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Abstract—Rounding of coefficients is a common practice in 

hardware implementation of digital filters. Where some coefficients 
are very close to zero or one, as assumed in this paper, this rounding 
action also leads to some computation reduction. Furthermore, if the 
discarded coefficient is of high order, a reduced order filter is 
obtained, otherwise the order does not change but computation is 
reduced. In this paper, the Least Squares approximation to rounded 
(or discarded) coefficient FIR filter is investigated. The result also 
succinctly extended to general type of FIR filters. 
 

Keywords—Digital filter, filter approximation, least squares, 
model order reduction.  

I. INTRODUCTION 
N FIR filter has desirable characteristics such as linear 
phase response, finite duration of startup transients, and 

perpetual stability. In applications where distortion-free 
transmission of waveforms in the passband is required, FIR 
filters are attractive because the linear phase or constant group 
delay requirement can be easily satisfied. This is one of the 
main advantages of FIR filters over IIR designs. However, 
from the view of the practitioner’s landscape, FIR filters may 
be difficult to implement because of their potentially much 
higher order than IIR filters satisfying the same magnitude 
specifications [1]. 

In a model order reduction problem, it is desired to 
approximate a system of a relatively high order, with a lower 
order model. A linear-phase FIR filter of high order, by 
applying model reduction techniques, can be transformed to a 
lower order IIR filter that meets the original magnitude 
specifications while maintaining a linear-phase response in the 
passband [2]. Various model reduction techniques have been 
introduced for the filter approximation. Among them, the most 
popular technique is based on the well-known balanced 
truncation (BT) method [3]. Other model reduction techniques 
that are suitable for filter approximation include the Impulse 
Response Gramian (IRG) technique [4] and the Hankel norm 
approximation method [5] [6].  

An indirect linear-phase IIR filter design technique based 
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on a reduction of linear-phase FIR filters is discussed in [7] 
that the desired filter is obtained by minimizing the L2 norm 
of the difference between the original FIR filter and the lower 
order IIR filter  

Model/filter order reduction with frequency weighting is an 
interesting problem with practical significance as in most of 
applications we are more interested in signals within certain 
frequency ranges. Enns [8] extended the balanced truncation 
method to the frequency weighted case which was applied to 
the design of IIR filters with linear phase characteristics.  

Order reduction technique in digital filter design based on 
the utilization of the Chebyshev polynomial given in [9] 
renders a reduced order FIR filter.  

The main objective of this work is to exploit the Least 
Squares optimal Linear Phase FIR approximation to a rounded 
coefficient linear phase FIR filter, where some coefficients are 
rounded to either 1 or zero. Furthermore, the coefficients are 
not limited necessarily to be of the high order.  

This paper is organized as follows. Section 2 presents the 
problem statement and formulation. Section 3 gives the result 
of the case preparation simulation. Theoretical analysis is 
given in section 4 and finally, conclusion comes in section 5.  

II. PROBLEM STATEMENT AND FORMULATION 
Consider a symmetric (antisymmetric) linear phase FIR 

filter, 
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where some coefficients are assumed to have a relatively 
small value, or to be too much close to 1. The problem is to 
exploit an optimal least squares linear phase FIR filter 
approximation to the original filter where small value 
coefficients are removed and or "close to one" coefficients are 
rounded to 1. In other word, we are looking for an optimal 
filter where its amplitude and phase deviation from the 
original one is minimized, while low value coefficient 
computation burden is avoided. To formulate the case, filter 
transfer function is written as, 
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where 
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In the symmetric case, for example, the filter amplitude is, 
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After discarding a small value coefficient (or rounding to 

one) of (1), it yields, 
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Now an optimal approximation to (1), is sought that can be 

written as, 
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where optimal â 's have to be calculated. 

III. MATH 
To develop the idea, the FIR filter given in [9], 
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with  
 

0.2  a0.2904  a0.0785  a-0.0438 a0.0299-  a 43210 =====  
 
is simulated. The filter amplitude is 
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Discarding, for example, the small value coefficient α0, 

leads to 
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where can be viewed as a type of approximation to (1). While 
α0 is discarded, another filter approximation can be 
formulated, that its coefficients are calculated optimally, to 
best match the amplitude of the original filter 
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To obtain the optimal Least Squares filter coefficients, the 

following error equation is minimized 
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 The optimal coefficients obtained experimentally for K=10 

are 
 

0.1977  â0.2904  â0.0739  â-0.0438 â 4321 ====
 
while the results for k=50 are 
 

0.1994  â0.2904  â0.0774  â-0.0438 â 4321 ====  
 
 The results look different, but as the number of points in K 

is increased, the obtained numbers will tend to match the 
coefficients of the discarded coefficient original filter, H1(ω). 
Fig. 1 shows the original filter and the optimally approximated 
discarded coefficient amplitudes. 

Theoretically investigating this case gives interesting results 
coming out of the Fourier basis functions orthogonality. In the 
next section, its proof is presented.  
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Fig. 1 Solid line: The original filter frequency response, Dotted line: 

the optimally approximated and the discarded coefficient filter 
frequency response 

 

IV. ANALYSIS OF THE LS APPROXIMATION METHOD 
The Amplitude of a symmetric (antisymetric) FIR filter is 
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After discarding, for example, a near zero coefficient αm, 

the problem gets finding an optimal cosine series to 
compensate for the cancelled part. In other word, we have to 
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determine optimal parameters for the following equation, 
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where m is the index of the discarded coefficient and K is the 
number of the selected frequency points for minimization. The 
approximation error then becomes 
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Hence, its sum squares is 
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Due to the orthogonality of cosine terms, the third part is zero 
and the optimal values for α's are 
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This result indicates that the discarded term filter is also the 

LS optimal approximation to the original filter. 
This method similarly can be applied to an exponential 

polynomial such as general Discrete Fourier Transform, for 
example, FIR filter 
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To obtain an optimal approximation to a rounded coefficient 
(for example αn) filter, the rounded part is expressed in term of 
the other remaining exponential functions that still exist in the 
filter structure, as follows: 
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Then the error in between is minimized 
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The third term, again according to the orthogonality, is 

zero, and the differentiation with respect to α  renders α =0. 

V. CONCLUSION 
In this paper shown that a rounded (discarded) coefficient 

FIR filter, is an optimal approximation to the original filter. 
The result was proved based on the LS algorithm. Obviously, 
this argument does not necessarily mean that a good 
approximation is also achieved, since good approximation 
depends on the amount of discarded (or rounded) value. 
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