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Abstract—In this paper we propose a robust adaptive fuzzy 

controller for a class of nonlinear system with unknown dynamic. 

The method is based on type-2 fuzzy logic system to approximate 

unknown non-linear function. The design of the on-line adaptive 

scheme of the proposed controller is based on Lyapunov technique. 

Simulation results are given to illustrate the effectiveness of the 

proposed approach. 

Keywords—Fuzzy set type-2, Adaptive fuzzy control, Nonlinear 

system. 

I. INTRODUCTION

HE control of nonlinear systems has been an important 

research topic [1]-[3]. Traditionally, control system 

design has been tackled using mathematical models derived 

from physical laws. In fact, most of the parameters and 

structure of the system are unknown due to environment 

changes, modelling errors and unmodeled dynamics. To 

overcome the above problems in the design of control systems 

several techniques have been emerged in the recent years 

especially techniques based on the intelligent technology such 

as neural networks, fuzzy logic, genetic algorithms and 

evolutionary computation [2]-[4]-[6]. In particular, fuzzy logic 

systems (FLS) have been successfully applied to control 

complex or ill-defined processes whose mathematical models 

are difficult to obtain [9]-[10]. The ability of converting 

linguistic descriptions into automatic control strategy has 

made it a practical and promising alternative to the classical 

control scheme for achieving control of complex nonlinear 

systems [5]-[7]. However, fuzzy logic systems have a major 

drawback which is expressed in the fact that the fuzzy rules 

must be previously tuned by time-consuming trial-and-error 

procedures because of lack of adequate analysis and design 

techniques. To overcome this problem, researchers have 

focused on the Lyapunov synthesis approach to construct 

stable adaptive fuzzy controllers. The basic idea of most of 

these works is that with the universal approximation ability of 

fuzzy logic systems, the system uncertainties can be 

represented by linearly parameterized uncertainties so the 

standard parametric adaptive techniques can be utilized [11]-

[13]. 
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Many researches have shown that type-1 FLS have 

difficulties in modeling and minimizing the effect of

uncertainties [6]-[12]. One reason is that a type-1 fuzzy set is 

certain in the sense that the membership grade for a particular 

input is a crisp value. Recently, type-2 fuzzy sets, 

characterized by membership functions (MF) that are 

themselves fuzzy, have been attracting interest [6]-[12]. For 

such sets, each input has unity secondary membership grade 

defined by two type-1 MF, upper MF and lower MF. 

A FLS using at least one type-2 fuzzy set is called a type-2 

FLS. The wide range of applications of type-2 FLS have 

shown that it provide good solutions, especially in the 

presence of uncertainties [6]. Similar to the conventional 

adaptive control, adaptive fuzzy control can be categorized 

into direct, indirect and composite schemes according to the 

type of fuzzy rules [13].  

In this paper, we present an adaptive fuzzy control for a 

class of nonlinear systems with unknown dynamic. The basic 

idea is that first the type-2 FLS is utilized to approximate the 

unknown nonlinear function, and then the fuzzy parameters 

are adjusted on-line by the adaptive laws with stability and 

convergence analysis using the Lyapunov approach in order to 

achieve the specified tracking performance. 

This paper is organized as follows. Section 2 describes the 

type-2 FLS. In section 3, we propose the adaptive fuzzy 

control. Section 4 presents numerical results which validate 

the proposed approach. Concluding remarks are given in 

section 5. 

II. TYPE-2 FUZZY LOGIC SYSTEMS

The basic configuration of a fuzzy logic system consists of 

a fuzzifier, a fuzzy rule base, a fuzzy inference engine and a 

defuzzifier. The structure of a type-2 FLS is similar to type-1 

counterpart, the major difference being that at least one the 

fuzzy set in the rule base is type-2. A type-2 fuzzy set 

characterized by membership functions that are themselves 

fuzzy. The key concept is footprint of uncertainly (FOU), 

which models the uncertainties in the shape and position of 

the type-1 fuzzy set. Fig. 1 illustrates a type-2 fuzzy MF with 

FOU shown as shaded area. The output of inference engine 

for a type-2 FLS is type-2 sets. Hence a type-reducer is 

needed to convert them into type-1 sets before defuzzification 

can be carried out. 
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Fig. 1 Type-2 fuzzy sets

A.  Inference in a type-2 FLS 

The inference engine uses the fuzzy IF-THEN rules to 

perform a mapping from an input vector T
nxxxx ),,,( 21 to 

an output scalar y .

The fuzzy rule base consists of a collection of fuzzy IF-

THEN rules in following form: 

ii
nn

iii GisythenFisxandFisxandFisxIfR
~~~~

: 2211  (1) 

where
i
jF

~
 are the antecedent sets 

( mi ,,2,1 , nj ,,2,1 ),
iG

~
 are the consequent sets and 

m is the number of rules. 

The first step in the extended sup-star operation is to obtain 

the firing set

n

j
jF

i xxF i
j1

~ )()(   (2) 

by performing the input and antecedent operations. As only 

interval type-2 sets are used and the meet operation is 

implemented by the product t-norm, the firing set is the 

following type-1 interval set: 
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 are the lower and upper 

membership grades of )(~ jF
xi

j

, respectively. 

Next, the firing set )( xf i  is combined with the consequent 

fuzzy set of the ith rule using the product t-norm to derive the 

fired output consequent sets. 

B.  Type-reduction for interval type-2 FLS and 

defuzzification 

Since the output of the inference engine is a type-2 fuzzy 

set, it must be type-reduced before the defuzzifier can be used 

to generate a crisp output. This is the main structural 

difference between type-1 and type-2 FLC. The most 

commonly used type-reduction method is the center-of- sets 

type-reducer. The center-of-sets type reducer replaces each 

consequent set by its centroid (which itself is a type-1 set if 

the consequent set is type-2) and finds a weighted average of 

these centroids, where the weight associated with the ith

centroid is the degree of firing corresponding to the ith rule, 

namely 
n

j
jF

xi
j1

~ )( . The expression for the type-reduced set 

is given by [13] 
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where  and * denotes the chosen t-norm, iGi
i CCy ~  the 

centroid of the ith consequent set and 
n

j
jF

ii xxFf i
j1

~ )()( the degree of firing associated with 

the ith consequent set for mi ,,2,1 .

For an interval type-2 FLS, each Yi and Fi is an interval 

type-1 set, then 1)()( i

F

i

Y
fy ii . Equation (4) can be 

rewritten as 
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The fuzzifier maps a crisp point T
nxxxx ),,,( 21  into a 

fuzzy set. The defuzzifier maps fuzzy set in R to crisp points 

in R. 

By using the singleton fuzzification, product inference and 

centre-average defuzzification, the output value of fuzzy 

system is: 

),()( txxy
T    (6) 

where TmTm yyy ),,,(),,,(
2121 is the parameter 

vector, and Tmx ),,,()(
21 is the vector of fuzzy basis 

functions (usually we assume 1)(
i

Y
yi ).

III. Problem Statement and Design Adaptive Fuzzy Control 

Consider a general class of SISO n-th order nonlinear 

systems described as: 

1
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Or equivalently 

xy

tdutxgtxfx n )(),(),()(

 (8) 

where nT
n

Tn Rxxxxxxx ),,,( 21
)1( ),,,( is the state vector 

of the system which is assumed to be available for 

measurement, Ru and Ry  are respectively the input and 

the output of the system, , gf are nonlinear system functions 

representing the dynamic system behaviour and control gain 

respectively. )(td is the unknown external disturbance. We 

require the system (8) to be controllable, the input gain 

0t),xg( is necessary. 

In many real application, t),xg(txf and),( may not be 

exactly known, which can be split into two parts as: 

),(),(),(

,),(),(),(

txgtxgtxg

txftxftxf
 (9) 

where ),( txf and ),( txg denote the nominal parts and 

),( txf and ),( txg represent their uncertain part 

respectively.

Without loss of generality, we have the following 

assumptions: 

1) x  belong to a compact set 
x

n
x MxRxU : , where xM

is positive constant. 

2) ),( txf and ),( txg are bounded as follows:

n
x RUxtxGtxgtxFtxf ),(),(),,(),(

3) mdtd )( , where md is upper bound. 

4) The gain ),( txg is strictly positive and globally bounded 

away from zero by a known constant g0, i.e 0),( 0gtxg  for 

all xUx

We use type-2 fuzzy logic system (6) to approximate the 

unknown nonlinear functions ),(and),( txgtxf

respectively : 
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Where 
f
 and 

g
 are free to be tuned adaptively and 

),(and),( txtx gf
are a regressive vector. 

Define the optimal parameters of type-2 fuzzy systems: 
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It is assumed that the optimal vectors
*

f and
*

g minimize 

the modelling error lie in some convex region: 

ff
m

ff MR /  (13) 

gg
m

gg MR /  (14) 

where the radii fM and gM are positive constants. 

Since )(ˆ
fxf  and )(ˆ

gxg are interval type-2 fuzzy 

systems, then the type-reduced sets will be given respectively 

by: 
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ii gf and are the degrees of firing associated with the ith rule 

of the FLS )(ˆ
fxf and )(ˆ

gxg , respectively. 

Equation (15) and (16) may be computed using the Karnik-

Mendel iterative method [13]. It has been proven that this 

iterative procedure can converge in at most N iterations.

Once rlrl ggff ˆandˆ,ˆ,ˆ are obtained, they can be used to 

calculate the crisp output. Since the type-reduced set is an 

interval type-1 set, the defuzzified output is: 
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and
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l ff denote the firing values used to compute the left 

point
lf̂  and right point 

rf̂ , respectively. 
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Based on the universal approximation theorem [11]-[13], 

the above fuzzy logic system is capable of uniformly 

approximating any well-defined nonlinear function over a 

compact set Ux to any degree of accuracy. 

The control problem is to obtain the state x  in order to 

track a desired state dx in the presence of model uncertainties 

and external disturbance with the tracking error 

nTn
d Reeexxe ),,,( )1(  (24) 

Define T
ncccC )1,,,,( 121 , the coefficients of the 

Hurwitiz polynomial 
1

2
1

1)( cch n
n

n , i.e. all the 

roots are in the open left half-plane. 

If the functions ),( txf  and t),xg(  are completely known 

and 0)(td , we can solve the control problem stated above 

by the so-called feedback linearization method. In this 

method, the functions ),( txf  and t),xg(  are used to 

construct the following feedback control law: 
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However, ),( txf , t),xg(  and disturbance are actually 

unknown in practical systems, we cannot use them for 

constructing the control law (25). Therefore, to solve these 

problems, we replace them by their estimates with the type-2 

fuzzy logic systems )(ˆ),(and)(ˆ),(
gf

xgtxgxftxf  to 

construct a self-tuning controller
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However, the law uc applied to the system (8) can not lead 

to a Lyapunov function ePeV T

2

1  with a time derivate 

negative. To overcome this problem, we add a component us

that will force the time derivate of the function of Lyapunov 

to be negative. us is called the supervision control. 

sc uuu (27)

The resulting control law is as follows: 
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with adaptive law is gives: 
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THEOREM

For the controlled system (8) with type-2 fuzzy logic 

system to approximate the unknown nonlinear function (6), if 

assumptions (1-4) are true, then the closed-loop control 

system with control signal defined by (27) and adaptive law 

defined by (29) is globally stable in the sense that all signals 

involved are bounded, with the tracking error converging to 

zero.

PROOF

We use the Lyapunov approach in which us and the 

adaptive law are chosen such that to make a Lyapunov 

function decrease along the trajectories of the adaptive system. 

Applying the control law (27) to the system (8), after some 

manipulation, results in the error dynamic equation 
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Since A is a stable matrix, there exists a unique positive 

definite symmetric nxn matrix P that satisfies the Lyapunov 

equation

QPAPAT , where Q is an arbitrary nxn positive - definite 

symmetric matrix. 

We consider the following Lyapunov function candidate 

ePeV T

2

1
1

(31)

The time derivative of 1V along the system trajectory is 
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Substitute su defined in (28) into (33), then we have 

0
2

1
1 eQeV

T   (34) 

For adjusting the parameters of the self-tuning fuzzy 

controller (27), we chosen another Lyapunov function 

candidate

g
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T
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21
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With 

gggfff

**
,

21 and are positive constants specified by the designer. 

Define the minimum approximation error: 
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The error dynamic equation becomes: 
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The time derivate of V2 along the trajectories of (37) equals 
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Substitute
gf and defined by (29) into (38), then we 

have
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With us previously calculated, and given that PBe
T  is on 

the order of the minimal approximation error  (minimal 

effect), eQeV
T

2

1
1

 is the best result that can be obtained. 

IV. SIMULATIONS RESULTS

In this section, we test the adaptive fuzzy controller on the 

tracking control of a second order nonlinear servomechanism 

model described by the following equation [8]: 

dqfqqm )(  (40) 

where q and q  denote velocity and position, respectively. 

)(qf  is the nonlinear term depending on q. m  and  are the 

mass and damping , respectively.  is the torque, and d  is 

the disturbance. 

The dynamic equations of the servomechanism can be 

described in space state as: 

1

2

21

)(),(

xy

tdutxfx

xx

 (41) 

uxfxtxf ),(),( 12

with qx1
and qx2

The control objective is to maintain the system to track the 

desired angle trajectory )01.0sin()3/( tx dd .

The parameters of the model are given as kgm 1 , 1 ,

)200,1(045.0 randd , IQ 10 ,

12.50005.0000-

5.0000-2.6042
P ,

The coefficients of the Hurwitz polynomial are set as 

10,24c 21 c , 6fM  and 0267.1
~
V . Set the initial 

condition TTxxx )0,2(),( 21 , the learning rate 5.01

and step size at 0.01s. 

The simulation results are shown in Fig. 3 and 4, which 

demonstrates the convergence that the tracking error is 

guaranteed with unknown nonlinear function and in the 

presence of disturbance. The membership function for system 

state 1x is represented in Fig. 2. Then there are 3 rules to 

approximate the system function )sin(4.0)( 11 xxf .

V.  CONCLUSION

In this paper, we presented an adaptive fuzzy control for a 

class of nonlinear system based on the Lyapunov synthesis 

approach. We introduced the type-2 fuzzy logic system to 

approximate the unknown nonlinear term. The main 

advantage of the proposed adaptive fuzzy controller is that it 

does not need any knowledge about the nonlinear term. The 

simulation results have show that the effectiveness of the 

adaptive controller in achieving the desired performance. 

Fig. 2 - Type-2 membership functions used for the adaptive fuzzy 

controller.

Fig. 3 - The state x1 and its desired value xd.

Fig. 4 - Control signal. 
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