-disciplinary, the most 
detailed work and thorough analysis of abstraction was 
conducted in the field of Artificial Intelligence (AI) 
[18, 19]. Abstraction models and systems were 
classified in various research efforts such as in [4, 6, 8, 
11, 18, 20-24].  One of the earliest semi-automatic 
abstraction systems was ABSTRIPS [5, 25]. Based on a 
STRIPS (Stanford University Research Institute 
Planning System) framework, ABSTRIPS uses a state-
space representation to create abstraction hierarchies by 
removing symbols from the formal language [22].  The 
successors of ABSTRIPS are many, including 
PRODIGY/EBL [26], ABTWEAK [27], PABLO [28], 
ALPINE [17], HIGHPOINT [29],  STAR [22] and 
HW[19].  Other extensions incorporate the 
probabilistic distribution of the operators effects and a 
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distribution of probabilities on the possible initial states 
of a certain domain [30, 31], which incorporates the 
probabilistic distribution of the operators effects and a 
distribution of probabilities on the possible initial states 
of a certain domain.  The main contribution of AI-
based abstraction systems was in identifying properties 
that would render a hierarchical abstraction 
methodology effective. These include characterizing 
abstraction hierarchical methodology to be formal, 
complete, computable, produces simpler models, 
tractable and inexpensive to develop.  Research efforts 
such as in [17, 32].  Bacchus and Yang [29, 33] have 
established properties that guarantee the effectiveness 
of abstraction methodologies.  The essence of these 
properties is to maintain the structure of the solution 
that is obtained at more abstract levels while refining 
the solution quality at more detailed levels.  The 
Downward Refinement Property (DRP) [33, 34]and the 
Ordered Monotonicity Property (OMP) [17] are two 
examples of such. Both properties have the advantage 
of being computable, tractable and capture a large 
spectrum of abstraction models [35].  However, these 
properties are heuristics that cannot guarantee a 
significant reduction in search space.

Despite their valuable contributions in characterizing 
effective abstraction practices, AI-based abstraction 
systems do not offer a convenient tool to construct 
abstraction hierarchies suitable for engineering design.  
That is because most of these systems are based on a 
STRIPS framework. The nature of primitive elements 
in the STRIPS language is cumbersome when used to 
describe engineering design. In fact, in some cases 
STRIPS representation can result in combinatorial 
issues [36].  Furthermore, most of AI-based abstraction 
systems require a goal state to be identified a priori 
which, presents a significant challenge for design 
problems.  This is due to the fact that a designer might 
not be aware in advance what will be the final features 
of the design.  For these reasons, there is an urgent 
need to develop hierarchical abstraction methodologies 
that utilize the AI-based abstraction advances but is 
tailored to the engineering design representation and 
requirements.  For that we propose hierarchical 
abstraction methodology that consists of three phases: 
the representation phase, the abstraction phase, and 
finally the development of a design hierarchy.  The 
details of the methodology are explained in the 
following sections.

III. METHODOLOGY FOR GENERATING ABSTRACTION
HIERARCHIES FOR ENGINEERING DESIGN

The developed abstraction methodology is based on the 
belief that details of a given design problem are not of equal 
importance. Design details need to be considered in sequent 
relative to one another for effective design planning.  Failing 

to consider some precedence requirements when solving a 
design problem will result in resolving large parts of the 
problem if not the entire problem.  This obviously will waste 
time and effort.   

The methodology prescribes a partial order of design 
parameters under consideration, in a hierarchical 
representation.  Such that no backtracking (looping) occurs 
throughout the design process. Eliminating backtracking 
implies that the structure of partial design solutions obtained 
at abstract levels need not be altered as more design details are 
introduced gradually, while the design process is evolving.  
The developed hierarchical abstraction methodology is 
depicted in Fig. 1. 
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Fig. 1 Hierarchical abstraction methodology for design 

As shown in Fig. 1, the methodology of developing 
abstraction hierarchies for engineering design consists of three 
phases:
1. Representation, 
2. Abstraction/clustering, and 
3. Layering. 

In the representation phase, the design parameters’ space, 
denoted by , is represented in a manner that would support 
the abstraction process [37].  This is accomplished by 
identifying the causal relationships between the different 
design parameters of  which are represented by what is so 
called the R  matrix. 

In the abstraction phase, design parameters are clustered 
into their abstract design equivalence classes (ADECs) using 



International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:2, No:9, 2008

1027

an equivalence class formation algorithm (ECFA) and the 
interaction matrix R  as an input.  In this phase, if the 
parameter space  is found to be irreducible, i.e., belongs to a 
single equivalence class, then, we conclude that all the design 
parameters of  communicate with one another.  This means 
that all the design parameters need to be considered 
simultaneously.  If this is the case, then we conclude that 
using a DAH will add no benefit to the original problem 
representation.  The analysts can choose not to consider 
hierarchical abstraction or revise the problem definition to 
eliminate some of the interactions causing irreducibility.  
However, in some cases this may sacrifice the problem 
integrity or even might not be possible, due to the criticality of 
some interactions among some design parameters.  For that 
reason this part is illustrated by dashed lines in Fig. 1.  On the 
other hand, if  is not irreducible, the aggregate flows or 
interactions among ADECs are calculated (using Eq.(10))  and 
the aggregate flow matrix denoted by C  is constructed 
accordingly.  Then the C  matrix is transformed into its 
canonical form written as C to prepare it for the layering 
phase.

Finally, in the layering phase, all the ADECs of  are 
assigned to their appropriate abstraction level in a hierarchy in 
a way that would eliminate any backtracking or looping.  The 
assignment of ADECs to the different hierarchical levels is 
accomplished using a level assignment algorithm (LAA).  The 
details of the three methodology phases are explained in the 
following sections. 

IV. PHASE I: REPRESENTATION OF ENGINEERING DESIGN FOR 
ABSTRACTION

To achieve efficiency in abstraction, the engineering design 
representation should support the clustering criteria according 
to which the abstraction is defined. Since our aim is to 
develop abstraction hierarchies that eliminate backtracking, 
the representation scheme should focus on causal relationships 
among the different design parameters.  Therefore, we will 
use a parametric design representation that highlights the 
causal relationships between the design parameters under 
consideration. 

A. The Parametric Representation of Design 
A parameter design space  is a finite (countable) space of 

all design parameters under consideration. We use ip to 
denote parameter i that belongs to , such that 

1 2{ , , ..., }np p pW=  or .nW = .  If the determination of 
design parameter ip  affects the value of the design 
parameter jp , we say that that parameter ip  accesses 
parameter jp , through causal link ijr . Therefore, ijr  denotes 
the weight or the extent of causality from ip  to jp , such that, 

 0             affect s 

     0            otherwise
i j

ij

p p
r

ì >ïïï= íïïïî
        (1) 

To maintain the direction of causal link ijr , we restrict it to 
be nonnegative, i.e., 0ijr ³  for all i  and j .

Since we can define ijr between every pair of parameters in 
, it is convenient to represent these weights in a two 

dimensional matrix
(n× n)

R .  To be able to trace indirect 
accessibility (or simply accessibility) we can use matrix 
multiplication.  Let ( )s

R  denote that matrix R  is multiplied s
times by itself. Based on matrix theory we can interpret 

( ) 0s
ijr > as the ability to reach jp  from ip passing through s

causal links (interactions). This is shown by Theorem 1 
provided below.  The proof for Theorem 1 provided in the 
appendix. 

Theorem 1: Interpretation of ( ) 0s
ijr >

If ( ) 0s
ijr >  for some 0s > , then jp   is accessible from ip

by passing throughs  interactions(causal links). 

The theorem leads to the definition of accessibility and 
communication provided next. 

B. Accessibility between Design Parameters 
Definition IV.1: Parameter accessibility 
Let ,i jp p Î W, jp  is accessible from ip

( ( , )i jaccessible p p ) if and only if ( ) 0s
ijr$ >  for a some 

1, 2, ...s = .

In this research we refer to (1)
ijr by ijr for simplicity.  Also, it 

is reasonable to assume that each parameter affects itself, so 
we state that every parameter is at least accessible by itself, 
that is: 

0ijr >  , i j" =                 (2) 
Moreover, accessibility is transitive, since: 

, ,i j kp p p" Î W,
( , ) ( , )

( , )
i j j k

i k

accessible p p accessible p p

accessible p p

Ç

Þ
 (3) 

Reflexiveness and transitivity makes accessibility a weak 
ordering relation [38] that can have a partial ordering relation 
induced onto it.  This has the significance of enabling partial 
ordering for the parameters of W, which is the basis for our 
developed abstraction methodology. When two parameters are 
accessible to each other, we say that they communicate.  
Communication is defined below. 

C. Communication among Design Parameters 
Definition IV.2: Parameter communication 
Let ,i jp p Î W, ip  and jp  communicate 

( ( , )i jcommunicate p p ) if and only if the following holds:  

( , ) ( , )i j j iaccessible p p accessible p pÇ        (4) 
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Alternatively, we can say that ,i jp p Î W communicate if 

there exists ( ) 0s
ijr > and ( ) 0s

jir >  for some 1, 2, ...s = .
Communication has the following properties: 

1. ( , )i icommunicate p p , ip" Î W         (5)

2.
( , )

( , )
i j

j i

communicate p p

communicate p pÛ
, ,i jp p" Î W            (6)

3.

( , ) ( , )

( , ),

, ,

i j j k

i k

i j k

communicate p p communicate p p

communicate p p

p p p

Ç

Þ

" Î W

   (7)

Equation (5) indicates that communication is reflexive, 
which is legitimate due to the reflexiveness of accessibility.  
Equation(6) shows that communication is symmetric, which is 
true by definition. Moreover, Eq.(7) points to the transitivity 
of communication that is directly deduced from applying 
Eq.(3) to the communication definition. 

A relation that is reflexive, transitive and symmetric such as 
communication is an equivalence relation[38]. According to 
[39], an equivalence relation has the ability to partition the 
problem space upon which it is defined to disjoint partitions.  
We will use the communication partitioning ability to cluster 
communicating group of parameters into abstract equivalence 
classes.  This will be achieved in phase II of the methodology 
explained in the next section.

V. PHASE II: CLUSTERING TO ABSTRACT DESIGN CLASSES

We construct the abstract design space by clustering related 
design parameters into their abstract design equivalence 
classes (ADECs) according to specified clustering criteria.    
In this research, we utilize communication relations as the 
criteria to cluster design parameters into ADECs.  ADECs are 
formally defined below. 

Definition V.1: Abstract design equivalence class (ADEC)   
An ADEC denoted by kc Í W, 1, 2...k =  is a set of design 

parameters, by which all the members belonging to it 
communicate with one another. 

Hence determining the value of a design parameter affects 
the values of all other design parameters that are members of 
the same class.  Moreover, because the clustering is based on 
an equivalence relation, that is communication, the fowling 
must hold for all ADECs: 

1. k
k

c
"

= ÆI , k"             (8) 

2. k
k

c
"

= WU , k"             (9) 

Definition V.2: Irreducible parameter space 
The parameter space W is said to be irreducible if: kc$

such that kc = W.

Irreducibility implies that the entire parameter space 
communicates with one another, hence belongs to a single
ADEC.  We will later show that there will be no gain when 
applying the developed abstraction methodology to domains 
with an irreducible parameter space. 

A. Algorithm for Clustering Design Parameters into ADECs 

In this section we explain an Equivalence Class Formation 
Algorithm (ECFA) that identifies communicating design 
parameters, and clusters them into their subsequent, disjointed 
ADECs.  Developed by Gaver and Thompson [40]1, ECFA 
identifies ADECs by calculating to-lists and from-lists.  The 
to-lists of parameter i , denoted by iT , contains all the 
parameter that ip  can access in one or more steps.  Similarly a 
from-list of ip  called iF  contains all the parameters from 
which ip  is accessible in one or more steps. Gaver and 
Thompson [40] showed that an equivalence class containing 

ip  denoted by ic is the intersection of the sets iT  and iF  : 

i i ic T F= Ç , i"                (10) 

B. Aggregate Interactions Among ADECs 
The classification of design parameters into ADECs leads 

to the discussion on aggregate interactions or flows that result 
among them.  In previous sections, we used matrices to 
represent the interactions among parameters; we intend to 
carry on the same process for the aggregate interactions. 

Definition V.3: ADEC Interaction matrix
Let kc and kc ¢ be two ADECs.  The interaction matrix C is

a two dimensional matrix such that each entry kkc ¢of C  is 
defined as follows: 

k k

ijkk
i c j c

c r
¢

¢
Î Î

= å å                (11) 

C  is a square matrix of sizem m´ , where m  is the 
number of ADECs in .  Each kkc ¢represents the amount of 
aggregate interactions that exists among the subsequent 
parameters of the two ADECs k  andk ¢, which are 
mathematically the summation of corresponding rows and 
columns of the R  matrix.  We use ( )s

C  to denote the C

matrix multiplied s  times by itself.  Based on the proof of 
Theorem 1 given in the appendix (we did not include a 
separate theorem for ( ) 0s

kkc ¢ >  to avoid repetition), we can 

1 ECFA algorithm was originally used to obtain the communication classes 
of different states in the state-space of Markov chains. We shall modify the 
description of that algorithm to what best suits the problem representation of 
design parameter space. 
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easily show that if ( ) 0s
kkc ¢ >  for some 1, 2, ...s = , then there is 

an interaction between the two ADECs k  and k ¢ passing 
through s  aggregate interactions. Hence we say that 
ADECk ¢ is accessible from ADECk .  This leads to the 
definition of ADEC accessibility. 

Definition V.4: Accessibility of ADECs 
If ,k kc c ¢ Ì W are two ADECs, then we say that kc ¢ is

accessible from kc ( ( , )k kclassaccessible c c ¢ ) if and only if 
there exists:

( ) 0s
kkc ¢ >  , for some 1, 2, ...s =           

 (12) 

As for parameter accessibility, class accessibility has the 
following properties: 

1. Reflexive, since: 
( , )k kclassaccessible c c ¢ , k k ¢" =          (13) 

2. Transitive, due to: 
( , ) ( , )

( , )

, ,

k k k k

k k

classaccessible c c classaccessible c c

classaccessible c c

k k k

¢ ¢ ¢¢

¢¢

Ç

Þ

¢ ¢¢"

   (14) 

As indicated earlier a relation that exhibits reflexiveness 
and transitivity is a weak ordering relationship [38]. This 
property will be used later to partially order the design 
parameters of the design space  in a DAH.  The details of 
this process will be explained in the analysis section of this 
paper.

Another important characterization of ADECs is whether a 
class is absorbing or transient.  The distinction between these 
types of classes is provided in the following definitions. 

Definition V.5: Absorbing ADEC (AADEC) 
An AADEC kc Í W is one where: 

0kkc ¢ =  , k k ¢" ¹               (15) 

Definition V.6: Transient ADEC (TADEC) 
A TADEC kc Ì Wis one where: 

 0kkc ¢$ > , k k ¢¹               (16) 

In other words, an AADEC is a class that does not access 
any class other than itself.  However, a TADEC as one that is 
able to access other classes beside itself. 

C. Canonical Form of the C Matrix 
To prepare the C matrix for the layering phase we 

rearrange its rows and columns, such that the first m t-  ones 
contain the AADECs, while the remaining  t  ones contain the 
TADECs. When this segregation is applied to the C matrix, 

then it is said to be in the  canonical form denote it by C .  A 
general structure of a C  matrix is given in the matrix below: 

                   m t t

m t

t

-

æ ö÷ç ÷ç ÷ç ÷ç ÷- ç ÷ç ÷÷ç ÷ç ÷ç ÷ç ÷= ç ÷ç ÷ç ÷ç ÷÷ç ÷ç ÷ç ÷ç ÷ç ÷ç ÷ç ÷çè ø

D 0

C

T Q

The resultant submatrices of  C  are as follows: 
1. ( ) ( )m t m t- ´ -D  is a diagonal matrix, because it depicts 

the interaction among AADECs only. Note that an 
AADEC has access to no other class but itself (see 
Eq.(15)).

2. ( ) ( )m t t- ´0 consists entirely of zeros, since it is not 
possible to have interaction from AADECs to 
TADECs.

3. ( ) ( )t m t´ -T  depicts the interactions from each TADEC 
to each AADEC. 

4. ( ) ( )t t´Q  depicts the interactions among all the 
TADECs of .

The canonical form has been used requisitely in the 
literature of Markov Chains to study the behavior of the chain 
until absorption.  Here the canonical form will be used as an 
effective tool to organize the aggregate interactions between 
different ADECs.  This will shortly be used to assign each 
ADEC to its appropriate level of abstraction in a DAH.   

VI. PHASE III: LAYERING ADECS TO MULTIPLE
HIERARCHICAL LEVELS

Having defined the relational properties that characterize 
different ADECs, we are now ready to assign each ADEC to 
its appropriate level of abstraction in a DAH.  The layering 
process is designed to eliminate any backtracking in the 
design plan.

The construction of a DAH is conducted in a recursive and 
bottom-up manner. It starts building the hierarchy from the 
lowest level of detail (level zero) and subsequently builds 
higher levels based on the abstract class accessibility 
relationships that exist among different ADECs.  

Level zero is designated to include the details that can be 
postponed until the end when solving the problem 
hierarchically.  However, leveln , the highest level of 
abstraction, includes the details that need to be considered in 
the beginning. Therefore, the algorithm executes the hierarchy 
in a last in first out (LIFO) basis, as it builds the hierarchy in a 
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bottom-up fashion, but expects it to be executed in a top-down 
fashion (see Fig. 2). 

c c c c…

c c c c…

cij

....

...

 (Most abstracted) 

 (Most Detailed) 

Level=i 

Level=n 

Level=i-1 

Level=0 
Bottom-up  

Abstract model 
 building 

Top-bottom  
Abstract model 

 execution 

Fig. 2  Bottom-up abstract model building and top-bottom execution 

The assignment of design parameters to levels is based on 
the theorems given below.   The proof for each of these 
theorems  is provided in the appendix.  

Theorem 2: The assignment of design parameter to 
abstraction levels 

Let ( )klevel p denote the level of the design parameter kp in

a DAH.  For all ,i jp p Î W, if ( ) 0s
ijr >  for some 0s > , then 

we must have ( ) ( )i jlevel p level p³  to avoid backtracking. 

The above theorem indicates that if ip  affects jp , then ip
should at least be at the same or a higher level than jp .

Theorem 3: The assignment of communicating design 
parameters to abstraction levels 

Let ( )klevel p denote the level of design parameter kp in the 
DAH.  For all ,i jp p Î W, if ( , )i jcommunicate p p , then 

( ) ( )i jlevel p level p= .

Theorem 3 indicates that communicating parameters are 
equivalent in terms of level.  Therefore, they need to be 
assigned the same level to avoid backtracking.   

Theorem 4: The assignment of ADECs to abstraction levels 
Let ( )klevel c denote the level of ADECk  in a DAH.  For 

all ,i jc c Ì W where i j¹ , if 0ijc > , then 

( ) ( )i jlevel c level c> to avoid backtracking. 

Based on the above theorems, we can conclude that 
considering ADECs (not parameters) is sufficient to produce a 
DAH with no backtracking.  Next, we incorporate the above 
theorems into a level assignment algorithm that is able to 
generate automatic loop-free DAHs. 

A. The Level Assignment Algorithm 
The Level Assignment Algorithm (LAA) will generate 

DAHs by assigning ADECs to their appropriate level of 
abstraction.  LAA works on the premises of the level 
assignment theorems provided in the previous section. The 
input for LAA is an  that is not irreducible.  If  was 
irreducible, then based on the definition of irreducibility, the 
design parameters of the entire design space would 
communicate with one another.  In that case, according to 
Theorem 3, all the ADECs and their subsequent parameters 
are assigned to the same level.  Therefore, we can conclude 
that a hierarchy cannot be generated, as it would be pointless 
to have a hierarchy of a single abstraction level.    

As shown in
Fig. 3, the LAA first initializes the level variable to zero and 

the ADEC index i  to one.  Moreover, initially the unassigned
array will contain all the ADECs while the assigned array is 
empty. LAA first assigns all AADECs to the lowest level of 
detail, and then assigns TADECs to higher levels of 
abstraction, according to the ADEC accessibility relationship.  
The details of these assignments are discussed below.  

1) The Assignment of AADECs 
By definition, an AADEC does not access to classes other 

than itself.  Therefore, the design parameters that belong to an 
AADEC do not affect any parameters of other ADECs.  For 
that reason, they can be considered as late as possible while 
solving the problem.  Therefore, LAA places them in the 
lowest level of the DAH, that is, level zero.  This complies 
with the establishment of Theorem 1.  The assignment of 
AADECs is depicted in the shaded part of LAA in

Fig. 3. In this part, the algorithm scans all kc ,
1, 2, ...,k m= for AADECs. If kc is absorbing, then, and kc  is 

removed from the unassigned array and added to the assigned 
array. The process repeats until no more AADECs are found.  
Then, the level is raised by one.

2) The Assignment of TADECs 
After assigning all AADECs to level zero, LAA scans the 

C  matrix for any classes in the unassigned array that access 
any of the classes in the assigned array and assigns them to 
the current level.  This assignment is based on Theorem 4. 
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Fig. 3 The level assignment algorithm 

In particular, due to accessibility, if 0ijc > then ic  contains 
at least one design parameter that affects some parameter 
in jc . This means that ic  needs to be considered before jc
and is hence placed in a higher abstraction level 
( ( ) ( )i jlevel c level c> ).   However, we need to make sure that 

there is no other TADEC kc  that is accessed by ic , where, 

0ikc > . This is because we must have ( ) ( )i klevel c level c> ,
which is one level higher than the current level.  In addition, 
we must have ( ) ( ) ( )j i klevel c level c level c> >  to guarantee no 
backtracking (see Theorem 4).  If this is the case ( 0ikc$ > ),
then we postpone the assignment of the level of ic until an 
appropriate time, otherwise ( )ilevel c level=  which is 
currently equal to one. Accordingly, we update the unassigned
array by removing ic and adding it to the assigned array.
The variable level is raised by one again.  And the process 
repeats until all TADECs are in the assigned array.

The next section provides analysis to prove that any DAH 
produced using the developed methodology is loop-free. 

VII. ANALYSIS ON THE HIERARCHICAL ABSTRACTION
METHODOLOGY

In the previous sections we presented an integrated 
recursive bottom-up methodology to build DAHs of a 
parameter space.  The objective of the methodology was to 
produce loop-free abstractions. A loop-free abstraction is one 
where backtracking never occurs across the levels of the 
DAH, which is the key to the success of the developed 
methodology.  In this section we will theoretically 
demonstrate that DAHs developed by the methodology in 
hand are loop-free. 

Definition VII.1: Backtracking 
Let ,i jc c Ì Wbe two ADECs, a backtrack b occurs if: 

1. ( , )i jclassaccessible c c holds, and 

2. ( ) ( )j ilevel c level c>

Therefore, a backtrack b implies that jc was solved 

before ic , because ( ) ( )j ilevel c level c> .  However, as ic

affects jc , due to ( , )i jclassaccessible c c , it will require 
resolving jc , hence a backtrack. 

Definition VII.2: Loop-Free 
A DAH is loop-free if backtracking never occurs across any 

of its abstraction levels. 

The following definitions will assist will assist in proving 
that the developed hierarchical abstraction methodology 
produces loop-free DAHs. 

Definition VII.3: Weak ordering relation 
A relation T that is reflexive and transitive is called a weak 

ordering relation. 

Definition VII.3 was obtained from the theory of ordered 
relations [39].  In previous sections we have shown that 
accessibility in general and class accessibility in particular are 
reflexive and transitive, and thus are weak ordering relations 
(WOR).  The significance of WOR lies in their ability to order 
the design parameters of  according to the relation upon 
which it is defined. In our case, this relation is the accessibility 
relationship.

It is worthwhile to discuss the relation between parameter 
accessibility and class accessibility in terms of the ordered 
relations theory.  This will help justify why class accessibility 
is sufficient enough to produce loop-free abstractions.  This 
discussion will be based on the following definition, which is 
also obtained from the theory of ordered relations [39]. 
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Definition VII.4: Induced relation 
Let T be a WOR, and *T  is a relation defined on the 

equivalence classes of T  so that *uT v  hold between two 
equivalence classes if and only if xT y , whenever 
x uÎ andy vÎ , then *T  is an induced relation onT .

Based on Definition VII.4, class accessibility is a WOR 
induced on accessibility, because it is defined on the 
equivalence classes of accessibility.  Specifically, 

( , )k kclassaccessible c c ¢ hold if and only if ,i k j kp c p c ¢¢$ Î Î ,

where ( , )i jaccessible p p holds.

Definition VII.5: Partial ordering 
A WOR whose equivalence relation is the identity relation 

is called a partial ordering. 

We have shown earlier that communicating parameters are 
equivalent in terms of order (see Theorem 3) such that, 
if ( , )i jcommunicate p p , then ( ) ( )i jlevel p level p= . Since 
ADECs are constructed based on the communication 
relationship, then the induced class accessibility relation is a 
partial ordering (PO).  A PO obtains its name due to the fact 
that the elements of each equivalence class are not ordered 
with respect to one another [41].   Note that PO is a special 
case of WOR as it has the property that none of its elements 
are alike. In other words, we cannot have an identity relation 
among ADECs.  Therefore, the resultant DAH based on PO is 
loop-free (i.e. no loops among classes). This result was also 
indicated in Theorem 4, where if 0ijc > , then we must have 

( ) ( )i jlevel c level c> to avoid backtracking.  We can also reach 
the same result by defining minimal and maximal elements. 

Definition VII.6: Maximal and minimal elements 
Let T be a WOR, an element x Î W is called a maximal

if yØ$ Î W, for whichyT x .  If x is unique then it is called a 
maximum.  Similarly, x is a minimal element if yØ$ Î W for 
which xT y holds, if x  is unique then it is called a minimum.

Applying the above definition to class accessibility, we 
conclude that an AADEC is a minimal, since 0kkc ¢ =  for 

allk k ¢¹ .  On the other hand, a TADEC kc that is not 
accessed by an ADEC other than itself ( 0k kc ¢ = for

allk k ¢¹ ) is a maximal.

Theorem 5: Loop-Free abstraction 
Any DAH developed using class accessibility is loop-free 

Proof
Looping (backtracking) occur if ,i jc c$ Ì W, where 

( , )i jclassaccessible c c and ( ) ( )j ilevel c level c> .  We will show 

that this never occurs, considering the three cases of minimal,
maximal and intermediate elements. 

Case I (minimal): if ic is absorbing, then, it is a minimal
element, and ( ) 0ilevel c = .  Then jcØ$ Ì W,

where ( , )i jclassaccessible c c , thus ( ) ( )j ilevel c level c> cannot 
occur.

Case II (maximal): if ic is a maximal element, 
then ( )ilevel c n= .  Thus jcØ$ Ì W, where 

( ) ( )j ilevel c level c> .
Case III (intermediate): if ic is an element neither a 

maximal nor a minimal, then it must be true that jc$ Ì W,

where ( , )j iclassaccessible c c .  And it also must be true 

that kc$ Ì W, such that ( , )i kclassaccessible c c . Since class 
accessibility is a PO then ( ) ( ) ( )k i jlevel c level c level c< < and 
a reverse order can never occur. 

From these three cases, we conclude that 
( ) ( )j ilevel c level c>  will never occur for 

all ( , )i jclassaccessible c c . Hence it is loop-free. 

By providing this proof, we have demonstrated that a DAH 
developed by the methodology in hand will always produce 
loop-free hierarchical abstractions.  Now we will apply our 
methodology to an engineering design example.   

VIII. AN ILLUSTRATIVE EXAMPLE

We now demonstrate the development of a DAH using the 
hierarchical abstraction methodology on an engineering 
design of a chemical processing system.   

A. Phase I: Representation 
As shown in Fig. 1, in the representation phase, we need to 

identify and represent the parameters for the design of the 
chemical processing system.  Moreover, we need to represent 
interactions among all design parameters according to the R

matrix representation. 

1) Design Parameters of the Chemical Processing System 
in [16, 42] provided a high level description of twenty 

design elements for a design of a chemical system.  These 
elements represent the parameter space  and are shown in 
Table I. 
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TABLE I
DESIGN PARAMETERS OF THE CHEMICAL PROCESSING SYSTEM

Design Parameters 

1p : Operating structure 
design

11p : Seismic design 

2p : Vessel design 12p : Piping design 

3p : Plant layout/general 
arrangement 

13p : Process and instrumentation 
diagram 

4p : Shipping design 14p : Equipment support 

5p : Structure lifting design 15p : Pipe flexibility analysis 

6p : Pressure drop analysis 16p : Design documentation 

7p : Process engineering 17p : Foundation load design 

8p : Structural documentation 18p : Insulation structural design 

9p : Size valves 19p : Structural bill of material 

10p : Wind load design 20p : Assembly design 

2) The R Matrix for the Chemical Processing System 
Based on the causal relations among the design parameters 

that were discussed in Chen and Lin [42], we can develop the 
corresponding R  matrix using Eq. (1), where we use 1 to 
indicate a parameter accessibility between two design 
parameters, and zero otherwise. The  R  matrix is provided 
below:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20                    

1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1

1 1 1 1 1 1

1 1

1 1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1 1

1 1 1 1 1 1 1

1 1 1

1 1

1 1 1 1 1

1

1 1 1 1

1 1 1 1 1

1 1 1 1

1 1

p p p p p p p p p p p p p p p p p p p p

æçççççççççççççççççççççççççççççççççç

=

è

R

ö÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷ç ÷ç ÷ç ÷÷ç ÷ç ÷ç ÷ç ÷ç ÷ç ÷ç ÷÷ç ÷ç ÷ç ÷ç ÷ç ÷ç ÷ç ÷ç ÷÷ç ÷ç ÷ç ÷ç ÷ç ÷ç ÷ç ÷ç ÷÷ç ÷ç ÷ç ÷ç ÷ç ÷ç ÷ç ÷÷ç ÷ç ÷ç ÷ç ÷ç ÷ç ÷ç ÷ç ÷÷ç ÷ç ÷ç ÷ç ÷ç ø

The above R  matrix is the transpose of the design matrix 
provided in Chen and Lin [42].  This is because the causal 
relations in Chen and Lin [42] were defined in reversed order 
compared to the way they are defined in this research.

B. Phase II: Clustering and Abstraction 
In this phase we cluster communicating design parameters 

into their subsequent mutually exclusive ADECs and calculate 
the subsequent aggregate flow. 

1) Clustering the Design Parameters into ADECs 
The clustering process for the design parameters is 

accomplished using ECFA. The corresponding design 
parameters’ to-lists, from-lists and the resultant ADECs 
obtained using ECFA are listed in Table II. 

In Table II, the design parameters for the chemical 
processing system have been abstracted to ten distinct 
ADECs.  These are 1 {1, 4, 5, 8,10,11,17,18,19}c = , 2 {2}c = ,

3 {3}c = , 4 {6,14, 20}c = , 5 {7}c = , 6 {9}c = , 7 {12}c = ,

8 {13}c = , 9 {15}c = and 10 {16}c = .  The abstract design 
space includes two AADECs or minimal elements, these are c4

and c10, while the remaining are TADECs.  Since we have 
more than a single ADEC, we can conclude that the design 
parameter space  is not irreducible. As discussed earlier, this 
provides an early indication that DAHs will be beneficial to 
the problem in hand.  One distinctive benefit of applying 
DAHs to the design of the chemical processing system is the 
reduction of the problem size to half of its original parametric 
problem representation.   

2) The C Matrix for the Chemical Processing System 
Now we calculate the aggregate interactions among the 

AADECs and the TADECs of the chemical processing system 
using Eq.(10).  The corresponding C  matrix is provided 
below:

51 2 3 4 6 7 8 9 10                            

34 0 0 4 0 0 0 0 0 4

2 1 0 1 0 0 0 1 1 1

1 0 1 0 0 1 0 0 1 1

0 0 0 6 0 0 0 0 0 0

2 1 0 1 1 0 0 1 0 0

2 1 0 1 0 1 0 0 0 0

1 0 0 1 0 1 1 1 1 0

2 0 0 0 0 0 0 1 0 0

2 0 0 2 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 1

c c c c c c c c c c

æ ö÷çççççççççççççççççç= ççççççççççççççççççççè ø

C

÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷

The canonical form C  of the C  segregates the AADECs 
of C  in the first two rows and columns from the TADECs, 
which are transferred to the remaining eight rows and columns 
of C . C  matrix for the chemical processing system is: 
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54 10 1 2 3 6 7 8 9                            

6 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

4 4 34 0 0 0 0 0 0 0

1 1 2 1 0 0 0 0 1 1

0 1 1 0 1 0 1 0 0 1

1 0 2 1 0 1 0 0 1 0

1 0 2 1 0 0 1 0 0 0

1 0 1 0 0 0 1 1 1 1

0 0 2 0 0 0 0 0 1 0

2 0 2 0 0 0 0 0 0 1

c c c c c c c c c c

æ ö÷ç ÷ççççççççççççççççç= ççççççççççççççççççççè ø

C

÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷

TABLE II
CREATING ADECS USING TO AND FROM LISTS

pi To–Lists From–Lists ADECs

p1
{1, 4, 5, 10, 14, 16, 8, 17, 20, 11, 

19, 6, 18} 

1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 15, 

17, 18, 19 

{1, 4, 5, 8, 10, 

11, 17, 18, 19} 

p2
{2, 10, 13, 14, 15, 16, 18, 5, 19, 1, 

17, 20, 4, 6, 8, 11}  
2, 3, 7, 9, 12 {2}  

p3
{3, 8, 9, 11, 15, 16, 1, 4, 6, 10, 18, 

2, 5, 17, 20, 14, 19, 13} 
3 {3} 

p4 {4, 1, 8, 17, 20, 5, 10, 14, 16, 6, 18} 
1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 15, 

17, 18, 19 

{1, 4, 5, 8, 10, 

11, 17, 18, 19} 

p5
{5, 4, 8, 11, 16, 19, 1, 17, 20, 6, 10, 

18, 14}  

1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 15, 

17, 18, 19 

{1, 4, 5, 8, 10, 

11, 17, 18, 19} 

p6 {6, 14, 20} 
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 

14, 15, 17, 18, 19, 20 
{6, 14, 20} 

p7
{7, 2, 5, 11, 13, 14, 18, 10, 15, 16, 

4, 8, 19, 1, 17, 20, 6}  
7 {7}  

p8
{8, 1, 4, 6, 10, 18, 5, 14, 16, 19, 11, 

17, 20} 

1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 15, 

17, 18, 19 

{1, 4, 5, 8, 10, 

11, 17, 18, 19} 

p9
{9, 2, 5, 17, 20, 10, 13, 14, 15, 16, 

18, 4, 8, 11, 19, 6, 1} 
3, 9, 12 {9} 

p10
{10, 5, 16, 19, 4, 8, 11, 1, 17, 20, 6, 

18, 14} 

1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 15, 

17, 18, 19 

{1, 4, 5, 8, 10, 

11, 17, 18, 19} 

p11
{11, 1, 5, 8, 18, 4, 10, 14, 16, 19, 6, 

17, 20} 

1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 15, 

17, 18, 19 

{1, 4, 5, 8, 10, 

11, 17, 18, 19} 

p12
{12, 5, 9, 11, 13, 15, 20, 4, 8, 16, 

19, 2, 17, 1, 18, 6, 14, 10}  
12 {12}  

p13
{13, 1, 17, 4, 5, 10, 14, 16, 6, 8, 20, 

11, 19, 18} 
2, 3, 7, 9, 12, 13 {13} 

p14 {14, 20, 6} 
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 

14, 15, 17, 18, 19, 20 
{6, 14, 20} 

p15
{15, 1, 4, 6, 14, 5, 10, 16, 8, 17, 20, 

11, 19, 18} 
2, 3, 7, 9, 12, 15 {15} 

p16 {16} 
1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 15, 

16, 17, 18, 19 
{16} 

p17
{17, 4, 5, 6, 1, 8, 20, 11, 16, 19, 14, 

10, 18} 

1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 15, 

17, 18, 19 

{1, 4, 5, 8, 10, 

11, 17, 18, 19} 

p18
{18, 8, 11, 16, 19, 1, 4, 6, 10, 5, 17, 

14, 20} 

1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 15, 

17, 18, 19 

{1, 4, 5, 8, 10, 

11, 17, 18, 19} 

p19
{19, 1, 10, 17, 4, 5, 14, 16, 6, 8, 20, 

11, 18} 

1, 12, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 

15, 17, 18, 19 

{1, 4, 5, 8, 10, 

11, 17, 18, 19} 

p20 {20, 6, 14} 
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 

14, 15, 17, 18, 19, 20 
{6, 14, 20} 

C. Phase III: Constructing the DAH for the Design Problem 
In this phase, we utilize the interactions among the different 

ADECs to recursively develop a DAH for the design of the 
chemical processing system.  As indicated in the 
methodology, DAHs are designed to be loop-free.  In terms of 
the problem in hand, obtaining partial design solutions by 
determining the values of some design parameters obtained at 
a given abstraction level need not be altered as the design 
process progresses hierarchically to more detailed levels.  

Each ADEC is assigned to its appropriate abstraction level 
using LAA.  Here we shall illustrate a step-by-step application 
of LAA to the design of a chemical processing system. 

1. Initialization: According to LAA, the DAH is 
constructed in a bottom-up manner, and executed top-down.  
Therefore, the first level to be created is level zero, which is 
the lowest level in the DAH. Hence, initially the variable level
is bound to zero (level=0).  Moreover, in the initialization step 
the unassigned array is set to contain all the classes while the 
assigned array is set to be empty. 

2. Level Assignment of AADECs: Scanning the C , we will 
find that the submatrix D contains only two AADECs, which 
are 4c  and 10c .  Thus, according to LAA they need to be 
assigned to level zero ( 4 10( ) ( ) 0level c level c= = ).  The 
assigned array and the unassigned array are both updated to 
include the recently assigned classes to the former and delete 
them from the latter (assigned= 4 10{ , }c c ,
unassigned= 1 2 3 5 6 7 8 9{ , , , , , , , }c c c c c c c c ).When no more 
AADECs are found, the variable level is raised by one 
(level=1).

3. Level Assignment of TADECs: In this part of LAA, we 
iteratively assign each TADEC to its appropriate level of 
detail, according to two attributes : its relation to the recently 
assigned classes (currently depicted in the T  submatrix of 
C ), and the way TADECs interact with one another 
(illustrated in the Q  submatrix of C ).  If an unassigned 
TADEC k  accesses to an assigned class j  ( 0kjc > ) that 
belongs to the assigned array, but does not access any other 
unassigned class i  ( 0kicØ > , ,i k i" ¹ ) that belongs to the 
unassigned array, it is then assigned to the current level.  The 
process repeats until all classes are assigned to some level in 
the DAH.  Fig. 4 shows the iterations of LAA applied to the 
ADECs of the design problem of the chemical system. 

4. Output: The output of the LAA is a complete 
specification of the level assignment of each ADEC in the 
design problem, which constitutes the DAH shown in Fig. 5. 
Fig. 1also illustrates the causal links among different levels of 
the DAH, where the solid lines are the ones between two 
consecutive levels and the dashed line depicts the ones 
otherwise. Moreover, the Fig shows no backtracking among 
any of the abstraction levels developed. 
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Unassigned cells (k,i) Iteration= 0 ,level= 0
(j)assigned={ } c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

Is absorbing?    x      x 
Level(c4)=0, Level(c10)=0 

Unassigned cells (k,i) Iteration= 1 ,level= 1
(j)assigned={c4,c10} c1 c2 c3 c5 c6 c7 c8 c9

Is ckj>0? x x x x x x  x 
Is not cki>0? ( k i ) x      x  
Assign to current level x        
Level(c1)=1 

Unassigned cells (k,i) Iteration= 2 ,level= 2
(j)assigned= {c1,c4,c10} c2 c3 c5 c6 c7 c8 c9

Is ckj>0? x x x x x x x 
Is not cki>0? ( k i )      x x 
Assign to current level      x x 
Level(c8)=2, Level(c9)=2 

Unassigned cells (k,i) Iteration= 3 ,level= 3
(j)assigned= {c1,c4,c8,c9,c10} c2 c3 c5 c6 c7

Is ckj>0? x x x x x 
Is not cki>0? ( k i ) x     
Assign to current level x     
Level(c2)=3 

Unassigned cells (k,i) Iteration= 4 ,level= 4
(j)assigned= { c1,c2,c4,c8,c9,c10} c3 c5 c6 c7

Is ckj>0? x x x x 
Is not cki>0? ( k i )  x x  
Assign to current level  x x  
Level(c5)=4, Level(c6)=4 

Unassigned cells (k,i) Iteration= 5 ,level= 5
(j)assigned= { c1,c2,c4,c5,c6 ,c8,c9,c10} c3 c7

Is ckj>0? x x 
Is not cki>0? ( k i ) x x 
Assign to current level x x 
Level(c3)=5, Level(c7)=5 
assigned= {c1,c2,c3 ,c4,c5,c6 ,c7,c8,c9,c10}
unassigned={} 
STOP

Fig. 4  Application of the level assignment algorithm to the design of 
the chemical processing system 

Bottom-up  
Abstract model 

 building 

Top-down  
Abstract model 

 execution

c4 c1

c3c7

level=0 

level=1 

level=2 

level=3 

level=4 

level=5 

c5 c6

c2

c8 c9

c1

Fig. 5 Abstraction hierarchy for the design of the chemical 
processing system 

IX. CONCLUSION

We have presented a hierarchical abstraction methodology 
suitable for engineering design.  The developed hierarchical 
abstraction methodology consists of three phases: 
representation, abstraction, and layering of clustered abstract 
design parameters at multiple levels of the abstraction 
hierarchy.  The methodology guarantees that partial design 
solutions obtained at higher levels of the hierarchy need not be 
altered as the design accrues gradually at lower detail levels. 
The developed abstraction hierarchies are recursively built 
bottom-up, but are executed top-down.  A successful 
application of the methodology will facilitate improved 
decisions at early stages of the design, and allow the use of 
resources to focus on critical aspects of the design at its 
different phases.  Moreover, the presented methodology 
identifies design tasks that are possible to accomplish 
concurrently.  However, the extent of the gained efficiency 
largely depends on the context to which this methodology is 
applied.  A design problem with an irreducible parameter 
space will result in an ineffective application, as the benefits 
of hierarchical representation will not be realized. Future 
research is directed towards identifying special cases of the 
parameter space that possess certain desirable characteristics, 
such as parallel execution.  Moreover, further work will also 
examine the magnitude of causal relations to establish 
thresholds above which an interaction is considered 
significant enough to be accounted for when constructing 
abstraction hierarchies for engineering design.

X. APPENDIX

Theorem 1: Interpretation of ( ) 0s
ijr >

If ( ) 0s
ijr >  for some 0s > , then jp   is accessible from ip

by passing throughs  interactions(causal links). 

Proof
Consider getting from ip  to jp  passing through two 

interactions.  Then, there must be an intermediate parameter 
kp to pass through to get to jp , hence (2)

ij ik kj
k

r r r= å . This is 

the same as if we multiplied R  by itself. Specifically (2)
ijr  is 

the ij th entry of the (2)
R  matrix.  Similarly, getting from ip  to 

jp  passing through three interactions.  Then, 
(3) (2)

ij ij kj
k

r r r= å .  By matrix multiplication, (3)
ijr  is the ij th

entry of the (3)
R  matrix.  Therefore, by mathematical 

induction ( )s
ijr  is the ij th entry of the ( )s

R .  Hence, 
( ) 0s

ijr > indicates that we can reach jp  from ip  passing 
through s  interactions. 
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Theorem 2: The assignment of design parameters to 
abstraction levels

Let ( )klevel p denote the level of the design parameter kp in

a DAH.  For all ,i jp p Î W, if ( ) 0s
ijr >  for some 0s > , then 

we must have ( ) ( )i jlevel p level p³  to avoid backtracking. 

Proof
The above theorem indicates that if jp  is accessible 

from ip , then, ip  should be at that same or a higher level 

than jp .  By definition, if ( ) 0s
ijr >  for some 0s >  holds, then 

design parameter ip  affects design parameter jp .  If we 

let ( ) ( )i jlevel p level p< , then based on the top-bottom 
execution jp  will be solved before ip . But ip affects jp , hence 

solving ip requires resolving jp .  Since ( ) ( )i jlevel p level p< ,
then this results in backtracking. Therefore, if 0ijr >  for 

some 0s > , then ( ) ( )i jlevel p level p³ must hold to avoid 
backtracking.

Theorem 3: The assignment of communicating design 
parameters to abstraction level 

Let ( )klevel p denote the level of design parameter kp in the 
DAH.  For all ,i jp p Î W, if ( , )i jcommunicate p p , then 

( ) ( )i jlevel p level p= . 

Proof
If ( , )i jcommunicate p p , then by definition there exists 
1( ) 0s

ijr >  and 2( ) 0s
jir >  for some 1 2, 0s s > .  Hence, by 

Theorem 2, ( ) ( )i jlevel p level p³  and ( ) ( )i jlevel p level p£ ,

which implies ( ) ( )i jlevel p level p= .

Theorem 4: The assignment of ADECs to abstraction levels 
Let ( )klevel c denote the level of ADECk  in a DAH.  For 

all ,i jc c Ì W where i j¹ , if 0ijc > , then 

( ) ( )i jlevel c level c> to avoid backtracking. 

Proof
The proof of this theorem is a direct result of applying 

Theorem 2 and Theorem 3.  Theorem 4 indicates that if class 
ic accesses jc , then ic  should be placed at least one level 

higher than the level of jc .  Based on the definition of 
accessibility, if 0ijc > then,  and k i l jp c p c$ Î $ Î  such 

that ( ) 0s
klr >  for some 0s > .  Based on Theorem 4, 
( ) ( )k llevel p level p³ .  Since classes consists of 

communicating parameters, then ( ) ( )i jlevel c level c³ . But 
classes cannot communicate, then, it is not possible to have 

( ) ( )i jlevel c level c=  when 0ijc > .  Therefore, 

( ) ( )i jlevel c level c>  for 0ijc > , and hence ic  need to be 
considered before jc  to avoid backtracking. 
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