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 
Abstract—Computation of determinant in the form |I-X| is 

primary and fundamental because it can help to compute many other 
determinants. This article puts forward a time-reducible approach to 
compute determinant |I-X|. The approach is derived from the 
Newton’s identity and its time complexity is no more than that to 
compute the eigenvalues of the square matrix X. Mathematical 
deductions and numerical example are presented in detail for the 
approach. By comparison with classical approaches the new approach 
is proved to be superior to the classical ones and it can naturally 
reduce the computational time with the improvement of efficiency to 
compute eigenvalues of the square matrix.  
 

Keywords—Algorithm, determinant, computation, eigenvalue, 
time complexity. 

I. INTRODUCTION 

OMPUTATION of determinants has been a topic ever 
since the being of the determinant in the 18th century, as 

stated in Ershaidat’s introductory essay [1]. Approaches and 
Algorithms have been continuously developed to improve the 
efficiency of the computations. This point of view can be 
testified by part of literatures published in the last 15 years. 
For example, [2] and [3] researched Division-Free Algorithm 
that was early researched by [4]; [5] studied general 
computation of Determinant; [6] improved algorithms for 
computing determinants and resultants; [7] put forward a way 
to compute determinants by contour integrals; [8] summarized 
and exhibited conventional and skillful methods to compute 
determinants through concrete computing examples in 2010 
and [9] presented a robust algorithm for accurately computing 
the determinant by using accurate matrix factorizations in 
2012. Reference [10] presented a new parallel algorithm for 
finding determinants of nn  matrices, [11], [12] also 
researched parallel algorithms; [13] studied the way to 
compute determinants in the multiprocessor computer. Special 
algorithms to special determinants were also developed as see 
in [14]-[16]. All these facts imply that a better algorithm is 
still in need. 

In the family of determinants, a kind in the form of |I-X|, 
where the symbol |A| denotes the determinant of a square 
matrix A, is particularly essential because it can be used to 
compute the other determinants. For example, the approach to 
compute |I-X| is obviously available to compute 
| | ( 1)kI X k  , and hence | |I X is easily computed since 

2 1( )( )I X I X I X      provided | | 0I X  . Actually, there 
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are more behaviors that show significance of |I-X|. Therefore, 
this article makes a pioneer investigation and proposes an 
approach to compute such determinant. The article is 
composed of 5 parts. The first part is this introductory section; 
the second part lists some necessary preliminaries; the third 
part demonstrates main results with their mathematical 
deductions; the fourth part presents an algorithm for the 
computation and numerical examples. In the end, conclusions 
and expectations are put forward.  

II. PRELIMINARIES 

In this whole article, symbol | |A  is to denote the 
determinant of a square matrix A; and the following lemmas, 
which are stated in [17]-[19], are necessary for later sections.  
Lemma 1. The characteristic polynomial of an nn matrix 

A, ( )Af  , is defined by: 
 

1
1 1( ) | | ... ...n n n k

A k n nf I A c c c c      
          

(1) 

where the coefficients ( 1,2,..., )kc k n  are real numbers. 

The roots of ( )Af  , (1 )i i n   , are A’s eigenvalues and it 

needs no more than O(n3) time to compute all the eigenvalues . 

Lemma 2. Let ( 1,2,..., )i i n  be the n complex eigenvalues 

of an nn matrix A and k
k i

i

T  ; then it holds: 

1 1 2 2 1 1... ... 0, 1,2,...,k k k i k i k kT c T c T c T c T kc k n           
 (2) 

 

Lemma 3. kT defined in Lemma 2 is the trace of kA , 

namely, )( k
k AtrT  . 

III. MAIN RESULTS AND PROOFS 

Theorem 1. Let the characteristic polynomial of an nn 
matrix X be given by  
 

1
1 1( ) | | ...n n

X n nf I X c c c    
                                    (3) 

 
then  
 

1

| | 1
n

i
i

I X c


                                                                        (4) 

 
Proof. (Omit). 
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Theorem 2. Let X be an nn matrix; then the time complexity 
of computing | |I X  is no more than that of computing all 

the eigenvalues of X.  
Proof. By Lemma 2 we can drive out the so-called Newton’s 
identities as follows 
 

1 1

2 1 1 2

3 1 2 2 1 3

1 1 2 2 1 1

1 1 2 2 3 2 1 1

1 1 2 2 2 2 1 1

0

2 0

3 0

......

... 0

......

... ( 1) 0

... 0

k k k k k

n n n n n

n n n n n n

T c

T c T c

T c T c T c

T c T c T c T kc

T c T c T c T n c

T c T c T c T c T nc

  

    

   

 
  
   

     

      
      

 

 
That is  
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2 2 1 1

3 3 1 2 2 1

1 1 2 2 1 1

1 1 1 2 2 3 2 1

1 1 2 2 2 2 1 1
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
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      
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
       


  

(5) 
 

This says that, ( 1,2,..., )kc k n  can be computed 

recursively in term of ( 1,2,..., )jT j k .  

Now it shows the way to compute all kT  by 
k

k i
i

T  ( 1,2,..., )k n ; It is believed that this procedure 

will take O(n2) time complexity and 2n spatial complexity. In 
fact, if all the eigenvalues i  (1 )i n  are computed, 

(1 )kT k n  can be obtained according to following strategy. 
 

2 3
1 1 1 1

2 3
2 2 2 2

2 3

2 2

, , ..., 1

, , ..., 1

......

, , ..., 1

......

...,

, , ... ,

n

n

n
i i i i

n
i i i

i i i

n multiplications

n multiplications

n multiplications

n additions

   

   

   

  

  

  

  

  

  

 

Obviously, the lowest row, (1 )k
i

i

k n   , gives the values 

of (1 )kT k n  .   

Now (1 )kc k n  can be computed by (5) and it will take at 

most 21 3 ... (2 1)n n     operations, namely, O(n2) time 
complexity. Consequently it is clear that time complexity of 
computing (1 )kc k n  is no more than that of computing all 

the eigenvalues of X. 
Preposition 1. Let A be a square matrix; then | |A can be 

computed in no more than O(n3) time. 
Proof. Let X I A  ; then | | | |A I X  . By theorem 2, the 

time complexity of computing | |I X  is no more than that of 

computing all the eigenvalues of X. By Lemma 1, it takes no 
more than O(n3) time to compute all the eigenvalues of X. 
Hence the theorem holds. 

IV. ALGORITHM DESIGN AND NUMERICAL EXPERIMENTS 

A. Algorithm Design 

Based on Theorem 2, an algorithm, which is for 
convenience called Algorithm I in later section, can be 
designed to compute the determinant |I-X| by following 4 
steps. 
Step 1. Compute all the eigenvalues 1 2, ,..., n   of X; 

Step 2. Compute k
k i

i

T  ; 

Step 3. 0 1c  ; compute (1 )kc k n   by 
1

1
k k kc

k
   C T , 

where 
0 1 2 1( , , , ..., )k kc c c c C and 

1
( , ,

k k k
T T


T 2

, ...,
k

T


 

1
)T  

Step 4. 
1

n

i
i

C c


  and | | 1I X C   . 

Note that, the Step 3 adopts donations of vectors and their 
dot product. 

B. Numerical Example 

The above algorithm I can be demonstrated by the 
following sample. Just consider a matrix I+X defined by 

 

6 12 4

4 8 4

4 12 6

I X

  
      
    

 

 
then;  

 

7 12 4

4 9 4

4 12 7

X

 
   
 
 

 

 
So that  
 

3 2( ) 5 3 9 ( 11)( 9)( 3)Xf                

 

and the roots of ( )Xf  are: 
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1 2 33, 9, 11      

 
Consequently, it yields; 
 

1 1 2 3

2 2 2
2 1 2 3

3 3 3
3 1 2 3

23,

211,

1331 729 27 2087

T

T

T
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  

  

   

   

      

 

 
and  

 

1 1

2 2 1 1

3 3 1 2 2 1

23

1 1
( ) (211 529) 159

2 2
1 1

( ) (2087 4853 3657) 297
3 3

c T

c T c T

c T c T c T

   

      

         

 

1 2 3| | 1 160I X c c c        

 
Note that  
 

6 12 4

| | 4 8 4 160

4 12 6

I X

 
      

  

 

 
It verifies that Algorithm I is valid. 

V.  CONCLUSIONS AND EXPECTATIONS 

As introduced in the introductory section, algorithms to 
compute determinants have continuously been developed and 
each algorithm has its own life cycle and application occasion. 
Generally speaking, any new algorithm or approach shall 
ensure its existence, necessity, superior and what to be 
improved. Hence, this section will establish such things of the 
new approach. 

A. Necessity and Superior  

Many schoolbooks exhibit that determinant of a square 
matrix X can be calculated by multiplication of all the 
eigenvalues of X. Based on this fact, the following algorithm, 
which is called algorithm II, can be designed by two steps. 
Step 1. Compute all the eigenvalues 1 2, ,...  of I-X; 

Step 2. 1 2| | ( 1) ...n
nI X      . 

This algorithm looks simple and fits for the knowledge of 
schoolbooks. But, in point of view of an algorithm, it is not a 
good one because it has shortcoming when it is used to 

compute | | ( 1)kI X k  . In fact, by the algorithm II it needs 

first computing kX  and kI X before it begins to compute 
the eigenvalues of the matrix kI X . The time complexity of 

computing kX is 3(( 1) )O k n . Obviously, when k n , it is 

bigger than 4( )O n . On the contrary, the algorithm I only needs 

computing the eigenvalues of X, saving a lot of time. 
Therefore, the algorithm I is superior to the algorithm II.  

Except for the algorithm II, schoolbooks also show that the 
Gaussian elimination and the LU decomposition are two 
classical approaches to compute the determinants, as seen in 
[20] and [21] respectively. It is known that these two 
approaches take at least O(n3) time complexity. Comparing 
this fact to Theorem 2, it can immediately see that the 
algorithm I is superior to the classical two ones owning to the 
following two advantages. 
1. Improvement of computing the eigenvalues of a square 

matrix will consequently increase efficiency of the 
algorithm I. 

2. Computation of kT  in Step 3 of the algorithm I can be 

done in a parallel procedure, as seen in the proof of 
Theorem 2. 

B. What to Be Improved 

According to Theorem 2, high efficiency of computing the 
eigenvalues of a square matrix becomes an improved point to 
the algorithm I. This is also the expectation to future work. 
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