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Abstract—A multi-agent system is developed here to predict 

monthly details of the upcoming peak of the 24th solar magnetic 
cycle. While studies typically predict the timing and magnitude of 
cycle peaks using annual data, this one utilizes the unsmoothed 
monthly sunspot number instead. Monthly numbers display more 
pronounced fluctuations during periods of strong solar magnetic 
activity than the annual sunspot numbers. Because strong magnetic 
activities may cause significant economic damages, predicting 
monthly variations should provide different and perhaps helpful 
information for decision-making purposes. The multi-agent system 
developed here operates in two stages. In the first, it produces twelve 
predictions of the monthly numbers. In the second, it uses those 
predictions to deliver a final forecast. Acting as expert agents, genetic 
programming and neural networks produce the twelve fits and 
forecasts as well as the final forecast. According to the results 
obtained, the next peak is predicted to be 156 and is expected to 
occur in October 2011- with an average of 136 for that year. 
 
Keywords—Computational techniques, discrete wavelet 

transformations, solar cycle prediction, sunspot numbers.  

I. INTRODUCTION 
HE Zurich sunspot number is an index representing daily 
appearances of huge dark areas on the Sun’s visible 

surface. A daily sunspot number is computed using 
information gathered from observatories located around the 
world. The daily number is Nd = A (10 g + f), where A is an 
adjustment factor that accounts for observing conditions as 
well as differences among observatories and among observers, 
g is the number of groups of sunspots, and f is actual count of 
visible spots. The daily numbers are averaged monthly (Nm) 
and annually (Na). Figure 1 has plots of Na of the past 23 
cycles. As the figure shows, the sunspot number has a clear 
cyclical pattern where the observed cycles differ in length and 
magnitude. Predicting the lengths and magnitudes of them 
remain a challenge. Perhaps this is why the annual sunspot 
number is among the most analyzed and forecasted time series 
in history. [1-8] are among the many who forecasted the series. 
Having an accurate forecast of the next cycle peak is critical to 
plan satellite orbits and space missions as well as manage 
power and communication systems on Earth [7].  

Although a link between the “annual” sunspot number and 
disruptions to high-frequency radio communications, radars, 
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and power systems on Earth does exist, it seems that such link 
should be even stronger when evaluating the impact of 
“monthly” solar magnetic activity. Figure 2 shows the more 
pronounced variations in the average monthly counts (Nm) 
relative to the annual counts (Na) for the last few cycles. 
Clearly, the monthly average sunspot number naturally 
provides more detailed information than the annual number. 
Logically then, predicting short term (i.e., monthly rather than 
annual) variation in magnetic activities, particularly when they 
are strong, may help plans to ward off impacts and economic 
damages the strong magnetic activities may cause. 
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Fig. 1. Historical representation of the Zurich annual sunspot relative 

number 1749-2008. 
 

 
Fig. 2. The dotted line is of the unsmoothed monthly sunspot 

numbers (Nm) while the continuous one depicts the annual 
(Na) sunspot numbers for 1951-2008. 

 
The focus in this paper is on predicting the “unsmoothed” 

monthly average sunspot number. The unsmoothed monthly 
number (Nm) is a simple summation of the observed daily 
numbers for a month divided by the number of days in that 
month. Investigating and forecasting unsmoothed monthly 
sunspot numbers is not the norm. Estimating and forecasting 
the smoothed monthly numbers (SNm) is (see [9-13] for 
example). SNm are calculated as an annual moving average 
using thirteen months. More specifically,  

SNm7 = [(Nm1/2)+(Nm2+Nm3+...+Nm12)+ (Nm13/2)]/12 (1) 
where if Nm1 = January of current year, Nm7 = July and Nm13 = 
January of next year, SNm7 = the smoothed average for July 
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[14]. Other monthly averages are computed similarly. 
In general, predictions of the sunspot number are obtained 

using either time series analyses (rooted in statistical methods 
as well as computational techniques) or precursor methods 
(rooted in solar physics and pioneered by [1]). Statistical 
methods capture the dynamics of the observed cyclical 
behavior of the numbers recorded. Precursor methods rely on 
hypothetically possible physical changes. Because neither time 
series analyses nor precursor methods are based on the true 
fundamentals underlying the solar magnetic cycles (because 
they are unknown), obtaining accurate predictions using 
computational powers is warranted. While there are already 45 
predictions of solar cycle 24 tabulated in [15], this paper 
introduces yet another method to predict the magnitude and 
timing of cycle 24. One key assumption distinguishes this 
effort from others, specifically, what happens in a current time 
period follows what happened in a prior set of periods at a 
distant past, i.e.; a lag structure. An examination of the 
observed data suggests that it takes about four years from a 
low point defining the beginning of a cycle for a maximum or 
cycle peak to be reached, and from that peak, it takes six to 
seven years to decay reaching its end and the birth of a new 
one [13]. A model can then be constructed such that periods 
with a given trend are explained by the preceding cycle’s 
similar trend. Thus, observed values along the range when the 
sunspot numbers are rising (or when a cycle is at its beginning) 
should follow a path similar to the prior period of time when 
they were also rising, and so on. Figure 3 is a demonstration of 
such a lag structure scheme. If all cycles were eleven years 
long, the lag structure would also be eleven years long and a 
logical model to capture such dynamics using monthly data 
would be Nm,t = f (Nm,t-132) where t = 1, …, M months and t-
132 represents the eleven-year lag. Since cycles are not all 
eleven years long (the mode is ten), the lag length may then be 
structured such that it captures a combination of lags that may 
account for variations in cycle-lengths . The lag structure then 
should capture variations that represent cycles between six and 
twelve years in length and the functional model would be Nm,t 
= f (Nm,t-72, …, Nm,t-144). 

Adopting such a lag structure is a significant departure from 
existing time-series and physically-based methods. Time-series 
methods extract information from observed or measured 
historical dynamics to use in predicting future activity. Studies 
applying time-series methods to analyze and predict the 
sunspot numbers are plentiful [2-4, 16-18].   Physically-based 
or precursor-like methods  forecast solar activity using 
estimation of the strength of the Sun’s solar dynamo by 
monitoring geomagnetic precursors (geomagnetic fluctuations) 
near solar minimum [1].  

The proposed adoption of a distant lag structure has an 
advantage. In Nm,t = f (Nm,t-72, …, Nm,t-144), values of a model’s 
explanatory (right-hand-side variables) are known a priori. 
This means that values of the explanatory variables do not 
have to be forecasted when predicting a number of periods 
equal to the lowest lag length. Using actual values of 

explanatory variables reduces prediction errors. Using actual 
values is particularly beneficial when the system’s dynamics 
are nonlinear as is the case with sunspot numbers. 
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Fig. 3. Determining lag structure according to the direction the 

numbers are moving. Increasing values assumingly follow 
increasing values while decreasing ones follow decreasing one. 

 
The monthly data (Nm) employed start October, 1950 and 

end September 2008. The Estimation period starts February 
1960 and ends May 2003. Model validation starts June, 2003, 
and ends September, 2008. The forecast period starts October, 
2008 and ends February, 2014. The monthly data of 
unsmoothed sunspot numbers (Nm) were obtained from the 
National Geographic Data Center, NOAA [19].  

Several agents are employed to model and predict the 
monthly sunspot number. The agents first compete then 
cooperate to produce what is postulated to be a more reliable 
forecast. All agents rely on detecting pattern-recognitions the 
historical monthly values may have using two computational 
techniques, genetic programming and neural networks. The 
methodology employed is presented in Section II. Estimation 
results are in Section III. Predictions of solar cycle 24 are in 
Section IV. The final section has the conclusion. 

II. METHODOLOGY 
This section introduces the structure of a two-stage multi-

agent system to predict the monthly numbers. Acting as expert 
agents, genetic programming (GP) and neural networks (NN) 
produce twelve competing fits and forecasts of the monthly 
series first. In the second stage, the expert agents employ the 
twelve fits and forecasts as inputs to produce a final forecast. 
The development of the multi-agent system is based on two 
assumptions: (a) the dynamics of monthly sunspot numbers are 
characteristically nonlinear dynamics as Figure 2 above 
suggests, and (b) the observed values may be a combination of 
deterministic and random unknown functions. If these two 
assumptions are realistic, computational search techniques 
become rather attractive and well-suited to find models that 
should deliver reasonable forecasts. The twelve competing fits 
and forecasts are obtained by independent agents that utilize 
the modeling capabilities the two expert agents. The models 
they produce utilize the observed series and two different 
transformations of them. In the first transformation, observed 
series are decomposed using a discrete wavelet transformation 
(DWT). In the second, the observed series are decomposed 
using a discrete Fourier transformation (DFT). Prior 
applications of GP and NN to DWT are in [20-22]. DFT was 
never used to transform sunspot numbers. Both 
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transformations amount to adopting a divide-and-conquer 
strategy. The observed values are transformed into more than 
one component first. The components are then modeled and 
estimated separately. This strategy is attractive because 
reconstruction of the original observed series using the 
estimated values of the components can be obtained by simple 
inverse transformation processes. Using this strategy, twelve 
fits and forecasts of Nm are obtained independently. These 
twelve Nm outputs are then used as input to produce a 
reconciliatory final forecast of Nm. Figure 4 has a flow chart of 
the multi-agent system used to obtain the final forecast values 
of Nm. 

 

 
Fig. 4. A flow chart showing the twelve outputs the agents deliver to 

use in obtaining a final forecast of the monthly sunspot number. 
 

Figure 4 start to the very left with a set of input variables. 
Output 1 (appearing near the end of the right side of the flow) 
is produced by an agent who applies GP to the raw data. 
Output 2 is produced by adding Output 1 to an output 
produced by an agent who uses NN to find a model that fits the 
residuals from Output 1. The residuals from Output 1 represent 
variations in the dependent variable that GP failed to explain. 
Using NN to fit those residuals (employing the exact same 
explanatory variables as GP) may succeed in capturing a 
portion of what the first agent missed. Output 2 is the 
summation of Output 1 values to the NN-fitted GP residuals. 
The assumption is that the new values should (but not 
necessarily) deliver results that are better than Output 1 would. 
The third agent uses NN to do exactly what the first agent did 
using GP. The fourth agent then fits the NN residual using GP 
to capture some of the variations missed in Output 3. The 
addition of the GP-fitted residuals to Output 3 gives Output 4. 
Outputs 5-8 are produced in a similar manner to that of 
Outputs 1-4 except that the input variables are wavelet-
transformed first. Outputs 9-12 are produced in a similar 
manner to that of Outputs 5-8 except that the input variables 
are discrete-Fourier transforms (where LF is for the low-
frequency and HF is for the high-frequency data to be 
described below).  

Use of computational (or artificial intelligence) techniques 
as well as wavelet or Fourier data transformations to predict 
sunspot numbers is not new. GP was used in [22-26]. Use of 
NN in predicting sunspot numbers are [5,6, 21, 22 and 27-29] 
among many others. Wavelet transformations are in [8, 22 and 
30-33]. However, using computational techniques as 
competing agents that ultimately produce a cooperative 
forecast is new. The balance of this methodology section 
contains a review of GP, NN, DWT, and DFT. 

A. Genetic Programming 
GP is a computationally intensive search technique designed 

to optimize a specified function. It is used here to obtain 
nonlinear-regression type models by minimizing their 
estimation mean square error (MSE). The GP employed here is 
a computer code written such that it evolves the best model 
using “survival of the fittest” Darwinian-like thought. The 
code is designed to evolve model specifications useful in 
forecasting [34]. A description of how GP is used in 
forecasting and its statistical properties are in [35]. The GP 
software used in this study is TSGP [36] written for Windows 
environment in C++. To execute TSGP, the user needs to 
provide two types of input: data input files and a configuration 
file. Data values of the dependent and each of the independent 
variables must be provided in separate files. The configuration 
file contains execution information including the name given 
to the dependent variable, the number of observations to train 
or fit, the number of observations to forecast, and other GP-
specific parameters. TSGP produces two types of output files. 
One has a final model specification and the other contains 
actual and fitted values as well as performance statistics (R2, 
historic MSE, and ex post prediction MSE).  

The TSGP code is programmed to assemble a user defined 
fixed number of regression-like equations. Each equation is 
assembled by randomly selecting from the given explanatory 
variables and a set of operators. The operators used typically 
include +, –, *, ÷, natural logarithm (Ln), exponential, sine, 
cosine, and square root. An equation is represented in the 
program by a parse tree. Figure 5 is an example of a 
hypothetical parse tree. The tree consists of nodes and arcs. 
The inner nodes take the operators while the end nodes (or 
terminals) take one of the explanatory variables or a constant. 
Constants are randomly generated numbers (between -128 and 
+127). Because of the many possible internal computations 
that take place during execution, standard protections are 
programmed. If in X/Z, Z = 0, then X/Z = 0. If in X½, X < 0, 
then X½ = – X|½. If in Ln(X), X < 0, then Ln(X) = – Ln(|X|). 
These protections are designed to protect the computer from 
halting during execution.  

When executed, TSGP starts by randomly assembling an 
initial population of (say) 1000 equations and solves each to 
obtain fitted and forecasted values. Fitted values (i.e., the 
solution using an assembled equation) are compared with 
historical values of the dependent variable and the residuals or 
errors are computed. TSGP evaluates the equations and ranks 
them according to their fitness (MSE). Equations with the 
lowest MSE (considered as members of the population with 
“good” genes) are kept in memory and are used to breed a new 
generation of equations that has the same population size. 
Typically the best 10% (user defined percentage) of the 
assembled equations are preserved. To breed a new 
generation, the program adds to the 10% held in memory new 
equations assembled using crossover and mutation. In 
crossover, two equations are randomly selected from the 
previous population and parts of those equations are swapped. 
This is similar to two parents having two offspring who inherit 
genes from each parent. If the offspring are fitter than the 
parents, they survive and the parents die. If not, the parents 
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survive since they are fitter. In mutation, part of a randomly 
selected equation is replaced by randomly-assembled operators 
and terminals. Breeding continues for a number of generations 
(defined by the user) before the program terminates and saves 
the best equation generated in the computer’s memory. Figure 
6 has a flow chart of the GP architecture used to obtain the 
fittest equation. 
 

 
               Fig. 5. Example of a parse tree representation. 

 

Fig. 6. The GP architecture to evolve regression-like equations. 
After assembling an initial equation, the program computes 
each equation’s fitness (MSE). If an equation delivers an 
output with the specified threshold MSE (= 0.001 here), there 
is no reason for the search to continue. Else the search 
continues until a maximum number of generations (also 
prescribed by the user) is reached. 

 
TSGP does not deliver a best-fit model every time it evolves 

an equation. It is therefore necessary to produce a large 
number of equations (typically 100) in a single run. Because 
many of the best-fit equations may or may not have predictive 
power, the following steps are used to find the best predicting 
model: 

-  Sort the 100 best-fit equations according to their MSE.  
- Use the evolved models to predict out-of-sample values 

for which the outcome is already known (i.e., the ex post 
forecasts).  

- Select the output among the lowest 10 (arbitrarily set) 
with the lowest ex post prediction MSE as the best model to 
use in forecasting the unknown future values of the dependent 
variable (i.e., the ex ante forecast). 

B. Neural Networks 
Neural networks (NN) are an information-processing 

paradigm based on the way the densely interconnected parallel 
structure of the human brain processes information. NN are 
known for their ability to detect structure in time-series. A 
neural network is a collection of mathematical models that 
emulates the nervous systems and draws on the analogies of 
adaptive learning.  

NN have been around for more than thirty years now. Plenty 
of advancement took place and continues to take place as can 

be found in [37] among many others who describe their 
development and how NN are used in forecasting. 
NeuroSolutions [38] is the software used here in training the 
networks that forecast the monthly sunspot numbers. 

Multilayer perceptions (MLP) and generalized feedforward 
(GFF) types of networks were found appropriate in training 
networks that would forecast the observed monthly numbers 
and their transformations. MLP is a layered feedforward 
network that learns nonlinear function mappings. It employs 
nonlinear activation functions. Networks are typically trained 
with static backpropagation and require differentiable, 
continuous nonlinear activation functions such as hyperbolic 
tangent or sigmoid. A network takes explanatory variables as 
input the activation function uses to produce fitted values of a 
dependent variable. Figure 7 has a network architecture with 
one-hidden layer. Although MLP trains slowly and requires a 
large number of observations, it seems to approximate well. 
GFF is a generalization of MLP with connections that jump 
over layers. GFF also trains with static backpropagation.  

 
Fig. 7.  Flow diagram of a NN architecture. In this flow, there are j 

= 1, …, k input variables, only one hidden layer with h 
processing elements and one output layer of predicted values. 

C. Discrete Wavelet Transformations 
Among the types of wavelets available to choose from, only 

the Haar wavelet is capable of reversing transformations of the 
observed data to obtain the exact original series [39]. This 
makes the Haar wavelet suitable for producing forecasts 
reconstructed from predictions of the transformed components. 
(More on this wavelet is in [40-42].)  

A wavelet transform is a scaling function used to 
decompose a signal into father and mother wavelets. Father 
wavelets are representations of a signal’s smooth or low-
frequency component. Mother wavelets are representations of 
the details or high-frequency component in a signal. Haar 
wavelets are the simplest to use. They are a decimated process 
where half the number of observations disappears at successive 
levels of scaling. To generate Haar wavelet-transforms of a 
series Yt, mid-point averages (s1) and mid-point differences 
(d1) of consecutive pairs of observations are obtained first. 
Averages preserve the main signal. Differences capture the 
series’ detailed fluctuations. In turn, mid-point averages (s1) 
are transformed into their mid-point averages (s2) and their 
mid-point differences (d2), and so on. The values of the mid-
point averages and differences are known as “coefficients” in 
the literature on wavelets. Obtaining these coefficients is 
referred to as a discrete wavelet transform process (DWT).  
Alternatively, DWT maps a vector of Yt values to a vector of 
wavelet coefficients w, or 
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where J is the number of scales, and 
sJ = (sJ,1, sJ,2, …, sJ,T/2

J)′        
 dJ = (d J,1, dJ,2, …, dJ,T/2

J)′      
  dJ-1 = (d J,1,1, dJ-1,2, …, dJ-1,T/2

J)′                  (3) 
                   ...  =  …                      

            d1 = (d1,1, d1,2, …, d1,T/2
J)′.                       

To transform a series to a maximum of J components, that 
series must be of length T = 2J. The sJ,t = (sJ-1,2t + sJ-1,2t-1)/2 are 
averages and the dJ,t = (sJ-1,2t – sJ-1,2t-1)/2 are the differences. 

Given a series’ wavelet transformed coefficients sJ and dJ, 
…, d1 in (3) above, and if a series has T = 512, setting J = 4 
produces five series: s4 and d4 with 32 coefficients each, as 
well as d3, d2, and d1 with 64, 128, and 256 coefficients in 
each, respectively. Figure 10 shows the DWT of 512 
unsmoothed monthly sunspot numbers with scaling level J = 4 
as well as their inverse discrete wavelet transform (IDWT). 
IDWT, which was constructed using s4, d4, d3, d2, and d1, is 
identical to the original series before transformation. 

In the figure, the transformed sequences (s4, d4, d3, d2, and 
d1) portray different levels of complexity. Series s4 represents 
the clearest or most predictable component (given that it is the 
smoothed point taken every 16 or 24 months). Series d4 
captures what may be viewed as systematic changes in the 
signal, and therefore may be fairly predictable as well. Series 
d3 is more complex because it captures changes over a shorter 
period of time (23 or 8 months), and so on. Noise is captured 
mostly in series d1. The search for models for each of the five 
data sets (s4, d4, d3, d2, and d1) is possible if the number of 
observations in sJ is sufficiently large since the others (d4, d3, 
d2, and d1) must also contain a sufficient number of 
observations to fit models. Setting J = 4 is appropriate because 
if J = 5, s5 and d5 will have very few values – only 16 – to 
construct a model with.  

Given that the five DWT series are independent, each 
should be modeled separately. The model specification 
assumed for s4 is: 

s4,t = f (s4,t-5, s4,t-6, s4,t-7, s4,t-8).       (4) 
In (4), s4 is assumed to be a function of four distant but 
consecutive lagged values. If s4 has 32 observations, only 24 
observations are used for training or fitting models after 
accounting for lags. With lags = (t-5) to (t-8), the estimated 
equation for this specification can produce a forecast for four 
periods without “predicted” values used as input. Similarly,  

d4,t = f (d4,t-5, …, d4,t-8) ;       (5) 
d3,t = f (d3,t-9, …, d3,t-16);           (6) 

d2,t = f (d2,t-17, …, d2,t-28);       (7) 
d1,t = f (d1,t-33, …, d1,t-56).           (8) 

The number of observations used to fit and forecast d4 is also 
24, it doubles for d3, doubles again for d2, and then doubles 
again for d1. The five resulting models are used to compute 
fitted and forecast values of the five series.  

 
Fig. 8. The average monthly sunspot number Haar wavelet 

transformations and their inverse. 
A forecast is obtained by shifting the starting point forward 

before inversion. In shifting, a number of older values are 
deleted and replaced by an equal number of forecast values 
added. Using this method, equations (4) and (5) provide four-
step-ahead forecasts, equation (6) provides an eight-step-ahead 
forecast, equation (7) provides a 16-step-ahead forecast, and 
(8) provides a 32-step-ahead forecast. The final inverting step 
thus produces a 64-step-ahead forecast. The resulting inverted 
data set still contains 512 observations with the last 64 being 
forecast values. 

D. Discrete Fourier Transformations 
A DFT acts as a digital filter that divides the observed series 
into two components of low-frequency and high-frequency. 
The data observed values are signal in the time domain while 
DFT is the frequency domain. The process is a digital filter 
because some of the variations are filtered out to obtain the 
bigger picture. The low-frequency component is obtained first. 
Most of the amplitude is confined to the very smooth low-
frequency component. The high-frequency component is the 
residual. It has nearly zero average and small amplitude but 
contains all the rapid variations  
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Fig. 9. These are frequency transformations of the monthly numbers. 

The main signal is captured by the low-frequencies (with a clear 
cyclical pattern) while the high-frequency resembles what appears 
to be noise fluctuating closer to the zero line.   

.Figure 9 shows the low- and high-frequency 
transformations of the monthly sunspot numbers. Full 
description of the method and software used to obtain the low- 
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and high-frequency series from the observed data are in [43]. 
GP and NN are then used to search for the best model that 
would fit the low- and high-frequency transformations 
obtained and forecast their future values. Fitted and forecast 
values of the observed series is a straight forward process once 
the estimates and forecasts from the best models of the 
transformed series are obtained. Inversion is completed by a 
simple addition of the low- and high-frequency fitted 
transformations. 

III. ESTIMATION RESULTS 
Only the final estimation results of the models obtained and 

their statistics are presented here. Their forecast results are 
presented in the next section. The input variables were 
identical when using GP and NN. Parameters to evolve GP 
models were set as follows: Population size = 1000, number of 
generations = 120, mutation rate = 60%, crossover rate = 20%, 
reproduction or cross self rate = 10%, selection method = 
tournament, maximum age = 2000, and the number of best-fit 
equations to evolve = 100. A trial-and-error NN search routine 
to find the best fit is implemented. In each run, one of 
parameters (the number of hidden layers, the momentum 
learning rule, or the maximum number of epochs) is varied. 
The number of hidden layers started at one and is increased by 
a second to evaluate if the increase made any difference. The 
momentum learning rule starts at 0.9 and is reduced by 0.1 
using one and two hidden layers. With each combination, the 
maximum epochs starts at 1000 and are increased by 500 with 
each combination until the best output is obtained. The best 
results were found mostly using a single hidden layer with five 
input processing elements, a TanhAxon transfer function, used 
momentum learning rule (with step size = 1.0 and momentum 
= 0.7), and a number of epochs ranging between 1000 and 
5000. For the most, a multilayered perceptron system with a 
layered feedforward network trained with static 
backpropagation was used. 

Table 1 contains the estimation characteristics of the 
estimation results. In the first column, the agents participating 
in producing the forecasts are listed. The label ‘GP’ (or ‘NN’) 
alone indicates that only a GP (or NN) algorithm was used to 
obtain fitted values of the observed monthly sunspot numbers. 
‘GP-NN’ indicates that the output combines the monthly 
series’ fitted values using GP and GP’s residuals fitted values 
using NN (i.e., cooperation between two agents). ‘W’ stands 
for wavelet transformations and ‘F’ stands for Fourier 
transformations. ‘Mix’ represents the final GP or NN equation 
that reconciliates between the above twelve outputs. The 
second column has the mean error of fitted values. Standard 
error and t-statistics follow. These statistics help test whether 
the mean error is significantly different from zero at the 5% 
level of significance or not. Only four of the twelve outputs 
have a mean error that is significantly different from zero (with 
t-stat > 1.96). Interestingly, the final output (‘Mix’) has a mean 
error that is not significantly different from zero at the 5% 
level of significance. MSE (in the fifth column) provides a 
comparison of how the different agents succeeded in fitting 
historical data. The results in the table suggest that the best 

forecast should be obtained using GP to fit the wavelet-
transformed data added to the NN-estimated residuals (where 
the residuals were obtained after inverting the GP-wavelet 
fitted values).  

TABLE I ESTIMATION RESULTS OF BEST OBTAINED FITS

 Nm Outputs 

  
Mean 
Error 

Std.  
Err. t-stat MSE R2 

GP 8.92 1.80 4.97 1139.98 0.61 
GP-NN 1.97 1.09 1.81 394.67 0.87 
NN 1.49 1.22 1.23 488.58 0.83 
NN-GP 2.13 1.12 1.90 420.24 0.86 
GP-W 2.95 1.10 2.67 407.60 0.86 
GP-W-NN 0.06 0.55 0.11 101.03 0.97 
NN-W 0.88 1.05 0.84 362.75 0.88 
NN-W-GP -0.30 1.08 -0.28 386.76 0.87 
GP-F 4.50 1.67 2.69 938.70 0.68 
GP-F-NN -1.74 1.33 -1.31 585.49 0.80 
NN-F 3.75 1.86 2.02 1147.67 0.61 
NN-F-GP 1.77 1.28 1.38 542.66 0.82 
Mix -0.12 0.98 -0.12 317.88 0.89 

IV. PREDICTION RESULTS 
Statistics on prediction results are summarized in Table 2. 

The table reports the MSE and Theil’s U statistic. Theil’s U is 
a measure of forecast performance and is defined as: 
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where f = 1, 2, …, F, F = number of observations forecasted ex 
post (or with known outcomes),  and fŶ are forecast values of 

fY . This statistic will always fall between zero and one where 
zero indicates a perfect fit [44, p. 387]. 

The results in the table suggest that GP-W has the lowest 
prediction MSE and lowest U-statistic and therefore produced 
the best ex post forecast among the competing twelve agents. 
However, ‘Mix’ produces the best forecast. Figure 10 shows 
the monthly fits of the last three cycle peaks and the forecast of 
the next solar peak of the unsmoothed monthly sunspot 
numbers ‘Mix’ delivers. Their annualized predictions (2000-
2013 only) are in Figure 11.  

0

50

100

150

200

250

19
72

19
74

19
77

19
79

19
81

19
83

19
86

19
88

19
90

19
92

19
95

19
97

19
99

20
01

20
04

20
06

20
08

20
10

20
13

Actual Fitted Ex post Ex ante

 
Fig. 10. Fitted and forecasted values of the unsmoothed monthly 

sunspot numbers. 
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TABLE II THE EX POST NM PREDICTION RESULTS 
     MSE    Theil's U 
GP 112.58 0.168 
GP-NN 68.18 0.135 
NN 165.75 0.189 
NN-GP 125.19 0.199 
GP-W 57.74 0.122 
GP-W-NN 204.76 0.21 
NN-W 210.82 0.218 
NN-W-GP 171.21 0.198 
GP-F 394.472 0.292 
GP-F-NN 312.298 0.267 
NN-F 591.888 0.297 
NN-F-GP 153.828 0.195 
Mix 29.07 0.088 

 
Table 3 presents the unsmoothed monthly number forecasts 

for 2011 and 2012. The unsmoothed monthly as well as the 
annual averages forecasts suggest that the next peak is 156 and 
it is expected to occur around the month of October in 2011. 
Taken annually, 2011 is expected to be year when the peak of 
cycle 24 occurs.  

The forecast in Table 3 is significantly different from more 
than 45 forecasts of sunspot numbers already available. Table 
4 contains a small sample of available forecasts. Information in 
the table was obtained from a summary provided in [15]. The 
selection covers the most recent forecasts only. Although not a 
comprehensive comparison by any measure, the table shows 
that most believe that the peak will occur in 2012 and at a 
level substantially lower than expectations forecasted by the 
best model here.  
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Fig. 11. Fitted and forecasted values of the annual average of the 

unsmoothed monthly sunspot numbers. 

TABLE III PREDICTED 2011 AND 2012 MONTHLY NUMBERS 
Month Nm Month Nm 

2011.01 142 2012.01 136 
2011.02 128 2012.02 142 
2011.03 135 2012.03 134 
2011.04 126 2012.04 133 
2011.05 132 2012.05 126 
2011.06 130 2012.06 137 
2011.07 132 2012.07 137 
2011.08 130 2012.08 141 
2011.09 131 2012.09 136 
2011.10 156 2012.1 126 
2011.11 149 2012.11 106 
2011.12 139 2012.12 108 

Mean 136 Mean 130 
 

TABLE IV COMPARISON OF FORECASTS OF CYCLE 24
Author Date Predicted +/- Expected 
Clilverd et al. 2006 42 35 ? 
Javariah 2007 74 10 ? 
Baranovski 2006 80 21 2012 
Schatten 2005 80 30 2012 
Pesnell 2006 101 20 2012 
Hirmath 2007 110 11 2012 
Pesnell 2006 115 40 2011 
Nevanlinna 2007 124 30 2010 
Tritakis et al. 2006 133 � 2009 
Kennewell & Patterson 2006 134 50 2011 
Gholipour et al. 2005 145 � 2011/12 
Hathaway & Wilson 2006 160 25 ? 
Mean � 108 � ��
Median 2006 113 28 2012 

V. CONCLUSION 
A new system that employs multiple modeling agents and 

utilizes two computational modeling techniques was 
introduced to forecast the unsmoothed monthly sunspot 
numbers. The forecasts are of monthly data to help capture the 
dynamics of solar activity hidden when forecasting annual 
data. The models introduced in this paper were designed with 
the assumption that a repeated pattern of magnetic activities 
exists. Twelve modeling agents produced competing forecasts 
of the unsmoothed monthly sunspot numbers first. Four of the 
twelve series used the observed data. The other eight used 
transformations of the observed series. Transformations were 
obtained in two ways. First, the monthly series was 
transformed using the discrete Haar wavelet transform (DWT). 
It produced five series to predict. Using a history of 512 
observations, the five series obtained had 256, 128, 64, 32, and 
32 observations. The two computational modeling techniques 
– genetic programming and neural networks – then produced 
two competing fits and forecasts of the five series. Employing 
the Haar wavelet made it possible to inverse the process and to 
obtain the fitted and forecasted values of 512 observations. By 
shifting the starting point forward by 64 observations, it was 
possible to produce a 64-month ahead forecast. The series 
were then decomposed using a discrete Fourier transformation. 
Here only two series were produced: one captured what may 
be considered the signal while the other (the residuals) 
represented noise. The resulting series were then fitted and 
forecasted using the two computational techniques. The twelve 
competing forecasts produced were then used as input and 
fitted using genetic programming and NN. GP produced the 
final best forecast.  

The final best forecast obtained suggested that the next 
annual peak of sunspot numbers will be at about 136 and will 
occur in 2011. The monthly peak is predicted to be at 156 and 
is expected to occur in October 2011. On average, a few recent 
predictions identified in the literature forecast a lower peak to 
occur in 2012.  
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