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A Transfer Function Representation of
Thermo-Acoustic Dynamics for Combustors
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Abstract—In this paper, we present a transfer function
representation of a general one-dimensional combustor. The input
of the transfer function is a heat rate perturbation of a burner and
the output is a flow velocity perturbation at the burner. This paper
considers a general combustor model composed of multiple cans with
different cross sectional areas, along with a non-zero flow rate.
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I. INTRODUCTION

AN appropriate modeling of thermo-acoustic behaviors of

a combustor is a critical for a prediction and prevention

of the combustion instability. The combustion instability

is a self-excited thermal and/or mechanical oscillation of

a combustor system, which is caused by a dynamic

interplay between a heat rate perturbation and velocity

perturbation ; (i) a heat rate perturbation of a burner can cause

an acoustic velocity perturbation and (ii) conversely, a velocity

perturbation in return makes a heat rate perturbation of a

burner. A positive feedback among those two dynamics is a

source of a combustion instability.

The second velocity-to-heat dynamics commonly described

as a flame transfer function, is usually obtained from

experiments. The first heat-to-velocity dynamics, we call it

an acoustic transfer function, is very hard to be precisely

found. This is because the combustor is a distributed parameter

system and thus its thermal and acoustic behaviors are

characterized by a set of coupled nonlinear partial differential

equations (PDE’s) in the fields of fluid dynamics and acoustics.

In order to circumvent those complications, a one-dimensional

acoustic model of a combustor is widely adopted in literature.

A good reference for this topic can be found in [1].

This paper presents a step-by-step procedure for a derivation

of an acoustic transfer function. In principle we adopt existing

approaches in literature such as [2]-[5] but we also make some

generalizations for combustors composed of multiple cans with

different areas.

II. ACOUSTIC MODEL

A. Wave Model

In this section, we consider a one-dimensional combustor

model composed of two cans (different cross sectional areas)

as shown in Fig. 1. The pressure and velocity perturbations in
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two sections have the following representations (k = i, i+1) ;
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Fig. 1 Combustor with two cans

pk(x, t)− pk := p′k(x, t)
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=
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ρkck

[
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ρi(x, t)− ρi := ρ′k(x, t)

=
1

c2i

[
A+
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(
t− x− xi−1

ci + ui

)
+A−

i

(
t− xi − x

ci − ui

)]
(1)

where pk, uk, ρk, ck denote the pressure, velocity, density,

sound speed of the interval x ∈ (xk−1, xk). In addition the

overbar symbol denotes mean value and A±
k (x, t) are unknown

functions.

Choosing x = xi and applying the Laplace transformation

to (1), we have

p̃′k(s) = Ã+
k e

−τ+
k s + Ã−

k

ρkckũ
′
k(s) = Ã+

k e
−τ+

k s − Ã−
k

c2i ρ̃
′
i(s) = Ã+

i e
−τ+

i s + Ã−
i

τ±k : =
xk − xk−1

ck ± uk
(k = i, i+ 1)

(2)

where the symbol˜represents the Laplace transform and s ∈ C

is a complex Laplace variable.
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B. Governing Equations

We wish to find relations between four wave functions

A±
k (xi, t) (k = i, i + 1) across at x = xi in Fig. 1. The

relations come from the following three (mass, momentum

and energy) conservations laws

[ρuA]
2
1 = 0,[

(p+ ρu2)A]2
1
= 0,[

(ηpu+ ρu3/2)A]2
1
= q̇i, η :=

γ

γ − 1

(3)

where the subscript/superscript {1, 2} denote {xi − ε, xi + ε}
for small ε > 0. Ai denotes the cross-sectional areaes of the

interval x ∈ (xi−1, xi) and q̇′i denotes a heat rate perturbation

at the point x = xi in Fig. 1.

Explicitly, (3) can be written as

αiρ2u2 = ρ1u1,

αi(p2 + ρ2u
2
2) = p1 + ρ1u

2
1,

αi(η2p2u2 + ρ2u
3
2/2) = η1p1u1 + ρ1u

3
1/2 + q̇i/A1,

αi := Ai+1/Ai

(4)

where, for notational simplicity, we mixed subscripts {1, 2}
with {i, i+ 1}.

We will use the mass and energy conservation laws as given

in (4) but for the momentum conservation, a modification is

to be made as will be explained in the following sections.
1) Mass Conservation: The mass conservation law in (4)

gives a conservation condition at an equilibrium state

αiρ2u2 = ρ1u1 (5)

and its perturbed form

αiρ
′
2u2 = ρ′1u1 + ρ1u

′
1 − αiρ2u

′
2 (6)

which can be rewritten as

u2
2ρ

′
2 =

u1u2

αi
ρ′1 +

ρ1u2

αi
u′
1 − ρ2u2u

′
2 (7)

The equillibrium and perforbation forms (5) and (6) will

be merged into the momentum and energy conservation laws

below.
2) Momentum Equation: Note that, under the next

conditions

A1 �= A2 (or αi �= 1), u1 ≈ 0, u2 ≈ 0, (8)

the momentum conservation law (4) gives rise to a

discontinuity p′1(x1, t) �= p′2(x1, t) at the flame, which is not

physically intuitive. For a resolution of this, while keeping the

momentum conservation law alive as much as possible, one

may consider a simple modification

p2 + ρ2u
2
2 = p1 + ρ1u

2
1/αi (9)

instead of the previous form in (4). This new law says that

the momentum is not conserved but either increased if αi > 1
or decreased if αi < 1. A physical justification of the new

momentum law (9) is accredited to axial forces at x = xi in

[5]. A perturbed of (9) is given as

p′2 + ρ′2u
2
2 + 2ρ2u2u

′
2 = p′1 +

u2
1ρ

′
1 + 2ρ1u1u

′
1

αi

(10)

By combining this result with the mass equation (7), we can

obtain

0 = p′2 − p′1 + ρ2c2u
′
2M2 +

u1

c21αi
(u2 − u1) c

2
1ρ

′
1

+
ρ1

ρ1c1αi
(u2 − 2u1) ρ1c1u

′
1 (11)

From the representation (10), perturbation form (2) and next

two identities ;

(i)
u1(u2 − u1)

c21αi
=

u2
1(u2/u1 − 1)

c21αi
=

M2
1

αi

(
u2

u1
− 1

)
,

(ii)
(u2 − 2u1)

c1αi
=

u1

c1αi

(
u2

u1
− 2

)
=

M1

αi

(
u2

u1
− 2

)
(iii) − αi +M2

1

(
u2

u1
−1

)
±M1

(
u2

u1
−2

)
= −αi ∓M1 +M1(M1 ± 1)

(
u2

u1
− 1

)
where Mk := uk/ck, one can obtain that

[
−αi −M1 +M1(M1 + 1)

(
u2

u1
− 1

)]
Ã+

i e
−τ+

i s

+

[
−αi +M1 +M1(M1 − 1)

(
u2

u1
− 1

)]
Ã−

i

+ αi (1 +M2) Ã
+
i+1

+ αi (1−M2) Ã
−
i+1e

−τ−
i+1s = 0 (12)

3) Energy Conservation: A perturbation form of the energy

conservation law (4) is given as

αiη2u2p
′
2 + αiη2p2u

′
2 +

u3
2

2
αiρ

′
2 +

3

2
αiρ2u

2
2u

′
2

− η1p1u
′
1 − η1u1p

′
1 −

u3
1

2
ρ′1 −

3ρ1u
2
1

2
u′
1 = ˜̇q′i(s)/Ai (13)

where ˜̇q′i(s) denotes the Laplace transform of the heat rate

perturbation q̇′(xi, t).

From (7), one can rewrite

˜̇q′i(s)/Ai = αiη2u2p
′
2 − η1u1p

′
1

+
αi

ρ2c2

(
η2p2 −

u2
2

2
ρ2 +

3ρ2u
2
2

2

)
ρ2c2u

′
2

+
u1

2c21

(
u2
2 − u2

1

)
c21ρ

′
1

− 1

ρ1c1

(
η1p1−

u2
2

2
ρ1 +

3ρ1u
2
1

2

)
ρ1c1u

′
1 (14)

Now, making uses of the next facts [6], (p.35).

p1 =
1

γ1
ρ1c

2
1, p2 =

1

γ2
ρ2c

2
2, (15)
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one can easily derive the following identities

(i) αiη2u2 = αic2
γ2M2

γ2 − 1

(ii) η1u1 = c1
γ1M1

γ1 − 1

(iii)
αi

ρ2c2

(
η2p2 + ρ2u

2
2

)
= αic2

(
1

γ2 − 1
+M2

2

)
(vi)

u1

2c21

(
u2
2 − u2

1

)
=

c1M
3
1

2

(
u2
2

u2
1

− 1

)
(v)

1

ρ1c1

(
−η1p1 +

u2
2

2
ρ1 −

3ρ1u
2
1

2

)
= c1

[
− 1

γ1 − 1
+

M2
1

2

(
u2
2

u2
1

− 3

)]
Making use of these identities and (14), we can obtain

˜̇q′i(s)/Ai =

c1

[
− γ1M1 + 1

γ1 − 1
+
M2

1

2
(M1+1)

(
u2
2

u2
1

−1

)
−M2

1

]
Ã+

i e
−τ+

i s

+ c1

[
− γ1M1 − 1

γ1 − 1
+

M2
1

2
(M1 − 1)

(
u2
2

u2
1

− 1

)
+M2

1

]
Ã−

i

+ αic2

[
γ2M2 + 1

γ2 − 1
+M2

2

]
Ã+

i+1

+ αic2

[
γ2M2 − 1

γ2 − 1
−M2

2

]
Ã−

i+1e
−τ−

i+1s (16)

C. Relations between Wave Functions

From now on we recover the subscript {i, i+1} instead of

{1, 2} for notational consistency. Then, in a matrix form, the

momentum and energy conditions can be written as

Qi

[
Ã+

i

Ã−
i

]
+Di

[
Ã+

i+1

Ã−
i+1

]
=

[
0
1

] ˜̇q′i(s)
Ai

(17)

where

Qi :=

[
q
(1,1)
i q

(1,2)
i

q
(2,1)
i q

(2,2)
i

] [
e−τ+

i s 0
0 1

]
(18)

Di :=

[
d
(1,1)
i d

(1,2)
i

d
(2,1)
i d

(2,2)
i

] [
1 0

0 e−τ−
i+1s

]
(19)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

q
(1,1)
i = −αi −Mi +Mi(1 +Mi) (ui+1/ui − 1)

q
(1,2)
i = −αi +Mi −Mi(1−Mi) (ui+1/ui − 1)

q
(2,1)
i = ci

[
− γiMi+1

γi−1 −M2
i

+ 1
2M

2
i (1 +Mi)(u

2
i+1/u

2
i − 1)

]
q
(2,2)
i = ci

[
− γiMi−1

γi−1 +M2
i

− 1
2M

2
i (1−Mi)(u

2
i+1/u

2
i − 1)

]
d
(1,1)
i = αi(1 +Mi+1)

d
(1,2)
i = αi(1−Mi+1)

d
(2,1)
i = αici+1

[
γi+1Mi+1+1

γi+1−1 +M2
i+1)

]
d
(2,2)
i = αici+1

[
γi+1Mi+1−1

γi+1−1 +M2
i+1)

]

(20)

We note that if the heat perturbation at x = xi satisfies

q̇′i = 0 then (17) can be written as[
Ã+

i

Ã−
i

]
= −Q−1

i Di

[
Ã+

i+1

Ã−
i+1

]
(21)

D. General One-Dimensional Model

Consider a general combustor composed of multiple area

places as illustrated in Fig. 2. We assume that this combustor

has only one hear source at x = xn−1, that is,

q̇′k = 0 (k = 1, · · · , n− 2), q̇′n−1 �= 0 (22)

This assumption is not essential but can be easily removed

with slight modifications of the following results.

x0

A+
1

A−
1

A+
2

A−
2

A+
3

A−
3

x1 x2 x3 xnxn−1xn−2

A+
n−1

A−
n−1

A+
n

A−
n

A+
n−2

A−
n−2

xn−3

Fig. 2 Combustor with n-cans

It should be noted that we made no assumptions on the

area ratios {αi ; i = 1, · · · , n}. The particular shape of the

combustor in Fig. 2 whose cross sectional areas decrease

firstly and then increases as n increases, is only an illustration

and any general shape can be considered in our model to be

developed below.

An application of the wave function relations (17) to x = xk

for every k = 1, · · · , n− 1, gives (k = 1, · · · , n− 2)

Qk

[
Ã+

k

Ã−
k

]
+Dk

[
Ã+

k+1

Ã−
k+1

]
=

[
0
0

]

Qn−1

[
Ã+

n−1

Ã−
n−1

]
+Dn−1

[
Ã+

n

Ã−
n

]
=

[
0
1

] ˜̇q′n−1(s)

An−1

(23)

Now, from (21), we can eliminate Ã±
k for k = 2, · · · , n − 2

in the recursive equation (23) to have

Q1

[
Ã+

1

Ã−
1

]
+ V

[
Ã+

n−1

Ã−
n−1

]
=

[
0
0

]

Qn−1

[
Ã+

n−1

Ã−
n−1

]
+Dn−1

[
Ã+

n

Ã−
n

]
=

[
0
1

] ˜̇q′n−1(s)

An−1

(24)

where

V =

[
v11 v12
v21 v22

]
:= D1(−Q−1

2 D2)(−Q−1
3 D3) · · · (−Q−1

n−2Dn−2) (25)
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Notice that (24) has six unknowns and four equalities. Two

additional equalities come from the boundary conditions at x ∈
{x0, xn}. The boundary condition are generally characterized

by the reflection coefficients

Ri(s) :=
Ã+

1

Ã−
1 e

−τ−
1 s

, Ro(s) :=
Ã−

n

Ã+
n e−τ−

n s
(26)

In general, the reflection coefficients Ri(s), Ro(s) can be

functions of the Laplace variable s ∈ C but we suppress their

dependency on s for notational simplicity.

By substituting Ã+
1 = Rie

−τ−
1 sÃ−

1 , Ã−
n = Roe

−τ+
n sÃ+

n

into (24), we obtain four equalities with four unknowns ;[
k1
k2

]
Ã−

1 +

[
v11 v12
v21 v22

] [
Ã+

n−1

Ã−
n−1

]
=

[
0
0

]
[
q
(1,1)
n−1 e

−τ+
n−1s q

(1,2)
n−1

q
(2,1)
n−1 e

−τ+
n−1s q

(2,2)
n−1

][
Ã+

n−1

Ã−
n−1

]
+

[
h1

h2

]
Ã+

n =

[
0
1

] ˜̇q′n−1(s)

An−1

(27)

where ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
k1 := q

(1,1)
1 Rie

−(τ+
1 +τ−

1 )s + q
(1,2)
1

k2 := q
(2,1)
1 Rie

−(τ+
1 +τ−

1 )s + q
(2,2)
1

h1 := d
(1,1)
n−1 + d

(1,2)
n−1Roe

−(τ+
n +τ−

n )s

h2 := d
(2,1)
n−1 + d

(2,2)
n−1Roe

−(τ+
n +τ−

n )s

(28)

In addition, an elimination of two unknowns Ã−
1 , Ã

+
n in (27)

gives

F(s)

[
Ã+

n−1

Ã−
n−1

]
= −

[
0
1

] ˜̇q′n−1(s)

An−1
(29)

where

F(s) :=[
k2v11 − k1v21 k2v12 − k1v22(

h2q
(1,1)
n−1 − h1q

(2,1)
n−1

)
e−τ+

n−1s h2q
(1,2)
n−1 − h1q

(2,2)
n−1

]
(30)

Define a matrix determinant Δ(s) := |F(s)|. Then (29)

gives [
Ã+

n−1

Ã−
n−1

]
=

1

Δ(s)

[
k2v12 − k1v22
−k2v11 + k1v21

] ˜̇q′n−1(s)

An−1
(31)

Note that, similar to (2), the velocity perturbation at x =
xn−1 is given

ρn−1cn−1ũ′
n−1(s) = Ã+

n−1e
−τ+

n−1s − Ã−
n−1 (32)

As a final step, from (31) and (32), we obtain a transfer

function from the hear rate perturbation to the velocity

perturbation given

ũ′
n−1(s)˜̇q′n−1(s)

=

(
1

ρn−1cn−1An−1

)
×

(k2v12 − k1v22)e
−τ+

n−1s + (k2v11 − k1v21)

Δ(s)
(33)

III. CONCLUSION

We have derived a thermo-acoustic transfer function of

a general one-dimensional combustor mode. Our transfer

function representation can handle a general one-dimensional

combustor model with multiple cans with different cross

sectional areas, without assuming zero flow rate.
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