
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:12, 2009

2815

 Abstract—The current paper conceptualizes the technique of
release consistency indispensable with the concept of
synchronization that is user-defined. Programming model concreted
with object and class is illustrated and demonstrated. The essence of
the paper is phases, events and parallel computing execution .The
technique by which the values are visible on shared variables is
implemented. The second part of the paper consist of user defined
high level synchronization primitives implementation and system
architecture with memory protocols. There is a proposition of
techniques which are core in deciding the validating and invalidating
a stall page .

 Keywords— synchronization objects, barrier, phases and events,
shared memory

I. INTRODUCTION
ELEASE consistency[4] with user-definable high level
synchronization primitives(RCHS) provides a pattern in
which users can define their own synchronization

primitives, called synchronization classes. RCHS also
constrains the execution of synchronization primitives but any
synchronization primitive that follows the paradigm can be
used in this memory model. The paradigm provides

• Better interface for generating algorithms
• Improves the performance of subsequent

applications.
 Primitives (RCHS) are designed for a software distributed
shared memory system in a high latency network, where the
cost of traditional atomic operations, for example fetch & add
and busy waiting for the purpose of synchronization is
considerable, and has an adverse effect on the performance[6]
of the computation.

Dr. Parvinder S. Sandhu is Professor with Computer Science &

Engineering Department, Rayat & Bahra Institute of Engineering & Bio-
Technology, Sahauran, Distt. Mohali (Punjab)-140104 INDIA
(Phone: +91-98555-32004; (Email: parvinder.sandhu@gmail.com).

Er. Prateek Gupta is Lecturer with Electronics &
Communication Engineering Department, Rayat & Bahra Institute of
Engineering & Bio-Technology, Sahauran, Distt. Mohali (Punjab)-140104
INDIA

Prof. Vijay K. Banga is Professor with Electronics &
Communication Engineering Department, Amritsar College Of Engineering
and Technology, Amritsar (Punjab)- INDIA

Er. Amit Verma is Assistant Professor with Electronics &
Communication Engineering Department, Rayat & Bahra Institute of
Engineering & Bio-Technology, Sahauran, Distt. Mohali (Punjab)-140104
INDIA

.

Fig. 1. Programming Model

(for two object can extended for n object)
 There are two types of objects those communicate with in

RCHS
• Shared memory
• Synchronization objects (see Fig. 1).

 The shared memory consists of a pattern in memory as array
(like) in virtual memory. Two types of operations are allowed
in shared memory, read and write. Anything a process writes
in shared memory may be visible to other processes. In
addition to shared memory, processes can also communicate
with each other via synchronization objects. Each process
accesses synchronization objects only by calling operations
defined in synchronization classes[6]. Synchronization objects
can not access other shared objects. Each synchronization
operation [7] may be annotated with one of following
attributes, A: attributes(diagram 1)

Fig. 2. Synchronization operation attributes

R: release(puts)
AC: acquire(gets)
AC-R: acquire release
R-AC: release acquire
 These attributes are used to define the visibility of the
values in shared memory. Informally, the annotation release
may be thought of as meaning that the process “puts" its

A Technique for Execution of Written Values on
Shared Variables

Parvinder S. Sandhu, Vijay K. Banga, Prateek Gupta, Amit Verma

R

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:12, 2009

2816

visible shared memory writes onto the synchronization object,
and AC may be thought of as meaning that the process “gets"
the visible writes from the synchronization object. For
example,

Fig. 3. Example with shared memory

 Suppose that process p writes to shared variable X and then
executes an operation provided by synchronization object S
with attribute R. S can see the newly written value of X (figure
3,4). If process q subsequently executes an operation of S with
attribute acquire, q obtains what S can see. So q can read the
new value of X which p has written. Similarly, AC-R and R-
AC may be thought of as a combination of the two. In the
context of following discussion, release operations are
operations with attribute release, acquire release or release
acquire. Acquire operations are operations with attribute
acquire, release acquire, or acquire release.

Fig. 4. Operation with processes

 We consider an example of a simplified version of the
producer and consumer problem [1]. Products produced by
producers are stored in shared memory. Consumers read
products from the shared memory. We assume there is infinite
memory [3, 6] to store products. We use a synchronization
object called buffer to coordinate producers and consumers.
The definition of the synchronization object is shown in
appendix 1.The synchronization object, buffer, works as a
server which keeps pointers of available products for
consumers. After a producer writes its product to shared
memory, it calls the method PutItemPtr and passes the pointer
of the product in shared memory to buffer. Since the product
in shared memory needs to be visible to other consumers,
PutItemPtr is annotated with attribute release. A consumer

acquires the pointer of a ready product by calling GetItemPtr.
In order to read the part of the shared memory written by
producers, GetItemPtr is annotated with attribute acquire.

II. SYNCHRONIZATION CLASS
 Our system provides two basic synchronization classes,

• Semaphores
• Barriers [3]

 Semaphores have two operations, P(k) and V(k), where k is
the number to increase or decrease the counter of the
semaphore. The P& V operations of binary Semaphores
usually correspond to operation on locks.
When a process, lets ∏ get lock by P, then the acquire
notation specifies that previous lock halters writes become
visible to the process(as read operation) Wait for barrier is a
release acquire operation (attribute),calling process putting its
writes (i.e making them visible)to the syn. object and will be
getting other writes (i.e collecting currently visible writes)
from the syn. object when the call returns.

III. SYNCHRONIZATION CLASSES AND SYNCHRONIZATION
OBJECTS

 Synchronization classes are similar to the classes in the
C++ programming language. But

1) Start as syn.classes
2) Don’t have inheritance property means can not put

into other classes and retain the value
syn classes can be of two types these are

• Public
• Private

A. Public
 The operation declared in public section can only be called
by process. each operation can have only one parameter.
Public section toggles with syn. attribute these are
R,A,RA,AR (release, acquire, release acquire, or acquire
release) used to define the visibility of process write to share
memory.

B. Private section
 Used to define procedure and data structure in syn objects
(act as server, servicing RPC)

IV. EXECUTION OF PROGRAM
 To specify the execution of a program, a directed acyclic
graph (DAG) is used in the following discussion.

A. Phases & Events of a synchronization object
The synchronization operation is an event of a process, which
in turn gets executed as a sequence of phases. There are two
notable events associated with a synchronization object viz.

• Receiving a request from a process and
• Replying to a process

The computation between two events, including the ending
event, is a phase. Two important phases associated with a
synchronization object are as follows:

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:12, 2009

2817

• Receiving phase: This phase of a synchronization
object starts with a requesting event from a process,
even though the requesting event is not in the phase.

• Replying phase: This phase of a synchronization
object ends with a replying event.

Each phase of a process is identified by a unique time stamp.
The time stamp of the initial phase is assumed with value 1
and the following phases attain a time stamp value
incremented by one each time the next phase comes, i.e. time
stamp gets values as say, a,a+1,a+2,.and so on.

Fig. 5. Directed Acyclic Graph

 The execution of a parallel program can be represented by a
directed acyclic graph, G = (V;E), where V is the set of
phases. The visibility of a written value in shared memory is
defined by G. There is an edge evv0 from

Fig. 6. Directed acyclic graph with computing (line notations are
same as above fig)

 vertex v to v0(in above figure V1& V2) if and only if one of
following conditions holds.
1. v0 and v are phases from the execution of the same process
v0 immediately follows v in program manner. See Fig. 5.
2. A process invokes a synchronization operation with the
A(A=acquire) attribute. v is the answering phase of the syn
object, and v0 is the phase after the process invokes the
synchronization operation. See Fig. 5.
3. A process invokes a synchronization operation with the
R(R=release) attribute.
 v = phase ending
 v0= receiving phase (See Fig 5.)
4. A process invokes a synchronization operation with the
RA(RA=release acquire) attribute. This case involves two
edges.
(a) v = phase ending

 v0= receiving phase (See Fig 5.) (see edge ev1v01)
(b) v = replying phase
 v0 =phase after the process invokes operation (see edge
ev2v02 in Fig 6.)
5. A process invokes a synchronization operation with the
AR(AR=acquire release) attribute. In this case there are two
edges:
(a) v= phase of the process ending
 v0=phase immediately after the replying phase (see edge
ev1v01 in Fig 6).
(b) v= replying phase
 v0=phase after the process invokes the synchronization
operation (see edge ev2v02 in Fig 6).
Where v,v0= synchronization operation,
 A phase Q0 is reachable from Q, denoted by Q - Q0, if there
is a path from Q to Q0. It means Q reaches Q0 .Two phases
are concurrent if there is no path between them. Competing
accesses are two operations accessing the same shared
variable in concurrent phases and one of the operations is
write.
 Assume two operations o and o0 are executed in two phases,
Q and Q0 respectively. o0 is reachable from o If any of
following conditions is satisfied :
(1) Q = Q0 and o is executed before o0,
(2) Q - Q0.

V. VISIBILITY OF WRITTEN VALUES ON SHARED VARIABLES

 A written value of a write operation, w, on shared variable x
in phase Q is visible to a read operation on x in phase Q0 if
and only if one of following situations holds
1. if Q = Q0, the write operation is the last write operation on
x before the read operation.
2. if Q =! Q0(not equal) and Q0 is reachable from Q, w is the
last write on x in phase
Q and there is no other phase on the path from Q to Q0 which
has write operation on x.
3. Q and Q0 are concurrent.
 The set of written values visible to the read operation op on
X is called the visible set of X.

From the programmer's point of view, an acquire action
takes place when a synchronization object replies to a
requesting process. All the updates in shared memory that are
visible to the synchronization object before the
synchronization object replies are also visible to the process
after the process receives the response from the
synchronization object. The time instance when R(R=release)
acts depends on how conservatively the updates in shared
memory are expected to be propagated. If the attribute
RA(RA=release acquire) or R(R=release) is used, the updates
of the requesting process are visible to the synchronization
object when the object receives the request. If the operation is
annotated with AR(AR=acquire release), the updates are
made visible to the synchronization object after the object
replies to the process. The attribute AR(AR=acquire release)
can be used for atomic updates to the synchronization object.
For example, in the consumer producer problem , if the queue
buffer in the synchronization object buffer is full, the
producer needs to be suspended until some products are taken

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:12, 2009

2818

by consumers. The updates in shared memory by the producer
do not have to be seen by others until the products are stored
in the queue buffer. The function PutItemPtr may be annotated
with the attribute AR(AR=acquire release). A
synchronization operation can have no attribute. The updates
of the process are not visible to such a synchronization object
when it executes the synchronization operation

 REFERENCES
[1] A. S. Tanenbaum. Modern Operating Systems, chapter 2. Pren-tice Hall,

Vol.2,1992
[2] M. Dubois and C. Scheurich., “Memory access dependencies in shared-

memory multiprocessors” IEEE Transaction on Software Engineering,
June 1990.

[3] O. Babaoglu and K. Marzzullo “Distributed Systems”, chapter
4.Addison-Wesley, second edition, 1993.

[4] J. B. Carter. “Efficient Distributed Shared Memory Based on Multi-
Protocol Release Consistency”. PhD thesis, Rice University, 1993.

[5] www.springer.com/computer/communications/book/978-0-387-21509-9
- 36k

[6] http://www.stormingmedia.us/62/6230/A623044.html
[7] Coulouris, George F.; Dollimore , “Distributed Systems: “Concepts and

Design(international computer system series)”Second Edition Published
by Addison-Wesley”, 1994.

[8] C.George ,Jean Dollimore, Tim Kindberg “Distributed. Systems
Concepts and Design” ,third edition, published August 7, 2000 672
pages

