A Sufficient Condition for Graphs to Have Hamiltonian $[a, b]$-Factors

Sizhong Zhou

Abstract-Let a and b be nonnegative integers with $2 \leq a<b$, and let G be a Hamiltonian graph of order n with $n \geq \frac{(a+\bar{b}-4)(a+b-2)}{b-2}$. An $[a, b]$-factor F of G is called a Hamiltonian $[a, b]$-factor if F contains a Hamiltonian cycle. In this paper, it is proved that G has a Hamiltonian $[a, b]$-factor if $\left|N_{G}(X)\right|>\frac{(a-1) n+|X|-1}{a+b-3}$ for every nonempty independent subset X of $V(G)$ and $\delta(G)>\frac{(a-1) n+a+b-4}{a+b-3}$.

Keywords-graph, minimum degree, neighborhood, $[a, b]$-factor, Hamiltonian $[a, b]$-factor.

I. Introduction

In this paper we consider only finite undirected graphs without loops or multiple edges. In particular, a graph is said to be a Hamiltonian graph if it contains a Hamiltonian cycle. Let G be a graph with vertex set $V(G)$ and edge set $E(G)$. For $x \in V(G)$, the neighborhood $N_{G}(x)$ of x is the set vertices of G adjacent to x, and the degree $d_{G}(x)$ of x is $\left|N_{G}(x)\right|$. We denote the minimum degree of G by $\delta(G)$. For $S \subseteq V(G)$, $N_{G}(S)=\cup_{x \in S} N_{G}(x)$ and $G[S]$ is the subgraph of G induced by S and $G-S$ is the subgraph obtained from G by deleting all the vertices in S together with the edges incident to vertices in S. A vertex set $S \subseteq V(G)$ is called independent if $G[S]$ has no edges.

Let g and f be two nonnegative integer-valued functions defined on $V(G)$ with $g(x) \leq f(x)$ for each $x \in V(G)$. A spanning subgraph F of G is called a (g, f)-factor if it satisfies $g(x) \leq d_{F}(x) \leq f(x)$ for each $x \in V(G)$. If $g(x)=a$ and $f(x)=b$ for each $x \in V(G)$, then a (g, f)-factor is called an $[a, b]$-factor. A (g, f)-factor F of G is called a Hamiltonian (g, f)-factor if F contains a Hamiltonian cycle. If $g(x)=a$ and $f(x)=b$ for each $x \in V(G)$, then we say a Hamiltonian (g, f)-factor to be a Hamiltonian $[a, b]$-factor. If $a=b=k$, then a Hamiltonian $[a, b]$-factor is simply called a Hamiltonian k-factor. The other terminologies and notations not given here can be found in [1].

Many authors have investigated factors [2-7]. Y. Gao, G. Li and $\mathrm{X} . \mathrm{Li}$ [8] gave a degree condition for a graph to have a Hamiltonian k-factor. H. Matsuda [9] showed a degree condition for graphs to have Hamiltonian $[a, b]$-factors. S . Zhou and B. Pu [10] obtained a neighborhood condition for a graph to have a Hamiltonian $[a, b]$-factor.

The following results on Hamiltonian k-factors and Hamiltonian $[a, b]$-factors are known.

Sizhong Zhou is with the School of Mathematics and Physics, Jiangsu University of Science and Technology, Mengxi Road 2, Zhenjiang, Jiangsu 212003, People's Republic of China, e-mail: zsz_cumt@163.com.
Manuscript received May 25, 2009.

Theorem 1. ([8]). Let $k \geq 2$ be an integer and let G be a graph of order $n>12(k-2)^{2}+2(5-\alpha)(k-2)-\alpha$. Suppose that $k n$ is even, $\delta(G) \geq k$ and

$$
\max \left\{d_{G}(x), d_{G}(y)\right\} \geq \frac{n+\alpha}{2}
$$

for each pair of nonadjacent vertices x and y in G, where $\alpha=$ 3 for odd k and $\alpha=4$ for even k. Then G has a Hamiltonian k-factor if for a given Hamiltonian cycle $C, G-E(C)$ is connected.

Theorem 2. ([9]). Let a and b be integers with $2 \leq$ $a<b$, and let G be a Hamiltonian graph of order $n \geq$ $\frac{(a+b-4)(2 a+b-6)}{b-2}$. Suppose that $\delta(G) \geq a$ and

$$
\max \left\{d_{G}(x), d_{G}(y)\right\} \geq \frac{(a-2) n}{a+b-4}+2
$$

for each pair of nonadjacent vertices x and y of $V(G)$. Then G has a Hamiltonian $[a, b]$-factor.

Theorem 3. ([10]). Let a and b be nonnegative integers with $2 \leq a<b$, and let G be a Hamiltonian graph of order n with $n \geq \frac{(a+b-3)(2 a+b-6)-a+2}{b-2}$. Suppose for any subset $X \subset V(G)$, we have

$$
\begin{gathered}
N_{G}(X)=V(G) \quad \text { if } \quad|X| \geq\left\lfloor\frac{(b-2) n}{a+b-3}\right\rfloor ; \quad \text { or } \\
\left|N_{G}(X)\right| \geq \frac{a+b-3}{b-2}|X| \quad \text { if } \quad|X|<\left\lfloor\frac{(b-2) n}{a+b-3}\right\rfloor .
\end{gathered}
$$

Then G has a Hamiltonian $[a, b]$-factor.
G. Liu and L. Zhang [11] proposed the following problem. Problem. Find sufficient conditions for graphs to have connected $[a, b]$-factors related to other parameters in graphs such as binding number, neighborhood and connectivity.
We now show our main theorem which partially solves the above problem.

Theorem 4. Let a and b be nonnegative integers with $2 \leq$ $a<b$, and let G be a Hamiltonian graph of order n with $n \geq \frac{(a+b-4)(a+b-2)}{b-2}$. Suppose that

$$
\left|N_{G}(X)\right|>\frac{(a-1) n+|X|-1}{a+b-3}
$$

for every non-empty independent subset X of $V(G)$, and

$$
\delta(G)>\frac{(a-1) n+a+b-4}{a+b-3}
$$

Then G has a Hamiltonian $[a, b]$-factor.

ISSN: 2517-9934
Vol:3, No:9, 2009

II. The Proof of Theorem 4

The proof of our main Theorem relies heavily on the following lemma. Lemma 2.1 is a well-known necessary and sufficient for a graph to have a (g, f)-factor which was given by Lovasz. The following result is the special case which we use to prove our main theorem.

Lemma 2.1. ([12]). Let G be a graph, and let g and f be two nonnegative integer-valued functions defined on $V(G)$ with $g(x)<f(x)$ for each $x \in V(G)$. Then G has a (g, f) factor if and only if

$$
\delta_{G}(S, T)=f(S)+d_{G-S}(T)-g(T) \geq 0
$$

for any disjoint subsets S and T of $V(G)$.
Proof of Theorem 4. According to assumption, G has a Hamiltonian cycle C. Let $G^{\prime}=G-E(C)$. Note that $V\left(G^{\prime}\right)=$ $V(G)$.

Obviously, G has a Hamiltonian $[a, b]$-factor if and only if G^{\prime} has an $[a-2, b-2]$-factor. By way of contradiction, we assume that G^{\prime} has no [$a-2, b-2$]-factor. Then, by Lemma 2.1, there exist disjoint subsets S and T of $V\left(G^{\prime}\right)$ such that

$$
\delta_{G^{\prime}}(S, T)=(b-2)|S|+d_{G^{\prime}-S}(T)-(a-2)|T| \leq-1
$$

We choose such subsets S and T so that $|T|$ is as small as possible.
If $T=\emptyset$, then by (1), $-1 \geq \delta_{G^{\prime}}(S, T)=(b-2)|S| \geq$ $|S| \geq 0$, which is a contradiction. Hence, $T \neq \emptyset$. Set

$$
h=\min \left\{d_{G-S}(x): x \in T\right\} .
$$

We choose $x_{1} \in T$ satisfying $d_{G-S}\left(x_{1}\right)=h$. Clearly,

$$
\begin{equation*}
\delta(G) \leq d_{G-S}\left(x_{1}\right)+|S|=h+|S| \tag{2}
\end{equation*}
$$

Now, we prove the following claims.
Claim 1. $d_{G^{\prime}-S}(x) \leq a-3$ for all $x \in T$.
Proof. If $d_{G^{\prime}-S}(x) \geq a-2$ for some $x \in T$, then the subsets S and $T \backslash\{x\}$ satisfy (1). This contradicts the choice of S and T.

Claim 2. $d_{G-S}(x) \leq d_{G^{\prime}-S}(x)+2 \leq a-1$ for all $x \in T$.
Proof. Note that $G^{\prime}=G-E(C)$. Thus, we get from Claim 1

$$
d_{G-S}(x) \leq d_{G^{\prime}-S}(x)+2 \leq a-1
$$

for all $x \in T$.
In terms of the definition of h and Claim 2, we have

$$
0 \leq h \leq a-1
$$

We shall consider two cases according to the value of h and derive contradictions.

Case 1. $1 \leq h \leq a-1$.
Using (1), Claim 2, $|S|+|T| \leq n$ and $a-h \geq 1$, we get

$$
\begin{aligned}
-1 & \geq \delta_{G^{\prime}}(S, T)=(b-2)|S|+d_{G^{\prime}-S}(T)-(a-2)|T| \\
& \geq(b-2)|S|+d_{G-S}(T)-2|T|-(a-2)|T| \\
& =(b-2)|S|+d_{G-S}(T)-a|T| \\
& \geq(b-2)|S|+h|T|-a|T| \\
& =(b-2)|S|-(a-h)|T| \\
& \geq(b-2)|S|-(a-h)(n-|S|) \\
& =(a+b-h-2)|S|-(a-h) n,
\end{aligned}
$$

that is,

$$
\begin{equation*}
|S| \leq \frac{(a-h) n-1}{a+b-h-2} \tag{3}
\end{equation*}
$$

In terms of (2), (3) and the assumption of the theorem, we obtain
$\frac{(a-1) n+a+b-4}{a+b-3}<\delta(G) \leq|S|+h \leq \frac{(a-h) n-1}{a+b-h-2}+h$.
Subcase 1.1. $h=1$.
From (4), we get

$$
\begin{aligned}
\frac{(a-1) n+a+b-4}{a+b-3} & <\frac{(a-1) n-1}{a+b-3}+1 \\
& =\frac{(a-1) n+a+b-4}{a+b-3} .
\end{aligned}
$$

That is a contradiction.
Subcase 1.2. $2 \leq h \leq a-1$.
If the LHS and RHS of (4) are denoted by A and B respectively, then (4) says that

$$
\begin{equation*}
A-B<0 \tag{5}
\end{equation*}
$$

Multiplying $A-B$ by $(a+b-3)(a+b-h-2)$ and by $n \geq \frac{(a+b-4)(a+b-2)}{b-2}$ and $2 \leq h \leq a-1<a+b-2$, we have

$$
\begin{aligned}
& (a+b-3)(a+b-h-2)(A-B) \\
= & (a+b-h-2)((a-1) n+a+b-4) \\
& -(a+b-3)((a-h) n-1) \\
& -(a+b-3)(a+b-h-2) h \\
= & (h-1)((b-2) n-(a+b-3)(a+b-h-2)) \\
& -(a+b-h-2) \\
\geq & (h-1)((a+b-4)(a+b-2) \\
& -(a+b-3)(a+b-h-2))-(a+b-h-2) \\
= & (h-1)((a+b-3) h-(a+b-2)) \\
& -(a+b-h-2) \\
= & (h-1)((a+b-2)(h-1)-h)-(a+b-h-2) \\
\geq & (h-1)(a+b-2-h)-(a+b-h-2) \\
= & (h-2)(a+b-2-h) \geq 0,
\end{aligned}
$$

which implying

$$
A-B \geq 0
$$

Which contradicts (5).
Case 2. $h=0$.
Let $Y=\left\{x \in T: d_{G-S}(x)=0\right\}$. Clearly, $Y \neq \emptyset$. Since Y is independent, we get from the assumption of the theorem

$$
\begin{equation*}
\frac{(a-1) n+|Y|-1}{a+b-3}<\left|N_{G}(Y)\right| \leq|S| \tag{6}
\end{equation*}
$$

Using (6) and $|S|+|T| \leq n$, we obtain

$$
\begin{aligned}
\delta_{G^{\prime}}(S, T)= & (b-2)|S|+d_{G^{\prime}-S}(T)-(a-2)|T| \\
\geq & (b-2)|S|+d_{G-S}(T)-2|T| \\
& -(a-2)|T| \\
= & (b-2)|S|+d_{G-S}(T)-a|T| \\
\geq & (b-2)|S|+|T|-|Y|-a|T| \\
= & (b-2)|S|-(a-1)|T|-|Y| \\
\geq & (b-2)|S|-(a-1)(n-|S|)-|Y| \\
= & (a+b-3)|S|-(a-1) n-|Y| \\
> & (a+b-3) \cdot \frac{(a-1) n+|Y|-1}{a+b-3} \\
& -(a-1) n-|Y| \\
= & -1,
\end{aligned}
$$

which contradicts (1).
From the above contradictions we deduce that G^{\prime} has an $[a-2, b-2]$-factor. This completes the proof of Theorem 4.

Acknowledgment

This research was sponsored by Qing Lan Project of Jiangsu Province and was supported by Jiangsu Provincial Educational Department (07KJD110048).

References

[1] J. A. Bondy, U. S. R. Murty, Graph Theory with Applications, The Macmillan Press, London, 1976
[2] J. R. Correa, M. Matamala, Some remarks about factors of graphs, Journal of Graph Theory 57(2008), 265-274.
[3] S. Zhou, Independence number, connectivity and (a, b, k)-critical graphs, Discrete Mathematics 309(12)(2009), 4144-4148.
[4] S. Zhou, A sufficient condition for a graph to be an (a, b, k)-critical graph, International Journal of Computer Mathematics, to appear.
[5] S. Zhou, J. Jiang, Notes on the binding numbers for (a, b, k)-critical graphs, Bulletin of the Australian Mathematical Society 76(2)(2007), 307-314.
[6] S. Zhou, Y. Xu, Neighborhoods of independent sets for (a, b, k)-critical graphs, Bulletin of the Australian Mathematical Society 77(2)(2008), 277-283.
[7] H. Matsuda, Fan-type results for the existence of [$a, b]$-factors, Discrete Mathematics 306(2006), 688-693.
[8] Y. Gao, G. Li, X. Li, Degree condition for the existence of a k-factor containing a given Hamiltonian cycle, Discrete Mathematics 309(2009), 2373-2381.
[9] H. Matsuda, Degree conditions for Hamiltonian graphs to have [a,b]factors containing a given Hamiltonian cycle, Discrete Mathematics 280(2004), 241-250.
[10] S. Zhou, B. Pu, Hamiltonian factors in Hamiltonian graphs, International Journal of Computational and Mathematical Sciences 3(2)(2009), 83-85
[11] G. Liu, L. Zhang, Factors and factorizations of graphs (in Chinese), Advances in Mathematics 29(2000), 289-296
[12] L. Lovasz, Subgraphs with prescribed valencies, Journal of Combinatorial Theory 8(1970), 391-416.

