
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:3, 2009

808

Abstract—Reachability graph (RG) generation suffers from the
problem of exponential space and time complexity. To alleviate the
more critical problem of time complexity, this paper presents the new
approach for RG generation for the Petri net (PN) models of parallel
processes. Independent RGs for each parallel process in the PN
structure are generated in parallel and cross-product of these RGs
turns into the exhaustive state space from which the RG of given
parallel system is determined. The complexity analysis of the
presented algorithm illuminates significant decrease in the time
complexity cost of RG generation. The proposed technique is
applicable to parallel programs having multiple threads with the
synchronization problem.

Keywords—Parallel processes, Petri net, reachability graph, time
complexity.

I. INTRODUCTION

HE enumeration of state space requires the construction
of reachability graph (RG) [1, 2] and it is important and
fundamental approach for computer-aided verification and

behavioral analysis of the Petri net (PN) models of parallel
discrete systems. Further, it provides the complete and
detailed information about the dynamic behavior of the system
and its global states represent the combined behavior of all
parallel components in the parallel discrete systems.

Parallel events are modeled by the interleaving of
transitions in the PN model and RG contains all possible
partial ordering of such transitions and consequently the RG
confronts with the state-explosion problem [3]. The state-
explosion problem is directly related to the exponential time
and space complexity involved in generating the state-space of
parallel systems.

Several methods have been suggested to tackle the state-
explosion problem, which includes structural analysis methods
[1, 4, 5] and limited unfolding approaches [6, 7, 8]. Faced to
the state-explosion problem, the reduction and refinement
methods [1, 9] have been developed to reduce the complexity
of the initial net. However, it is not always possible to
transform a complex and larger net into simpler and smaller

Farooq Ahmad is with the Computer science Department, Harbin Institute
of Technology Shenzhen Graduate School, China (e-mail: farooq190@
gmail.com).

Hejiao Huang is with the Computer science Department, Harbin Institute of
Technology Shenzhen Graduate School, China (corresponding author’s e-
mail: hjhuang.hitsz@hotmail.com).

Xiaolong Wang is with the Computer science Department, Harbin Institute
of Technology Shenzhen Graduate School, China (e-mail: wangxl@
insun.hit.edu.cn).

one. An algorithm has been proposed to obtain the finite
representation of the RG by using marking abstraction process
[10].To alleviate the computational complexity involved in
generating the RG for parallel systems, partial order reduction
[11, 12, 13, 14] has been suggested. Partial order reduction to
cure the complexity issues of RG generation is the range of
methods for constructing the reduced state space, which
includes the stubborn set method [15, 16, 17], maximal
concurrent simulation [18, 19] and symmetry method [20, 21,
22, 23]. However, partial order reduction methods have
limited applicability due to their utility for specific analysis
questions [3]. Another approach to manage the state-explosion
problem is the compression technique using binary decision
diagram (BDD) [24, 25, 26]. Gaining in memory often results
in increase in the temporal complexity [19] because all known
algorithms for analysis tasks in relatively small memory are
extremely slow [3].

To cope with the critical problem of time complexity, this
paper presents a new technique for RG generation for parallel
systems. The proposed technique firstly generates independent
RGs for each individual process in parallel, and then considers
the cross-product of these RGs. Finally, resultant RG is the
subset of exhaustive state space generated by the cross-
product. The complexity analysis of the presented algorithm
illuminates about a significant decrease in the time complexity
for RG generation when it is compared with the time
complexity of the classical method [1, 2]. In addition, the
generation of independent RGs may be distributed over
available processors, which increases the practical utility of
the proposed technique.

The paper is organized as follows. Section II introduces the
related terminology. Section III presents the algorithm for
parallel RG generation. The complexity analysis of the
proposed algorithm is presented in Section IV. Some
concluding remarks are presented in Section V.

II. DEFINITIONS AND CONCEPTS

In this section, some basic definitions and notations of
ordinary (for the sake of simplicity) PN are described. The
related terminology and notations are taken from [1, 2].

Definition 1: (Petri net) A Petri net PN, is a five tuple,
0(, , , ,)PN P T I O M . Where, 1 2{ , , , }PP p p p is a finite

set of places, 0P ; 1 2{ , , , }TT t t t is a finite set of

transitions, 0T ; :I T P is the input function, which is a
mapping from transitions to the set of places and it indicates

A Technique for Reachability Graph Generation
for the Petri Net Models of Parallel Processes

Farooq Ahmad, Hejiao Huang, and Xiaolong Wang

T

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:3, 2009

809

the input places of transitions; :O T P is the output
function, which is a mapping from transitions to the set of
places and it indicates the output places of
transitions, P T and P T .

Let ()jI t represents the set of input places of
transition jt T and ip P is an input place of a transition

jt if ()i jp I t ; ()jO t represents the set of output places,
then ip is an output place of jt if ()i jp O t . For example, a
PN structure given in Fig. 1 has 1 2 3 4{ , , , }P p p p p and

1 2 3 4 5{ , , , , }T t t t t t with 1 1() { }I t p , 2 1() { }I t p ,

3 2() { }I t p , 4 3() { }I t p , 5 4() { }I t p and 1 2() { }O t p ,

2 3() { }O t p , 3 4() { }O t p , 4 4() { }O t p , 5 1() { }O t p .
The input and output functions can be extended to map the

set of places P into the set of transitions T such as
:I P T and :O P T . Then, set ()iI p represents the set

of input transitions of place ip P and set ()iO p represents
the set of output transitions of place ip P .
Therefore, 1 5() { }I p t , 2 1() { }I p t , 3 2() { }I p t ,

4 3 4() { , }I p t t are sets of input transitions and

1 1 2() { , }O p t t , 2 3() { }O p t , 3 4() { }O p t , 4 5() { }O p t are
sets of output transitions of all the places of a structure given
in Fig. 1.

The incoming arc from ip to jt is represented by

(, ())i jp I t and outgoing arc from jt to ip be (, ())i jp O t .
Similarly, (, ())j it I p represents the incoming arc from jt to

ip as ()j it I p and arc (, ())j it O p represents outgoing arc
from ip to jt as ()j it O p , when the set of places maps into

the set of transitions; ,j it T p P .

The structure of a PN is defined by the set of places, set of
transitions, input function and output function. A PN structure
without 0M is denoted by (, , ,)N P T I O . A PN
structure N is said to be strongly connected if and only if
every node ix P T is reachable from every other
node jx P T by a directed path. A PN structure N is said
to be self-loop-free or pure if and only if jt T ,

() ()j jI t O t i.e. no place can be both an input and an
output of the same transition.

A marking is a function :M P (non-negative
integers) and initial marking is denoted by 0M . A PN with
given initial marking is denoted by 0(,)N M . The set of all
reachable markings from 0M is denoted by 0()R M which is a
definite set of markings of PN such that, if 0()kM R M and

jt
k kM M for some jt T , then 0()kM R M .

Definition 2: (Firing rule) The firing rule identifies the
transition enabling and the change of marking. Let ()iM p be
the number of tokens in place ip , then for jt T ; jt is

enabled under marking M if and only if ()i jp I t : () 1iM p .
The change of marking M to M by firing the enabled
transition jt is denoted by jtM M and defined for each

place ip P by
() 1 for every ()
() 1 for every ()()
() otherwise.

i i j

i i ji

i

M p p I t
M p p O tM p
M p

Definition 3: (reachability graph) the RG of the PN model is
a directed graph 0(, , ,)G V L E v , V is the set of vertices and
each vertex kv V represents the reachable
marking 0()kM R M ; L is a set of labels where each

il L directly corresponds to fireable transitions in any
reachable marking of PN; E is the set of edges such
that 1 1(, ,) \ , ,k i k k k iE v l v E v v V l L and for each
e E , kv is a initial vertex of e , 1kv is a terminal vertex of
e and il is a label of the edge. Basically, set of labeled
directed edges E is a firing relation such as E V L V .
Therefore, each e E represents directed edge from given
marking kM to other reachable marking 1kM and labeled by
the fired transition it at given marking; 0 0v M is the initial
vertex.

Fig. 1 An example of PN model

III. PARALLEL GENERATION OF REACHABILITY GRAPH

The PN modeling of parallel processes depicts the
interleaving of transitions (events), which can be observed
from Fig. 2(a), and state-space explosion is directly related to
the exploration of all possible interleavings of parallel events
in RG. For instance, the execution of k parallel events
(independent transitions) is investigated by exploring all !k
interleavings of these transitions (events) and states in RG.

The proposed technique initiates by extracting the
independent parallel processes from the PN model of a
concurrent system. Every individual parallel process is the
sequential representation of events as shown in Fig. 2(c) and
consequently the RG is the sequence of states. The technique
permits the concurrent execution of independent parallel
processes to aim at time complexity involved in RG
generation.

t5

t2t1

t3 t4

p1

p3p2

p4

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:3, 2009

810

Fig. 2 (a) PN model with parallel processes, (b) its classical RG generation and (c) independent parallel processes obtained from Fig. 2(a)

The cross-product of the individual RGs of parallel
processes generates the exhaustive state-space of the whole
PN model of the system. The RG is a sub-graph of this cross
product and it is obtained by discarding the invalid states from
the exhaustive state-space.

The interaction of the parallel processes often incorporated
with the synchronization structure in its PN model. Fig. 2(a)
shows the PN model with interacting parallel processes, where
transition 3t is the synchronic point of the PN structure. The
synchronizing transition in PN model becomes sequential
transition in each independent parallel process.
 However, synchronizing transition does not permit the all
possible partial ordering of transition executions in RG. The
transitions before and after the synchronizing transition have
the causal relationship. Further, the transition after the
synchronizing transition can not be fired before the execution
of synchronizing transition. Synchronizing transition would be
in every independent process, by tracking the synchronizing
transition, invalid states can be eliminated from exhaustive
state space and remaining states are global states of RG.

From the above discussion, an algorithm can be developed
to reduce the time complexity of RG generation with
concurrent executions of parallel processes.

Algorithm for parallel generation of RG:
1. Input: N Parallel processes; iP , 1, 2, ,i N .
2. iP : generate iR , where iR is the RG of iP .
3. Tag each state by the fired transition obtaining that state

in iR , iR .
4. Do, 1 2 NR R R such

that 1 2 1 2(, , ,)j j ij Nj NS S S S R R R . Where, ijS is the
jth state in iR and 1 2 NRG R R R .

 Now, each ijS is a local state of the global
state 1 2(, , ,)j j ij NjS S S S .

5. For each global state 1 2(, , ,)j j ij NjS S S S , do; if jt as
synchronizing transition, discard the global states if any pair
of local states ,ij jkS S has the tag of transition jt , before or
after the transition jt in parallel process.

6. Output: RG of PN model.

To formalize the RG for the PN model of a system having
parallel processes with the implementation of the algorithm
given above, the algorithm proceeds as follow:
 For each parallel process iP , RG iR is generated, which

corresponds to sequence of places as states and transitions
as edges in that individual process. For example, for 1P

which is shown in Fig. 2(c), 31 4
1 3 5 7

tt tp p p p
is 1R . The RG generation for all siP is carried out in
parallel.

 Each state in iR and iR is tagged by the transition, through
which it is reached, e.g. the state 3p has a tag 1t in the
example given above.

 The cross product of siR (i.e. 1 2 NR R R) is performed
to construct the exhaustive state space containing the global
states of the form 1 2(, , ,)j j ij NjS S S S . For example,
Table I shows the exhaustive state space for PN given in
Fig. 2(a). Moreover, each element of the global state is the
state for any individual process as well as local state for that
global state.

 RG is obtained by discarding the invalid states in the
exhaustive state space. Therefore, the set of reachable states
in the resultant RG is the subset of exhaustive state space.
Invalid states in the presence of synchronizing transition in
PN structure are identified with the assistance of the tags of
local states. Every global state is discarded from exhaustive
state space, if any pair of local states has the tag of
synchronizing transition, before or after the synchronizing
transition in PN structure.

t2

t3

t1

t4 t5

p8

p1 p2

p3 p4

p5 p6

p7

t3

p1, p2

p3, p2 p1, p4

p3, p4

p5, p6

p6, p7 p5, p8

p7, p8

t1 t2

t2 t1

t4 t5

t5 t4

(a) (b) (c)

P1

t3

t1

t4

p1

p3

p5

p7

P2

t2

t5

p8

p2

p4

p6

t3

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:3, 2009

811

TABLE I
EXHAUSTIVE STATE SPACE DUE TO 1 2R R

Tags 02m 2t 3t 5t
 P2
States 2p 4p 6p 8p

Tags States
01m 1p (1p , 2p) (1p , 4p) (1p , 6p) (1p , 8p)

1t 3p (3p , 2p) (3p , 4p) (3p , 6p) (3p , 8p)

3t 5p (5p , 2p) (5p , 4p) (5p , 6p) (5p , 8p)
P1

4t 7p (7p , 2p) (7p , 4p) (7p , 6p) (7p , 8p)

TABLE II
RG OF FIG. 2(a) OBTAINED BY DISCARDING THE INVALID GLOBAL STATES FROM TABLE I

(1p , 2p) (1p , 4p)
(3p , 2p) (3p , 4p)

(5p , 6p) (5p , 8p)
(7p , 6p) (7p , 8p)

For example, local states 5p , 2p of (5p , 2p) has the
respective tags 3t , 02m in Table I, where 01m and 02m are initial
states of individual parallel processes P1 and P2 respectively,
in Fig. 2(c). However, synchronizing transition 3t can not be
fired at initial state of any process. Therefore, global state
(5p , 2p) is invalid and discarded. In the same manner, Table
II shows the RG for PN in Fig. 2(a) by discarding all the
invalid states. Global states in Table 2 are compared to the
reachable states in RG obtained by classical method [1, 2] of
Fig. 2(b) and found exactly same.

IV. COMPLEXITY ANALYSIS OF ALGORITHM

The exact analytical evaluation of computational
complexity of the algorithm for generating the RG is not a
trivial task even for a restricted structure of the PN model of
parallel discrete systems. The effectiveness of algorithm can
be proved by comparing the reduction in complexity of the
new algorithm with respect to the time complexity involved in
the classical method of RG generation. The asymptotic
complexity (the worst case complexity) is given below, which
allows estimating the maximal duration of the computation of
RG.
Time complexity for classical method: Classical method for
generating the RG considers the space complexity of

()NO P for PN structure having N parallel branches, where

each branch has P places. Now in the worst case, each
reachable state in RG may be connected to every other state.
Therefore, the temporal complexity, which is proportional to
the number of edges is bounded by 2()NO P . Hence the
temporal complexity, in worst case, involved in generating the
RG is quadratic with respect the number of states in RG.

Time complexity for proposed algorithm: For calculating
the time complexity of RG with the implementation of
proposed algorithm, the cost of each step of the algorithm is
calculated as follows:

 First step of the algorithm, i.e. construction of iR
1, ,i N , takes time of (.)O P N and tagging takes the

time of (.)O T N , where T represents the number of
transitions in each individual process.

 In second step of the algorithm, the cross-product takes the
time of (.)O P N .

 The third step considers the elimination of invalid states
from exhaustive state space of size ()NO P . Therefore, in
the worst case, the total cost for discarding the invalid states
is (. .)NO T N P .

 Finally, the asymptotic total cost of algorithm is
(.)NO P N T N P N T N P (. .)NO T N P .

Now, each step is independent, by considering the parallel
execution of each step on K available processors, the time
complexity is reduced to ((. .) /)NO T N P K .

 Hence the asymptotic computational complexity of the
proposed algorithm with single available processor
is (. .)NO T N P . It is linear with respect to the number of

states NP and total number of transitions, which is equal

to .T N , in the PN model of parallel processes.

V. CONCLUSIONS

A new technique for generating the RG is proposed, which
leads to the significant reduction in time complexity. In

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:3, 2009

812

addition, sequential execution of the algorithm itself shows
significant reduction in time complexity, where total cost of
the algorithm is (. .)NO T N P , which is linear with respect to
the number of states and the number of transitions. The
proposed technique has practical application to the behavioral
and reachability analysis of parallel programs having multiple
parallel threads with the synchronization problem.

ACKNOWLEDGMENT

This work was supported in part by National High-Tech
R&D Program (863 Program) under grant No.
2007AA01Z194 and National Natural Science Foundation of
China with Grant No. 10701030.

REFERENCES

[1] T. Murata, “Petri nets: properties, analysis and application,” In
Proceedings of IEEE, vol. 77, No. 4, pp. 541-580, 1989.

[2] J. L. Peterson, “Petri Net Theory and the Modeling of Systems”,
Prentice-Hall: Englewood Cliffs, NJ, 1981.

[3] A. Valmari, “The state explosion problem”, In: W. Reisig, G. Rozenberg
(Eds.), Lectures on Petri nets I: Basic Models, LNCS 1491, Springer-
Verlag, pp. 429-528, 1998.

[4] L. Recalde, “Structural methods for the design and analysis of
concurrent systems modeled with Place/Transition nets”, PhD Thesis,
DIIS, University of Zaragoza, 1998.

[5] H. Huang, “Enhancing the property preserving Petri net process algebra
for component-based system design (with application to designing multi-
agent systems and manufacturing systems)”, PhD thesis of City
University of Hong Kong, 2004.

[6] K. L. McMillan, “Using unfolding to avoid the state explosion problem
in the verification of asynchronous circuits”, LNCS 663, Springer-
Verlag, pp. 164-177, 1992.

[7] M. Heiner, “Petri net based system analysis without state explosion”, In
Proceedings of High Performance Computing, Boston, pp. 394-403,
1998.

[8] C. Girault and R. Valk, “Petri Net for System Engineering: A Guide to
Modeling, Verification, and Application”, Springer-Verlag, Berlin
Heidelberg, 2003.

[9] H. Huang, T. Y. Cheung and W. M. Mak, “Structure and behavior
preservation by Petri-net-based refinements in system design”,
Theoretical Computer Science, vol. 328, pp. 245-269, 2004.

[10] X. Ye, J. Zhou, and X. Song, “On reachability graphs of Petri nets”,
Computers and Electrical Engineering, vol. 29, pp. 263-272, 2003.

[11] P. Godefroid, “Partial-Order Method for the Verification of Concurrent
Systems: An Approach to the State-Explosion Problem”, LNCS 1032,
Springer-Verlag, New York, USA, 1996.

[12] M. Ceska, L. Hasa, and T. Vojnar, “Partial-order reduction in model
checking object-oriented Petri nets”, Proc. EUROCAST 2003, LNCS
2809, Springer, p.265-278, 2003.

[13] C. Flanagan, and P. Godefroid, “Dynamic partial-order reduction for
model checking software”, Proc. 32nd ACM symposium on POPL’05,
pp. 110-121, 2005.

[14] X. Wang, and M. Kwiatkowska, “Compositional state space reduction
using untangled actions”, Electronic Notes in Theoretical Computer
Science, vol. 175, pp. 27-46, 2007.

[15] A. Valmari, “State of the art report: Stubborn sets”, Petri net Newsletter,
vol. 46, pp. 6-14, 1994.

[16] K. Schmidt, “Stubborn set for model checking the EF/AG fragment of
CTL”, Fundamenta Informaticae, vol. 43(1-4), pp. 331-341, 2000.

[17] L. M. Kristensen, K. Schmidt and A. Valmari, “Question-guided
stubborn set methods for state properties”, Formal Methods in System
Design, vol. 29, No. 3, pp. 215-251, 2006.

[18] R. Janicki, and M. Koutny, “Optimal simulations, nets and reachability
graphs”, In: Rozenberg, G. (Ed.), Advances in Petri Nets: LNCS 524,
Springer-Verlag, Berlin, pp. 205-226, 1991.

[19] A. Karatkevich, “Dynamic Analysis of Petri Net-based Discrete
Systems”, LNCIS, vol. 358, Springer-Verlag, Berlin, 2007.

[20] E. M. Clarke, O. Grumberg, M. Minea and D. A. Peled, “State space
reduction using partial order techniques”, STTT, vol. 2, No. 3, pp. 279-
287, 1999.

[21] K. Schmidt, “How to calculate symmetries of Petri nets”, Acta
Informatica, vol. 36, No. 7, pp. 545-590, 2000.

[22] T. Junttila, “New canonical representative marking algorithms for
place/transition nets”, In: J. Cortadella, W. Reisig (Eds.), ICATPN 2004,
LNCS 3099, Springer, Heidelberg, pp. 258-277, 2004.

[23] L. Capra, “Colored Petri nets state-space reduction via symbolic
execution”, Proc. IEEE International Symposium SYNASC’05, page
231, 2005.

[24] K. Bilinski, “Application of Petri Nets in Parallel Controllers Design”,
PhD thesis, University of Bristol, 1996.

[25] G. Labiak, “Symbolic state exploration of UML state charts for
hardware description”, In: A. Adamski, A. Karatkevich, M. Wegrzyn
(Eds.), Design of Embedded Control Systems, Springer, NY, pp. 73-83,
2005.

[26] P. Miczulski, “Calculating state space of hierarchical Petri nets using
BDD”, In: A. Adamski, A. Karatkevich, M. Wegrzyn (Eds.), Design of
Embedded Control Systems, Springer, NY, pp. 85-94, 2005.

