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A systematic approach for finding Hamiltonian
cycles with a prescribed edge in crossed cubes

Jheng-Cheng Chen, Chia-Jui Lai, and Chang-Hsiung Tsai,

Abstract—The crossed cube is one of the most notable variations
of hypercube, but some properties of the former are superior to those
of the latter. For example, the diameter of the crossed cube is almost
the half of that of the hypercube. In this paper, we focus on the
problem embedding a Hamiltonian cycle through an arbitrary given
edge in the crossed cube. We give necessary and sufficient condition
for determining whether a given permutation with n elements over Zn

generates a Hamiltonian cycle pattern of the crossed cube. Moreover,
we obtain a lower bound for the number of different Hamiltonian
cycles passing through a given edge in an n-dimensional crossed
cube. Our work extends some recently obtained results.

Keywords—Interconnection network, Hamiltonian, Crossed cubes,
Prescribed edge.

I. INTRODUCTION

THe ring structure is a fundamental network for multi-
processor systems and suitable for developing simple

algorithms with low communication cost. Many efficient algo-
rithms were designed with respect to rings for solving a variety
of algebraic problems, graph problems, and some parallel
applications, such as those in image and signal processing [2],
[9]. To carry out a ring-structure algorithm on a multiprocessor
computer or a distributed system, the processes of the parallel
algorithm need to be mapped to the nodes of the intercon-
nection network in the system such that any two adjacent
processes in the cycle are mapped to two adjacent node of
the network. Due to execute a parallel program efficiently, the
targeted interconnection network posses a Hamiltonian cycle,
i.e., a cycle that passes every node of the network exactly
once if the number of processes in the ring-structure parallel
algorithm equals the number of nodes of the interconnection
network. On the other hand, each link in a parallel distributed
system may be assigned with distinct bandwidth, thus, it
is meaningful to study the problem of how to embed a
Hamiltonian cycle into a network such that these cycles pass
through a special edge.

Hypercubes are the most well known of all interconnection
networks for parallel computing, given their basic simplicity,
their generally desirable topological and algorithmic proper-
ties. Thus, many practical parallel computer systems, such as
Intel iPSC, the nCUBE family [6], the SGI’s Origin 2000 [10],
and the Connection Machine [11], employ the hypercubes as
the interconnection network. The crossed cube proposed by
Efe [3] is one of the most notable variations of hypercube,
but some properties of the former are superior to those of
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the latter. For example, the diameter of the crossed cube is
almost the half of that of the hypercube. With regard to cycles
embedding of crossed cubes, many interesting results have
received considerable attention [1], [5], [7], [8], [12], [13],
[14]. In particular, Zheng and Latifi [14] introduced to the
notion of reflected link label sequences and proposed a kind
of codeword, called Generalized Gray Code. Applying these
concepts, they showed that CQn can embed cycles of arbitrary
length from 4 to 2n. In this paper, we consider the problem of
embedding a Hamiltonian cycle passing through a prescribed
edge in the crossed cube. We introduce a new concept, the
cycle pattern, and use it to propose a systematic approach
for embedding a desired Hamiltonian cycle in the crossed
cube. In particular, we give necessary and sufficient condition
for determining whether or not a given permutation with n
elements over Zn generates a Hamiltonian cycle pattern of
the crossed cube. Our work extends some recently obtained
results in [12], [14].

The rest of this paper is organized as follows. Section II
introduces definitions and reflected edge label sequence that
will be used throughout this paper. In Section III, we propose
cycle pattern concept and give necessary and sufficient condi-
tion for determining whether or not a given permutation with
n elements over Zn generates a Hamiltonian cycle pattern of
the crossed cube. Based on this concept, how many distinct
Hamiltonian cycles pass through a given edge in CQn is
calculated in Section IV. Conclusions are given in the final
section.

II. PRELIMINARIES

A topology of an interconnection network is conveniently
represented by an undirected simple graph G = (V,E), where
V (G) and E(G) is the vertex set and the edge set of G,
respectively. Throughout this paper, vertex and node, edge
and link, graph and network are used interchangeably. For
graph terminology and notation not defined here we refer
the reader to [9]. A walk in a graph is a finite sequence
ω : λ0, e1, λ1, e2, λ2, . . . , λk−1, ek, λk whose terms are alter-
nately vertices and edges such that, for 1 ≤ i ≤ k, the edge
ei has ends λi−1 and λi, thus each edge ei is immediately
preceded and succeeded by the two vertices with which it is
incident. In particular, a walk ω is called a path if all internal
vertices, λi for 1 ≤ i ≤ k− 1, of the walk ω are distinct. The
first vertex λ0 of ω is called its start vertex, and the vertex
λk is called a last vertex. Both of them are called end-vertices
of the path ω. For simplicity, the path ω is also denoted by
λ0, λ1, . . . , λk. If λ0 = λk, then ω is called a cycle. A cycle of
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Fig. 1. Crossed cubes CQ3 and CQ4.

length l is called a l-cycle. A path (respectively, cycle) which
traverses each vertex of G exactly once is Hamiltonian path
(respectively, Hamiltonian cycle).

An n-dimensional crossed cube, denoted as CQn, was first
proposed by Efe [3]. It is derived by “crossing” some edges in
Qn. With exactly same hardware cost as hypercube, it has been
shown that such a simple variation gains important benefits
such as greatly reduced diameter. To define crossed cubes, the
notion so called “pair related” relation is introduced. Let R
= {(00, 00), (10, 10), (01, 11), (11, 01)}. Two binary strings
u1u0 and v1v0 are pair related, denoted as u ∼ v, if and only
if (u, v) ∈ R. Subsequently, a crossed cube of dimension n is
an undirected graph consisting of 2n vertices labeled from 0
to 2n − 1 and defined recursively as following:

Definition 1: [3] The crossed cube CQ1 is a complete
graph with two vertices labeled by 0 and 1, respectively. For
n ≥ 2, an n-dimensional crossed cube CQn consists of two
(n− 1)-dimensional sub-crossed cubes, CQ0

n−1 and CQ1
n−1,

and a perfect matching between the vertices of CQ0
n−1 and

CQ1
n−1 according to the following rule:

Let V (CQ0
n−1) = {0un−2un−3 · · ·u0 : ui = 0 or 1} and

V (CQ1
n−1) = {1vn−2vn−3 · · · v0 : vi = 0 or 1}. The vertex

u = 0un−2un−3 · · ·u0 ∈ V (CQ0
n−1) and the vertex v =

1vn−2vn−3 · · · v0 ∈ V (CQ1
n−1) are adjacent in CQn if and

only if

(1) un−2 = vn−2 if n is even, and
(2) u2i+1u2i ∼ v2i+1v2i, for 0 ≤ i < �

n−1
2 �.

An edge (u, v) ∈ E(CQn) is labeled by j if uj �= vj and
ui = vi for j + 1 ≤ i ≤ n− 1, i.e, v is the j-th dimensional
neighbor (abbreviated as j-neighbor) of u, denoted by u[j]v or
v[j]u. It is observed that each vertex u in CQn has n neighbors
in CQn; u has exactly one j-neighbor for 0 ≤ j ≤ n−1. As a
consequence, there are 2n−1 edges labeled by j, 0 ≤ j ≤ n−1,
in CQn. For example, the graphs shown in Figure 1 are CQ3

and CQ4.
A path in CQn might be specified by the source

vertex and a sequence of labels detailing the edges to
be traversed, for example, the path in CQ3 detailed as
having the source vertex 000 and then following the
edges labeled 1,2,1 (also denoted [1,2,1]) is actually the
path 000, 010, 110, 100, also denoted 000[1,2,1]100. Besides,
000[1,2]110,100, 000,010[2,1]100, and 000[1,2,1]100 are rep-
resented the identical path 000, 010, 110, 100. Therefore, the
sequence L = [d1, d2, . . . , dm] is called an Edge Label
Sequence in CQn if two adjacent labels are not identical where
di ∈ Zn, Zn = {0, 1, . . . , n− 1}, for 1 ≤ i ≤ m.

A walk, ω(L, u) = λ0, λ1, λ2, . . . , λm, in CQn can be
generated with respect to a given edge label sequence L and a

given vertex u as follows: λ0 = u, and λj is the dj-neighbor
of λj−1 in CQn where 1 ≤ j ≤ m, i.e, λj−1[dj−1]λj . Thus,
this walk ω(L, u) is also represented as λ0[L]λm. In particular,
the edge label sequence L is interesting in this paper when it
generates a loop-free path ω(L, u) starting from any vertex u
in CQn.

Hereafter, we are interesting a special edge label sequence
called reflected link label sequence generated by a systematic
method. A reflected edge label sequence of length 2k is
generated from a permutation with k elements over Zn. Let
πk = 〈d1, d2, . . . , dk〉, 1 ≤ k ≤ n, be a permutation over
Zn with k elements, and let πk(i) = 〈d1, d2, . . . , di〉. The
Reflected Edge Label Sequence, RLπk

defined by πk, be
generated recursively as follows:

RLπk(1) = d1
RLπk(i) = RLπk(i−1), di, RLπk(i−1), 1 ≤ i ≤ k; and
RLπk

= RLπk(k)

As a result, the RLπk
defined by arbitrary permutation πk

over Zn is a symmetry edge label sequence in CQn. Zheng
and Latifi [14] observe the following lemma.

Lemma 1: [14] For any vertex u in CQn and any πn

permutation over Zn with n elements, the walk ω(RLπn
, u)

corresponds to a Hamiltonian path of CQn that start from u.
Lemma 2: Assume that πn is a permutation,

〈d1, d2, . . . , dn〉, with n elements over on Zn. Then,
the total number of dk, 1 ≤ k ≤ n, in RLπn

equals to 2n−k.
Lemma 3: Assume that π0

n and π1
n are two distinct per-

mutations with n elements over on Zn. Then, ω(RLπ0
n
, u)

and ω(RLπ1
n
, v) correspond two distinct Hamiltonian paths of

CQn for any two vertices u and v of CQn.
Proof. Let π0

n = 〈d1, d2, . . . , dn〉 and π1
n =

〈d′1, d
′

2, . . . , d
′

n〉 be two distinct permutations over on Zn.
Since π0

n �= π1
n, there exist k and h such that k �= h and dk =

d′
h

. By Lemma 2 and for any two vertices u, v ∈ V (CQn), the
path ω(RLπ0

n
, u) and ω(RLπ1

n
, v) passes through 2n−k and

2n−h edges in dimension dk and d′
h

of CQn, respectively. As
a conclusion, ω(RLπ0

n
, u) and ω(RLπ1

n
, v) correspond to two

distinct Hamiltonian paths of CQn. ��

III. CYCLE PATTERNS

Let L be an edge label sequence of CQn with l elements.
We called L an l-cycle pattern, l-CP for short, of CQn if the
walk ω(L, u) forms an l-cycle for every vertex u. Particularly,
appending dk to the end of the sequence RLπk

, we obtain an
edge label sequence [RLπk

, dk] where πk = 〈d1, d2, . . . , dk〉.
For convenience, we use Cπk

to denote the special sequence
[RLπk

, dk] in the following; thus, Cπk
contains 2k edge labels

for any permutation, πk, with k elements. In other word, we
are interested the special permutations, πk for 1 ≤ k ≤ n,
with k elements over Zn satisfy that Cπk

is a 2k-CP of CQn.
Such permutation πk is called a 2k-CP generator of CQn. In
particular, πn is called a Hamiltonian cycle pattern generator
if Cπn

is a 2n-CP.
Herein, fundamental properties of CQn are proposed in

order to help for constructing 2k-CP generator of CQn. Let
B2 = {00, 01, 10, 11} and γ : B2 → B2 be a bijection
mapping, which is defined as follows: γ(u1u0) = v1v0 if and
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only if u1u0 and v1v0 are pair related, i.e., u1u0 ∼ v1v0.
Let Cb : B2 → B2 and Cf : B2 → B2 be two bijection
mappings, which are defined as follows Cb(u1u0) = u1u0

and Cf (u1u0) = u1u0, respectively. Thus, a compose function
g◦f : B2 → B2 defined by (g◦f)(u) = g(f(u)) for all u ∈ B2

is obtained where g, f ∈ {γ, Cf , Cb}. The following lemma is
useful in the proof of Lemma 5. It is not difficult to verify by
straightforward; hence, the detail proof is omitted.

Lemma 4: For k ≥ 1, let u be any 2-bit binary string. Then,

(1) f2k(u) = u where f ∈ {γ, Cf , Cb},
(2) Cf ◦ γ(u) = γ ◦ Cf (u), and
(3) Cb ◦ γ(u) = Cf ◦ γ ◦ Cb(u).

Consequently, Lemma 5 gives necessary and sufficient con-
ditions for determining 2k-CP generator of CQn for 2 ≤ k ≥

n.
Lemma 5: For n ≥ 3 and 2 ≤ k ≤ n, let πk =

〈d1, . . . , dk−1, dk〉 be a permutation over Zn with k elements
where 2 ≤ k ≤ n. Then, πk is not a 2k-CP generator if
and only if min{dk−1, dk} is even and |dk − dk−1| ≥ 2.
Moreover, for any vertex u in CQn, two end-vertices of the
walk ω(Cπk

, u) are only different from the g-th bit position
where g = min{dk−1, dk}+ 1 if πk is not a 2k-CP generator
in CQn.

Proof. The lemma is proved by induction on k. We first
claim the base case for k = 2. Without loss of generality, we
may assume that d1 < d2. Also let u be a vertex of CQn.

(⇒) Suppose that d1 = d2 − 1 if d1 is even; otherwise, d1
is an odd integer. It is claimed that u[d1, d2, d1, d2]v forms
a 4-cycle in CQn, i.e., u = v. It is obvious that u = v if
d1 = d2 − 1. So, we just consider only d1 is an odd integer.
Since d1 < d2 and d1 is odd, uj = vj for j > d1 or j <
d1 − 1. We check only whether ud1ud1−1 = vd1vd1−1 or not.
Note that vd1vd1−1 = (γ ◦ Cf)

2(ud1ud1−1). By Lemma 4,
(γ ◦ Cf )

2(ud1ud1−1) = ud1ud1−1. Therefore, u = v.
(⇐) Suppose that d1 is even and d1 < d2−1. It is observed

that uj = vj for j > d1 + 1 or j < d1, and vd1+1vd1 =
(γ ◦ Cb)

2(ud1+1ud1). By Lemma 4, (γ ◦ Cb)
2(ud1+1ud1) =

Cf (ud1+1ud1) = ud1+1ud1 . Therefore, u[d1, d2, d1, d2]v is not
a 4-cycle and u, v are only different from the d1-th bit position.

As a subsequence, suppose that the lemma is true for
k ≤ m − 1. Let πm be a permutation, 〈d1, . . . , dm−1, dm〉,
with m elements over Zn. The Cπm

will be represented by
[RLπm(m−1), dm, RLπm(m−1), dm] where RLπm(m−1) is a
reflected edge label sequence generated by the permutation
〈d1, d2, . . . , dm−2, dm−1〉. Let u = un−1un−2 . . . u0

be an arbitrary vertex of CQn. The walk ω(Cπm
, u)

is written as u[RLπm(m−1)]x[dm]y[RLπm(m−1)]z[dm]v,
where u[RLπm(m−1)]x is the path ω(RLπm(m−1), u) and
y[RLπm(m−1)]z is the path ω(RLπm(m−1), y). According to
whether or not πm(m− 1) is a 2m−1-CP generator, the proof
is divided into two parts as follows.
Case 1: πm(m− 1) is a 2m−1-CP generator.

Hence u and y is a dm−1-neighbor of x and
z, respectively, i.e., u[dm−1]x and y[dm−1]z. Therefore,
u[dm−1]x[dm]y[dm−1]z[dm]v is a path having the source
vertex u and then following the edge label sequence
[dm−1, dm, dm−1, dm].

(⇒) Suppose that 〈dm−1, dm〉 is a 4-CP generator. Thus,
u = v. Therefore, ω(Cπk

, u) is a 2k-cycle in CQn.
(⇐) Suppose that 〈dm−1, dm〉 is not a 4-CP generator. By

induction hypothesis, u and v are only different from the g-th
bit position where g = min{dm−1, dm}+1. Hence ω(Cπm

, u)
is not a 2m-cycle of CQn.
Case 2: πm(m− 1) is not a 2m−1-CP generator.

By induction hypothesis, u[RLπm(m−1)]x[dm−1]w does not
form a cycle, i.e, u �= w. Moreover, u and w are only different
from the h-th bit position where h = min{dm−2, dm−1}+ 1.
Let g = min{dm−1, dm} + 1. In this case, there are six
situations with respect to the relation of dm−2, dm−1, and
dm. The proof of each situation is similar. Thus, we discuss
only the case of dm−2 > dm−1 > dm in the following, that
is, h = dm−1 + 1 and g = dm + 1. By induction hypoth-
esis, 〈dm−2, dm−1〉 is not a 4-CP generator. By induction
hypothesis, dm−1 is an even integer. Obviously, the vertex
x = xn−1xn−2 . . . x0 satisfies that

xi = ui for i > h,
xhxh−1 = uhuh−1, and
x2j+1x2j = γ(u2j+1u2j) for h−3

2 ≥ j ≥ 0.

(⇒) Suppose that C
〈dm−1,dm〉

is a 4-CSK . We will claim
that Cπm

is a 2m-CSK in CQn, i.e., ω(Cπm
, u) is a 2m-

cycle. Since dm−1 > dm and by induction hypothesis, dm is
an odd integer. Since y is the dm-neighbor of x, the vertex
y = yn−1yn−2 . . . y0 satisfies that

yi = ui for i > h,
yhyh−1 = uhuh−1,

y2l+1y2l = γ(u2l+1u2l) for h−3
2 ≥ j ≥ dm+1

2 ,
ydm

ydm−1 = Cf ◦ γ(udm
udm−1), and

yj = uj for (dm − 2) ≥ j ≥ 0.

Note that y[RLπm(m−1)]z. Thus, the vertex
z = zn−1zn−2 . . . z0 satisfies that

zi = ui for i > h,
zhzh−1 = uhuh−1,

z2l+1z2l = (γ)2(u2l+1u2l) for h−3
2 ≥ j ≥ dm+1

2 ,
zdm

zdm−1 = γ ◦ Cf ◦ γ(udm
udm−1), and

z2j+1z2j = γ(u2j+1u2j) for dm−3
2 ≥ j ≥ 0.

By Lemma 4, we have that (γ)2(u2l+1u2l) = u2l+1u2l.
Hence z2l+1z2l = u2l+1u2l for h−3

2 ≥ j ≥
dm+1

2 . Since
Cf ◦ γ = γ ◦ Cf (by Lemma 4), γ ◦ Cf ◦ γ(udm

udm−1) =
Cf (udm

udm−1). Consequently, the vertex z can be represented
by

zi = ui for i > dm,
zdm

zdm−1 = udm
udm−1, and

z2j+1z2j = γ(u2j+1u2j) for dm−3
2 ≥ j ≥ 0.

Thus, it is observed that vertex z is the dm-neighbor of u,
i.e., z[dm]u. Since z[dm]v, u = v and hence ω(Cπm

, u) is a
2m-cycle in CQn.

(⇐) Suppose that 〈dm−1, dm〉 is not a 4-
CP generator. It is recalled that ω(Cπm

, u) =
u[RLπm(m−1)]x[dm]y[RLπm(m−1)]z[dm]v. We will claim that
ω(Cπm

, u) is not a 2m-cycle of CQn, and ug = vg and ui = vi
for all 0 ≤ i �= g ≤ n − 1 where g = min{dm−1, dm} + 1.
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Since dm−1 > dm and by induction hypothesis, dm is an
even integer. Hence the vertex y = yn−1yn−2 . . . y0 satisfies
that

yi = ui for i > h,
yhyh−1 = uhuh−1,

y2l+1y2l = γ(u2l+1u2l) for h−3
2 ≥ j ≥ dm+2

2 ,
ydm+1ydm

= Cb ◦ γ(udm+1udm
), and

yj = uj for (dm − 1) ≥ j ≥ 0.

Note that y[RLπm(m−1)]z. Thus, the vertex
z = zn−1zn−2 . . . z0 satisfies that

zi = ui for i > h,
zhzh−1 = uhuh−1,

z2l+1z2l = (γ)2(u2l+1u2l) for h−3
2 ≥ j ≥ dm+2

2 ,
zdm+1zdm

= γ ◦ Cb ◦ γ(udm+1udm
), and

z2j+1z2j = γ(u2j+1u2j) for dm−2
2 ≥ j ≥ 0.

Since Cb◦γ = Cf ◦γ◦Cb and γ◦Cf = Cf ◦γ (by Lemma 4),
γ ◦ Cb ◦ γ(udm

udm−1) = CfCb(udm
udm−1) = udm

udm−1.
Consequently, the vertex z can be represented by

zi = ui for i > dm,
zdm+1zdm

= udm+1udm
, and

z2j+1z2j = γ(u2j+1u2j) for dm−2
2 ≥ j ≥ 0.

Thus, it is observed that vertex z and u are not adjacent in
CQn. Since z[dm]v, the vertex v = vn−1vn−2 . . . v0 satisfies
that

vi = ui for i �= dm, and
vdm+1 = udm+1.

Therefore, vertex u and v are only different from the g-th bit
position where g = dm + 1, that is, g = min{dm−1, dm}+ 1.
��

Given a permutation πn over on Zn with n elements, one
can determine whether or not the permutation πn can generate
a Hamiltonian cycle pattern, Cπn

, of CQn by only inspecting
the last two numbers dn−1 and dn of πn. Thus, we have the
following corollary.

Corollary 1: For n ≥ 3, let πn = 〈d1, . . . , dn−1, dn〉 be
a permutation over Zn with n elements. Then, Cπn

is a
Hamiltonian cycle pattern of CQn if and only if

(1) min{dn−1, dn} is odd, or
(2) |dn − dn−1| = 1.

IV. DISTINCT HAMILTONIAN CYCLES PASSING A GIVEN

EDGE

Given a Hamiltonian cycle pattern generator πn and any
vertex u in CQn, the walk ω(Cπn

, u) corresponds to a Hamil-
tonian cycle in CQn. In this section, we will construct several
distinct Hamiltonian cycles with respect to Hamiltonian cycle
pattern in use such that they pass through the same prescribed
edge.

Lemma 6: For n ≥ 3, let πn be arbitrary permutation,
〈d1, d2, . . . , dn〉, with n elements over on Zn and (u, v) be
any edge of CQn. Then, there exists a vertex z such that
the Hamiltonian path ω(RLπn

, z) of CQn passes through the
edge (u, v).

Proof. Let πn be a permutation,
〈d1, . . . , dk−1, dk, . . . , dn〉, with n elements over on Zn

and (u, v) be an edge in dimension d. Without loss of
generality, dk = d. Let RL

〈d1,...,dk−1〉
be a reflected edge

label sequence defined by the permutation 〈d1, . . . , dk−1〉.
Obviously, RL

〈d1,...,dk−1〉
is a substring of RLπn

. The proof
is trivial if k = 1, 2; thus, we consider only the case of k ≥ 3.

Let z be the dk−1-th neighbor of u if 〈d1, . . . , dk−1〉 is a
2k−1-CP generator; otherwise, z be a vertex satisfies that

zi = ui for i > g,
zgzg−1 = ugug−1, and
z2j+1z2j = γ(u2j+1u2j) for g−3

2 ≥ j ≥ 0.

, where g = min{dk−2, dk−1}+ 1.
By Lemma 5, we obtain the path z[RL

〈d1,...,dk−1〉
]u;

besides, z[RL
〈d1,...,dk−1〉

]u lies on the Hamiltonian path
ω(RLπn

, z). Since u[dk]v, the path ω(RLπn
, z) passes

through the edge (u, v). ��

With respect to Lemma 6, the subsequent theorem is im-
mediately clear.

Theorem 1: For n ≥ 3, let πn be arbitrary Hamiltonian
cycle pattern generator and (u, v) be any edge in CQn.
Then, there exists a vertex z such that the Hamiltonian cycle
ω(Cπn

, z) of CQn passes through the edge (u, v).
Given any edge (u, v) in dimension d, 0 ≤ d ≤ n − 1,

and any two distinct Hamiltonian cycle pattern generators
π0
n and π1

n, by Lemma 3 and Theorem 1, we can generate
two distinct Hamiltonian cycles of CQn based on π0

n and π1
n

such that each cycle passes through the edge (u, v). Indeed,
we can obtain a lower bound for the number of different
Hamiltonian cycles passing a given edge by calculating how
many different Hamiltonian cycle pattern generators in CQn.
Subsequently, the following theorem is easy to verify by
fundamental calculation.

Theorem 2: For n ≥ 3, let (u, v) be any given edge in
CQn. Then, there are at least m different Hamiltonian cycles
in CQn passing through the edge (u, v) where m = n

2

2 ×(n−

2)! if n is even; otherwise, m = n
2
−1
2 × (n− 2)!.

V. CONCLUSION

The crossed cube is one of most prominent variants of
hypercube. Because crossed cubes are neither edge- nor
vertex-symmetric, producing Hamiltonian cycles to pass any
prescribed edge in a crossed cube is more intricate of a
process than in a regular hypercube. In this paper, we apply
the characterization of Hamiltonian cycles pattern extended
from [14] to build a simple systematic approach to generate a
Hamiltonian cycle passing through arbitrary prescribed edge.

Numerous variants of hypercube, for example, Möbius
cubes, Twisted cubes, and Locally Twisted cubes, have been
proposed and proved that there exists a Hamiltonian cycle
passing through any given edge in them. Finding an algorithm
to generate a desired Hamiltonian cycle passing through arbi-
trary given edge in these variants of hypercube is still open. We
conjecture that such approach may be constructed by applying
the concept of Hamiltonian cycle pattern to these networks.
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