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A Sufficient Condition for Graphs to Have
Hamiltonian [a, b]-Factors

Sizhong Zhou

Abstract—Let a and b be nonnegative integers with 2 ≤ a < b, and
let G be a Hamiltonian graph of order n with n ≥ (a+b−4)(a+b−2)

b−2
.

An [a, b]-factor F of G is called a Hamiltonian [a, b]-factor if F
contains a Hamiltonian cycle. In this paper, it is proved that G has a
Hamiltonian [a, b]-factor if |NG(X)| > (a−1)n+|X|−1

a+b−3
for every non-

empty independent subset X of V (G) and δ(G) > (a−1)n+a+b−4
a+b−3

.

Keywords—graph, minimum degree, neighborhood, [a, b]-factor,
Hamiltonian [a, b]-factor.

I. INTRODUCTION

In this paper we consider only finite undirected graphs
without loops or multiple edges. In particular, a graph is said
to be a Hamiltonian graph if it contains a Hamiltonian cycle.
Let G be a graph with vertex set V (G) and edge set E(G). For
x ∈ V (G), the neighborhood NG(x) of x is the set vertices
of G adjacent to x, and the degree dG(x) of x is |NG(x)|. We
denote the minimum degree of G by δ(G). For S ⊆ V (G),
NG(S) = ∪x∈SNG(x) and G[S] is the subgraph of G induced
by S and G−S is the subgraph obtained from G by deleting
all the vertices in S together with the edges incident to vertices
in S. A vertex set S ⊆ V (G) is called independent if G[S]
has no edges.

Let g and f be two nonnegative integer-valued functions
defined on V (G) with g(x) ≤ f(x) for each x ∈ V (G). A
spanning subgraph F of G is called a (g, f)-factor if it satisfies
g(x) ≤ dF (x) ≤ f(x) for each x ∈ V (G). If g(x) = a and
f(x) = b for each x ∈ V (G), then a (g, f)-factor is called an
[a, b]-factor. A (g, f)-factor F of G is called a Hamiltonian
(g, f)-factor if F contains a Hamiltonian cycle. If g(x) = a
and f(x) = b for each x ∈ V (G), then we say a Hamiltonian
(g, f)-factor to be a Hamiltonian [a, b]-factor. If a = b = k,
then a Hamiltonian [a, b]-factor is simply called a Hamiltonian
k-factor. The other terminologies and notations not given here
can be found in [1].

Many authors have investigated factors [2–7]. Y. Gao, G.
Li and X. Li [8] gave a degree condition for a graph to
have a Hamiltonian k-factor. H. Matsuda [9] showed a degree
condition for graphs to have Hamiltonian [a, b]-factors. S.
Zhou and B. Pu [10] obtained a neighborhood condition for a
graph to have a Hamiltonian [a, b]-factor.

The following results on Hamiltonian k-factors and Hamil-
tonian [a, b]-factors are known.
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Theorem 1. ([8]). Let k ≥ 2 be an integer and let G be a
graph of order n > 12(k−2)2 +2(5−α)(k−2)−α. Suppose
that kn is even, δ(G) ≥ k and

max{dG(x), dG(y)} ≥ n + α

2

for each pair of nonadjacent vertices x and y in G, where α =
3 for odd k and α = 4 for even k. Then G has a Hamiltonian
k-factor if for a given Hamiltonian cycle C, G − E(C) is
connected.

Theorem 2. ([9]). Let a and b be integers with 2 ≤
a < b, and let G be a Hamiltonian graph of order n ≥
(a+b−4)(2a+b−6)

b−2 . Suppose that δ(G) ≥ a and

max{dG(x), dG(y)} ≥ (a − 2)n
a + b − 4

+ 2

for each pair of nonadjacent vertices x and y of V (G). Then
G has a Hamiltonian [a, b]-factor.

Theorem 3. ([10]). Let a and b be nonnegative integers
with 2 ≤ a < b, and let G be a Hamiltonian graph of order
n with n ≥ (a+b−3)(2a+b−6)−a+2

b−2 . Suppose for any subset
X ⊂ V (G), we have

NG(X) = V (G) if |X| ≥
⌊

(b − 2)n
a + b − 3

⌋
; or

|NG(X)| ≥ a + b − 3
b − 2

|X| if |X| <

⌊
(b − 2)n
a + b − 3

⌋
.

Then G has a Hamiltonian [a, b]-factor.
G. Liu and L. Zhang [11] proposed the following problem.

Problem. Find sufficient conditions for graphs to have con-
nected [a, b]-factors related to other parameters in graphs such
as binding number, neighborhood and connectivity.

We now show our main theorem which partially solves the
above problem.

Theorem 4. Let a and b be nonnegative integers with 2 ≤
a < b, and let G be a Hamiltonian graph of order n with
n ≥ (a+b−4)(a+b−2)

b−2 . Suppose that

|NG(X)| >
(a − 1)n + |X| − 1

a + b − 3

for every non-empty independent subset X of V (G), and

δ(G) >
(a − 1)n + a + b − 4

a + b − 3
.

Then G has a Hamiltonian [a, b]-factor.
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II. THE PROOF OF THEOREM 4

The proof of our main Theorem relies heavily on the
following lemma. Lemma 2.1 is a well-known necessary and
sufficient for a graph to have a (g, f)-factor which was given
by Lovasz. The following result is the special case which we
use to prove our main theorem.

Lemma 2.1. ([12]). Let G be a graph, and let g and f
be two nonnegative integer-valued functions defined on V (G)
with g(x) < f(x) for each x ∈ V (G). Then G has a (g, f)-
factor if and only if

δG(S, T ) = f(S) + dG−S(T ) − g(T ) ≥ 0

for any disjoint subsets S and T of V (G).
Proof of Theorem 4. According to assumption, G has a

Hamiltonian cycle C. Let G′ = G−E(C). Note that V (G′) =
V (G).

Obviously, G has a Hamiltonian [a, b]-factor if and only if
G′ has an [a − 2, b − 2]-factor. By way of contradiction, we
assume that G′ has no [a − 2, b − 2]-factor. Then, by Lemma
2.1, there exist disjoint subsets S and T of V (G′) such that

δG′(S, T ) = (b− 2)|S|+ dG′−S(T )− (a− 2)|T | ≤ −1. (1)

We choose such subsets S and T so that |T | is as small as
possible.

If T = ∅, then by (1), −1 ≥ δG′(S, T ) = (b − 2)|S| ≥
|S| ≥ 0, which is a contradiction. Hence, T 	= ∅. Set

h = min{dG−S(x) : x ∈ T}.
We choose x1 ∈ T satisfying dG−S(x1) = h. Clearly,

δ(G) ≤ dG−S(x1) + |S| = h + |S|. (2)

Now, we prove the following claims.
Claim 1. dG′−S(x) ≤ a − 3 for all x ∈ T .
Proof. If dG′−S(x) ≥ a − 2 for some x ∈ T , then the

subsets S and T \ {x} satisfy (1). This contradicts the choice
of S and T .

Claim 2. dG−S(x) ≤ dG′−S(x)+2 ≤ a− 1 for all x ∈ T .
Proof. Note that G′ = G−E(C). Thus, we get from Claim

1
dG−S(x) ≤ dG′−S(x) + 2 ≤ a − 1

for all x ∈ T .
In terms of the definition of h and Claim 2, we have

0 ≤ h ≤ a − 1.

We shall consider two cases according to the value of h and
derive contradictions.

Case 1. 1 ≤ h ≤ a − 1.
Using (1), Claim 2, |S| + |T | ≤ n and a − h ≥ 1, we get

−1 ≥ δG′(S, T ) = (b − 2)|S| + dG′−S(T ) − (a − 2)|T |
≥ (b − 2)|S| + dG−S(T ) − 2|T | − (a − 2)|T |
= (b − 2)|S| + dG−S(T ) − a|T |
≥ (b − 2)|S| + h|T | − a|T |
= (b − 2)|S| − (a − h)|T |
≥ (b − 2)|S| − (a − h)(n − |S|)
= (a + b − h − 2)|S| − (a − h)n,

that is,

|S| ≤ (a − h)n − 1
a + b − h − 2

. (3)

In terms of (2), (3) and the assumption of the theorem, we
obtain

(a − 1)n + a + b − 4
a + b − 3

< δ(G) ≤ |S|+h ≤ (a − h)n − 1
a + b − h − 2

+h.

(4)
Subcase 1.1. h = 1.
From (4), we get

(a − 1)n + a + b − 4
a + b − 3

<
(a − 1)n − 1

a + b − 3
+ 1

=
(a − 1)n + a + b − 4

a + b − 3
.

That is a contradiction.
Subcase 1.2. 2 ≤ h ≤ a − 1.
If the LHS and RHS of (4) are denoted by A and B

respectively, then (4) says that

A − B < 0. (5)

Multiplying A − B by (a + b − 3)(a + b − h − 2) and by
n ≥ (a+b−4)(a+b−2)

b−2 and 2 ≤ h ≤ a− 1 < a + b− 2, we have

(a + b − 3)(a + b − h − 2)(A − B)
= (a + b − h − 2)((a − 1)n + a + b − 4)

−(a + b − 3)((a − h)n − 1)
−(a + b − 3)(a + b − h − 2)h

= (h − 1)((b − 2)n − (a + b − 3)(a + b − h − 2))
−(a + b − h − 2)

≥ (h − 1)((a + b − 4)(a + b − 2)
−(a + b − 3)(a + b − h − 2)) − (a + b − h − 2)

= (h − 1)((a + b − 3)h − (a + b − 2))
−(a + b − h − 2)

= (h − 1)((a + b − 2)(h − 1) − h) − (a + b − h − 2)
≥ (h − 1)(a + b − 2 − h) − (a + b − h − 2)
= (h − 2)(a + b − 2 − h) ≥ 0,

which implying

A − B ≥ 0.

Which contradicts (5).
Case 2. h = 0.
Let Y = {x ∈ T : dG−S(x) = 0}. Clearly, Y 	= ∅. Since Y

is independent, we get from the assumption of the theorem

(a − 1)n + |Y | − 1
a + b − 3

< |NG(Y )| ≤ |S|. (6)
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Using (6) and |S| + |T | ≤ n, we obtain

δG′(S, T ) = (b − 2)|S| + dG′−S(T ) − (a − 2)|T |
≥ (b − 2)|S| + dG−S(T ) − 2|T |

−(a − 2)|T |
= (b − 2)|S| + dG−S(T ) − a|T |
≥ (b − 2)|S| + |T | − |Y | − a|T |
= (b − 2)|S| − (a − 1)|T | − |Y |
≥ (b − 2)|S| − (a − 1)(n − |S|) − |Y |
= (a + b − 3)|S| − (a − 1)n − |Y |
> (a + b − 3) · (a − 1)n + |Y | − 1

a + b − 3
−(a − 1)n − |Y |

= −1,

which contradicts (1).
From the above contradictions we deduce that G′ has

an [a−2, b−2]-factor. This completes the proof of Theorem 4.
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