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A Study on the Average Information Ratio of
Perfect Secret-Sharing Schemes for

Access Structures Based on Bipartite Graphs
Hui-Chuan Lu

Abstract—A perfect secret-sharing scheme is a method to
distribute a secret among a set of participants in such a way that
only qualified subsets of participants can recover the secret and the
joint share of participants in any unqualified subset is statistically
independent of the secret. The collection of all qualified subsets is
called the access structure of the perfect secret-sharing scheme. In
a graph-based access structure, each vertex of a graphG represents
a participant and each edge ofG represents a minimal qualified
subset. The average information ratio of a perfect secret-sharing
schemeΣ realizing the access structure based onG is defined
as ARΣ = (

∑
v∈V (G)

H(ζv))/(|V (G)|H(ζs)), where ζs is the
secret andζv is the share ofv, both are random variables from
Σ and H is the Shannon entropy. The infimum of the average
information ratio of all possible perfect secret-sharing schemes
realizing a given access structure is called the optimal average
information ratio of that access structure. Most known results
about the optimal average information ratio give upper bounds or
lower bounds on it. In this present paper, we study the access
structures based on bipartite graphs and determine the exact values of
the optimal average information ratio of some infinite classes of them.

Keywords—secret-sharing scheme, average information ratio, star
covering, core sequence.

I. I NTRODUCTION

A secret-sharing schemeis a method to distribute a secret
among a set of participants such that only participants

in a qualified subset can recover the secret. If, in addition,
the joint share of the participants in any unqualified subsetis
statistically independent of the secret, then this secret-sharing
scheme is calledperfect. We will use “secret-sharing scheme”
for “perfect secret-sharing scheme” since all secret-sharing
schemes considered in this paper are perfect. The collection of
all qualified subsets in a secret-sharing scheme is theaccess
structureof this scheme. An access structure is required to be
monotonewhich means any subset of participants containing
a qualified subset must also be qualified. Therefore, an access
structureΓ is determined by the family of all minimal qualified
subsets, thebasisof Γ.

Shamir [21] and Blakley [2] independently introduced the
first kind of secret-sharing schemes called the(t, n)-threshold
scheme in 1979. In such a scheme, the basis of the access
structure consists of allt-subsets of the set of participants
of size n. Problems related to secret-sharing schemes have
then received considerable attention. Extensive study hasbeen
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focused on the discussion of theinformation ratio and the
average information ratio. The information ratio of a secret-
sharing scheme is the ratio of the maximum length (in bits)
of the share given to a participant to the length of the
secret, while the average information ratio is the ratio of the
average length of the shares given to the participants to the
length of the secret. These ratios represent the maximum and
average number of bits the participants have to remember for
each bit of the secret respectively. Note that some literature
uses information rate (resp. average information rate) which
is exactly the reciprocal of the information ratio (resp. the
average information ratio). For higher efficiency of a secret-
sharing scheme, the information ratio and average information
ratio are expected to be as low as possible. Given an access
structure, the infimum of the (average) information ratio ofall
possible secret-sharing schemes realizing this access structure
is called theoptimal (average) information ratioof the access
structure. It has been shown that, for general access structures,
the infimum is not always a minimum [1].

In this paper, we consider graph-based access structures. In
such an access structure, each vertex of a graphG represents
a participant and each edgeuv ∈ E(G) of G represents a
minimal qualified subset. A secret-sharing schemeΣ for the
access structure based onG is a collection of random variables
ζs andζv for v ∈ V (G) with a joint distribution such that

(i) ζs is the secret andζv is the share ofv;
(ii) if uv ∈ E(G), then ζu and ζv together determine the

value ofζs; and
(iii) if A ⊆ V (G) is an independent set inG, then ζs and

the collection{ζv|v ∈ A} are statistically independent.

Recall that the Shannon entropy of a discrete random
variableX with possible values{x1, . . . , xn} and a probability
distribution{p(xi)}ni=1 is defined asH(X) = −

∑n

i=1 p(xi)
log p(xi). This value reflects the average number of bits
needed to represent the element inX faithfully, cf [14]. The
information ratio ofΣ can be defined using Shannon entropy
asRΣ = maxv∈V (G){H(ζv)/H(ζs)} and the average infor-
mation ratio asARΣ = (

∑
v∈V (G) H(ζv))/(|V (G)|H(ζs)).

For convenience, in what follows, with the same symbol
G, we will denote both the graph and the access structure
based on it. Consequently, “a secret-sharing scheme for the
access structure based onG” is described as “a secret-sharing
scheme onG” and “the optimal (average) information ratio
of the access structure based onG” is written as “the optimal
(average) information ratio ofG”. As mentioned above, the



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:6, No:9, 2012

1339

2

optimal information ratioR(G) (resp. the optimal average
information ratioAR(G)) of G is the infimum ofRΣ (resp.
ARΣ) over all secret-sharing schemesΣ realizing G. It is
well-known thatR(G) ≥ AR(G) ≥ 1 andR(G) = 1 if and
only if AR(G) = 1. A secret-sharing scheme with (average)
information ratio equal to one is then called anideal secret-
sharing scheme. An access structure isdeal if there exists an
ideal secret-sharing scheme on it.

Determining the exact values ofR(G) and AR(G) is
extremely hard, it can be quite challenging even for small
graphs. So, most of the known results give bounds on them,
see for example, [3–8], [10], [11], [15], [16], [18], [19], [20],
[22–24]. Stinson [24] showed thatR(G) ≤ (d + 1)/2 where
d is the maximum degree ofG andAR(G) ≤ (2m+ n)/2n
wheren = |V (G)| andm = |E(G)|. This upper bound on
R(G) has been shown to be tight [3]. As to the exact values of
these ratios, the problems have been settled for graphs withno
more than five vertices [6], [16]. Exact values of the optimal
information ratio for most of the six-vertex graphs have also
been solved [15]. To the best of our knowledge, paths, cycles
and trees are the only infinite classes of graphs whose optimal
information ratio and optimal average information ratio are
known [6], [7], [17]. In the present paper, we determine
the exact values of the optimal average information ratio for
some infinite classes of bipartite graphs. In Section II, some
definitions, notations and known results to be used later will
be introduced. In Section III, we give an extension of the idea
used in [17] for trees first and subsequently present our main
results. A concluding remark will be given in the final section.

II. PRELIMINARIES

If there is no specification, any graph considered in the paper
is a connected simple graph without loops. The ideal graph-
based access structures have been completely characterized by
Brickell and Davenport [7] in 1991.

Theorem 2.1 ([7]). Suppose thatG is a connected graph.
ThenR(G) = AR(G) = 1 if and only if G is a complete
multipartite graph.

To establish upper bounds on the optimal average infor-
mation ratio for a graph that is not complete multipartite,
the most commonly used method is to actually construct
a secret-sharing schemeΣ on it. The average information
ratio ARΣ of the schemeΣ naturally makes an upper bound
on AR(G). Stinson’s decomposition construction [24] en-
ables us to build up secret-sharing schemes of larger graphs
throughcomplete multipartite coverings. A complete multipar-
tite covering is a collection of complete multipartite subgraphs
Π = {G1, G2, . . . , Gl} of G such that each edge ofG
appears in at least one subgraph in this collection. The sum
mΠ =

∑l

i=1 |V (Gi)| is called thevertex-number sumof Π.

Theorem 2.2 ([24]). Suppose thatΠ = {G1, G2, . . . , Gl} is
a complete multipartite covering of a graphG with V (G) =
{1, 2, . . . , n}. Let ki = |{j|i ∈ V (Gj)}|, then there exists a
secret-sharing schemeΣ on G with information ratioRΣ and
average information ratioARΣ whereRΣ = max1≤i≤n ki
andARΣ = 1

n

∑n

i=1 ki =
1
n

∑l

i=1 |V (Gi)|.

Since we are dealing with bipartite graphs with girth not less
than six, the only possible complete multipartite subgraphs are
the stars. For the construction of a secret-sharing scheme with
higher efficiency, a star covering with the least vertex-number
sum is what we are aiming for. We follow the notation used
in [17] for trees and extend the idea to general graphs. Let
IN(G) = {v ∈ V (G)| degG(v) ≥ 2} and in(G) = |IN(G)|.
Given a star coveringΠ of G with vertex-number summΠ,
we define thedeductionof Π asdΠ = |V (G)|+ in(G)−mΠ.
A star covering with the least vertex-number sum gives the
largest deduction. We then let the largest deduction over all
star coverings ofG be the deduction ofG, denoted asd∗(G).
We restate Stinson’s result in the language of deduction for
later use.

Theorem 2.3 ([24]). Let Π be a star covering of a graphG
with deductiondΠ, thenAR(G) ≤ |V (G)|+in(G)−dΠ

|V (G)| .

For the derivation of lower bounds onAR(G), we use
information theoretic approach [3–5], [9–13], [15]. LetΣ be
a secret-sharing scheme onG in which ζs andζv, v ∈ V (G),
are the secret and the share ofv respectively. Define a real-
valued functionf on the set of all subsets ofV (G) as
f(A) = H({ζv|v ∈ A})/H(ζs) where H is the Shannon
entropy. If f({v}) is written as f(v) for simplicity, then
ARΣ = 1

n

∑
v∈V (G) f(v), wheren = |V (G)|. It was shown

in [9] that f satisfies the following inequalities:
(a) f(∅) = 0 andf(A) ≥ 0;
(b) if A ⊆ B ⊆ V (G), thenf(A) ≤ f(B);
(c) f(A) + f(B) ≥ f(A ∩B) + f(A ∪B);
(d) if A ⊆ B ⊆ V (G), A is an independent set andB is

not, thenf(A) + 1 ≤ f(B); and
(e) if neitherA nor B is independent butA ∩ B is, then

f(A) + f(B) ≥ 1 + f(A ∩B) + f(A ∪B).

Csirmaz and Ligeti defined acoreof a graphG in [12] as a
subsetV0 of V (G) satisfying that (i)V0 induces a connected
subgraph ofG; (ii) each vertexv ∈ V0 has a neighbor̄v
outsideV0 and not adjacent to any other vertex inV0; and
(iii) {v̄|v ∈ V0} is an independent set inG. They also showed
the following result.

Theorem 2.4 ([13]). Let V0 be a core of a graphG and f is
defined as above, then

∑
v∈V0

f(v) ≥ 2|V0| − 1.

In the next section, we shall make use of the stated results
to derive a lower bound onAR(G) and determine the exact
values of the optimal average information ratio for some
infinite classes of bipartite graphs.

III. T HE MAIN RESULTS

A. An extension

Lu and Fu [17] defined a core sequence of a treeT . We
now define similarly acore sequence of lengthk of a graph
G as a collectionC = {V1, V2, . . . , Vk} of nonempty subsets
of IN(G) such thatV1, V2, . . . , Vk form a partition ofIN(G)
and eachVi is a core ofG. The length ofC is written ascC .
The core numberof G, c∗(G), is the minimum length of all
core sequences ofG. Now, we have a useful lower bound on
AR(G) in terms of the length of a core sequence.



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:6, No:9, 2012

1340

3

Theorem 3.1. Let G be a connected graph. IfC is a core
sequence ofG, thenAR(G) ≥ |V (G)|+in(G)−cC

|V (G)| .

Proof: Let C = {V1, V2, . . . , Vk} and Σ be a secret-
sharing scheme onG. Then the functionf defined in Section
II by the random variables fromΣ satisfies inequalities (a) to
(e) and Theorem 2.4. SinceG is connected,f(v) ≥ 1 for all
v ∈ V (G) [9]. We have

∑
v∈V (G) f(v) =

∑
v∈IN(G) f(v) +∑

v:degG(v)=1 f(v) ≥
∑k

i=1

∑
v∈Vi

f(v) + |{v| degG(v) =

1}| ≥
∑k

i=1(2|Vi| − 1) + |{v| degG(v) = 1}| = |V (G)| +
in(G) − k. Hence,ARΣ ≥ 1

|V (G)|(|V (G)| + in(G) − k) for
any secret-sharing schemeΣ on G.

From Theorem 2.3 and Theorem 3.1, we have the following
immediate result.

Theorem 3.2. cC ≥ dΠ holds for any star coveringΠ and
any core sequenceC of a connected graphG. In particular,
c∗(G) ≥ d∗(G).

Corollary 3.3. If there exists a star coveringΠ and a
core sequenceC of a connected graphG of order n such
that cC = dΠ, then c∗(G) = d∗(G) = dΠ = cC and
AR(G) = |V (G)|+in(G)−c∗(G)

|V (G)| .

The equalityc∗(G) = d∗(G) makes a criterion for examin-
ing whether the upper bound and the lower bound onAR(G)
will match or not.G is said to berealizableif c∗(G) = d∗(G)
holds. In the next part of this section, we shall propose some
infinite classes of bipartite graphs and show that each of them
is realizable.

B. New results

Our approach is to define a star coveringΠ of the given
bipartite graphG first and then, based on this covering,
construct a core sequenceC of G satisfying cC = dΠ. We
useNG(u) to denote the set of all neighbors ofu in G and
NG(S) =

⋃
v∈S NG(v) for any setS ⊆ V (G). A vertex of

degree one is called a1-vertex. If V ′ is any subset ofV (G), we
useV ′

k+ to denote the set of all vertices inV ′ whose degree is
not less thank, that is,V ′

k+ = {v ∈ V ′| degG(v) ≥ k}. From
now on, we mainly consider connected bipartite graphs with
girth not less than six. For a better description of our approach,
we express a core sequence in terms of a vertex labeling of
IN(G). Let C = {V1, V2, . . . , Vk} be a core sequence ofG.
Define g : IN(G) → {1, . . . , k} such that “g(v) = i ⇔ v ∈
Vi”. Then g−1(i) = Vi and cC = |g(IN(G))|. In this case,
we say that the inverse images ofg form the core sequence
C of G. Furthermore, given a star coveringΠ of G and a set
E′ ⊆ E(G), a componentG′ of G\E′ has an induced star
coveringΠ|G′ = {T \E′|T ∈ Π and E(T ) ∩ E(G′) 6= ∅}.
Note that, inT \E′, we remove not only the edges inE′ but
also the resulting isolated vertices fromT . So, eachT \E′ in
Π|G′ is again a star inG′.

In the proof of the next theorem, we need to define an
orientation onG. Let v0, v1, . . . , vl be successive vertices on
a v0vl-trail (the vertices may repeat). By “orienting the trail
from v0 to vl” we mean choosing the orientationvi → vi+1

for each edgevivi+1, i = 0, . . . , l − 1.

Theorem 3.4. LetG = (X,Y ) be a connected bipartite graph
with girth not less than six and|X | ≥ |Y |. If degG(x) ≤ 2
for all x ∈ X , thenG is realizable andc∗(G) = |Y2+ |.

Proof: Recall thatY2+ = {y ∈ Y | degG(y) ≥ 2}. We
useSy to denote the star centered aty and having its leaves
all neighbors ofy. ThenΠ = {Sy|y ∈ Y } is a star covering
of G with vertex number summΠ = |V (G)| + |X2+ |. This
givesdΠ = |V (G)| + in(G) −mΠ = |Y2+ |. Next, we define
an orientation onG to help us construct the core sequence we
need.

Case 1. If G contains a cycleC, then we start with an
orientation of the edges ofC so thatC becomes a directed
cycle. Next, we repeat the following process until all edgesof
G are oriented. We take auv-trail passing through unoriented
edges whereu is a vertex to which at least two oriented
edges are incident andv is a 1-vertex or a repeated vertex
on the trail or also a vertex to which at least two oriented
edges are incident and then orient the trial fromu to v. By
repeatedly doing this, we will eventually obtain an orientation
of G because of its connectedness.

Case 2. If G is a tree, letX1 = {x ∈ X | degG(x) = 1}.
Counting the edges ofG, we have|X1| + 2(|X | − |X1|) =
|X |+|Y |−1 ≤ 2|X |−1 which implies|X1| ≥ 1. Letx0 ∈ X1

be the root ofG and orient all edges toward the leaves. We
have the orientation we need.

Note that in both cases, each vertexv ∈ IN(G) has at least
one in-neighbor and one out-neighbor in the orientation we
defined. Now, we construct a core sequence ofG. Initially,
we label the vertices inY2+ differently, that is, letg : Y2+ →
{1, 2, . . . , k}, k = |Y2+ |, be a bijection. Then, we will extend
the domain ofg to IN(G) and keep its image unchanged at
the same time. For eachx ∈ X2+ , define g(x) = g(y) if
(y, x) is an arc in the orientation. SincedegG(x) = 2 for all
x ∈ X2+ , x actually has exactly one in-neighbory ∈ Y +

2 .
Therefore, the extended mappingg : IN(G) → {1, 2, . . . , k}
is well-defined.

We claim that C = {g−1(1), g−1(2), . . . , g−1(k)} is a
core sequence ofG. First, by definition,g−1(1), g−1(2), . . .,
g−1(k) clearly form a partition ofIN(G) and eachg−1(i)
induces a connected subgraph ofG. Besides, eachy ∈ Y2+

has at least one in-neighbor which is either a 1-vertex or a
vertex x ∈ X who receives the label from its in-neighbor
y′ 6= y. Hence eachy ∈ Y2+ has a neighbor not ing−1(g(y)).
Similarly, eachx ∈ X2+ receives the label from its in-
neighbor y ∈ Y2+ and also has at least one out-neighbor
y′ 6= y which is a 1-vertex or has initially gotten a label
different from y’s. So eachx ∈ X2+ also has at least one
neighbor not ing−1(g(x)). Now, each vertex ing−1(i) does
have a neighbor outsideg−1(i) and these outside neighbors
of vertices ing−1(i) certainly form an independent set inG
becauseg−1(i) induces a connected subgraph of diameter at
most two andG has girth not less then six. This shows thatC
is indeed a core sequence of lengthk, wherek = |Y2+ | = dΠ.

In a graphG, k-subdividingan edge is the operation of
replacing the edge with a path of lengthk. A graphG′ is called
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an even-subdivisionof G if it is obtained by2ke-subdividing
each edgee ∈ E(G), whereke ≥ 1.

Corollary 3.5. If G is a simple connected graph, then any
even-subdivisionG′ of G is realizable. In addition, ifG′ is
obtained by2ke-subdividing each edgee of G andG is not a

tree, thenAR(G′) =
|V (G)|−|E(G)|+3

∑
e∈E(G)

ke

|V (G)|−|E(G)|+2
∑

e∈E(G)
ke

.

Proof: We may assume thatG is not a tree. Let
ve1, v

e
2, . . . , v

e
2ke−1 be the consecutive internal vertices of the

path in G′ that replaces the edgee in G. Then G′ is a
bipartite graph with bipartitionX = {ve2i+1|e ∈ E(G),
i = 0, 1, . . . , ke−1} andY = {ve2i|e ∈ E(G), i = 1, . . . , ke−
1}∪V (G). So,|X | =

∑
e∈E(G) ke and|Y | =

∑
e∈E(G)(ke−

1) + |V (G)| =
∑

e∈E(G) ke − |E(G)| + |V (G)| ≤ |X |.
Since the girth ofG′ is not less than six anddegG′(x) = 2
for all x ∈ X , we know thatG′ is realizable by Theorem
3.4 and c∗(G′) = |Y2+ | =

∑
e∈E(G)(ke − 1) + in(G).

With the facts|V (G′)| =
∑

e∈E(G)(2ke − 1) + |V (G)| and
in(G′) =

∑
e∈E(G)(2ke − 1) + in(G), the optimal average

information ratio ofG′ can be easily evaluated.

AR(G′) =
|V (G′)|+ in(G′)− c∗(G′)

|V (G′)|

=
|V (G)| − |E(G)| + 3

∑
e∈E(G) ke

|V (G)| − |E(G)| + 2
∑

e∈E(G) ke
.

This proof actually also works whenG is not simple and
G′ has girth not less than six.

Corollary 3.6. Let G be a connected graph with multiple
edges and loops. Any even-subdivisionG′ of G is realizable
if G′ is of girth not less than six.

In the proof of Theorem 3.4, we could have omitted the case
whereG is a tree because the result has been shown in [17].
However, we give the proof for self-containedness and make
it easier to be referred to for the proof of the next theorem as
well.

Theorem 3.7. Let G = (X,Y ), |X | ≥ |Y |, be a con-
nected bipartite graph with girth not less than eight and
NG(u)∩NG(v)∩Y3+ = ∅ for all u, v ∈ X3+ andu 6= v. If for
eachu ∈ X3+ , there exist neighbors̄u1, ū2, . . . , ūdegG(u)−1

in IN(G) such that each component̃G in G\E′, where
E′ = {uūi|u ∈ X3+ , i = 1, . . . , degG(u) − 1}, satisfies
|X ∩ V (G̃)| ≥ |Y ∩ V (G̃)|, then G is realizable and
c∗(G) = |Y2+ | −

∑
u∈X3+

(degG(u)− 2).

Proof: Let N∗(u) = {ūi|i = 1, . . . , degG(u)− 1} be the
set of the neighbors ofu ∈ X3+ stated in the theorem. We first
claim thatN∗(u)∩N∗(v) = ∅ for all u, v ∈ X3+ andu 6= v.
If this does not hold, then, by assumption, there exists a vertex
w ∈ N∗(u) ∩ N∗(v) with degG(w) = 2. As a consequence,
the isolated vertex{w} ⊂ Y would be a component inG\E′.
This contradicts to the given conditions. Next, as in the proof
of Theorem 3.4, we giveG a star coveringΠ = {Sy|y ∈
Y } and initially defineg : Y2+ → {1, 2, . . . , k}, wherek =
|Y2+ |, to be a bijection. Let us further defineg(u) = g(ū1)

for eachu ∈ X3+ and alter the labels of̄ui’s (i ≥ 2) by
redefiningg(ūi) = g(ū1) for i = 2, 3, . . . , degG(u)− 1. After
this alteration|g(Y2+ ∪X3+)| = k−

∑
u∈X3+

(degG(u)− 2).

Let G̃1, G̃2, . . . , G̃s be the components inG\E′, thenG̃i =
(X∩V (G̃i), Y ∩V (G̃i)). Applying the proof of Theorem 3.4 to
eachG̃i, we can extend the domain ofg|

Y
+
2 ∩IN(G̃i)

to IN(G̃i)

and keep its image unchanged. Jointly, we have extended the
domain ofg to IN(G) and kept its image unchanged. In the
remainder of the proof, it will be verified that the inverse
images ofg form a core sequence ofG. It suffices to prove
that eachg−1(g(v)) is a core, for eachv ∈ IN(G). First
we show that each vertexv ∈ IN(G) has a neighbor not
in g−1(g(v)). If v = u for some u ∈ X3+ , there exists
y′ ∈ NG(u)−N∗(u) who is either a 1-vertex or has a different
label fromu’s becausey′ was initially given a label different
from ū1’s and has never been altered. Ifv = ūi ∈ N∗(u) for
someu ∈ X3+ and degG(ūi) = 2, then ūi is a 1-vertex of
someG̃j . According to the way we extendg|

Y
+
2 ∩IN(G̃j)

, the

neighbor ofūi in G̃j has a label different from̄ui’s. Finally,
if v ∈ IN(G)\X3+\{ūi ∈ N∗(u)|u ∈ X3+ , degG(ūi) = 2},
then v ∈ IN(G̃j) for somej. It has been shown thatv has
a neighbor inG̃j who is either a 1-vertex or has a label
different from v’s in the proof of Theorem 3.4. Hence, each
vertex v ∈ IN(G) has a neighbor not ing−1(g(v)). These
outside neighbors of vertices ing−1(g(v)) certainly form an
independent set inG becauseg−1(g(v)) induces a connected
subgraph of diameter at most four and the girth ofG is at least
eight. We conclude that the inverse images ofg form a core
sequenceC of G with cC = k −

∑
u∈X

+
3
(degG(u) − 2). On

the other hand, the star coveringΠ has vertex-number sum

mΠ = |V (G)|+
∑

u∈X2+

(degG(u)− 1)

= |V (G)|+
∑

u∈X3+

(degG(u)− 2) + |X2+ |.

Therefore, it has deductiondΠ = |V (G)| + |X2+ | + |Y2+ | −
mΠ = cC as desired and the proof is completed.

We apply Theorem 3.7 to some classes of graphs. First, a
graphG is more likely to be realizable if the size ofX3+

is small. We give an easy example for this. Theconnectivity
κ(G) of a graphG is the minimum number of vertices whose
deletion disconnectsG or results in a single vertex.G is called
k-connectedif κ(G) ≥ k.

Corollary 3.8. LetG = (X,Y ), |X | ≥ |Y |, be ak-connected
bipartite graph with girth not less than eight andNG(u) ∩
NG(v)∩Y3+ = ∅ for all u, v ∈ X3+ andu 6= v. If |X3+ | < k,
thenG is realizable.

Proof: If k = 1, then |X3+ | = 0. This result holds by
Theorem 3.4. Assume thatk ≥ 2. For anyu ∈ X3+ , letN∗(u)
be a set of anydegG(u)−1 neighbors ofu andE′ = {uūi|u ∈
X3+ , ūi ∈ N∗(u)}. Since|X3+ | < k, G\E′ is connected and
has the same bipartition asG does.G is then realizable by
Theorem 3.7.

Next, we consider graphs with minimum degreeδ(G) ≥ 2
and examine the properties of the components inG\X3+ that
may hinder the graphG from being realizable.
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Corollary 3.9. Let G = (X,Y ), |X | ≥ |Y |, be a connected
bipartite graph with girth not less than eight,δ(G) ≥ 2 and
NG(u) ∩ NG(v) ∩ Y3+ = ∅ for all u, v ∈ X3+ and u 6= v.
If none of the components inG\X3+ is a tree, thenG is
realizable.

Proof: Let H = (XH , YH) be any component ofG\X3+ ,
whereXH = X ∩ V (H) andYH = Y ∩ V (H). Since each
vertex in XH is of degree 2 andH is not a tree, one has
2|XH | ≥ |XH |+ |YH | which gives|XH | ≥ |YH |. For anyu ∈
X3+ , if there is a neighborw ∈ NG(u) who is a 1-vertex, then
{w} would be a tree component inG\X3+ . So all neighbors
of u must be inIN(G). In this case, we may choose theūi’s,
i = 1, . . . , degG(u)− 1, to be anydegG(u)− 1 neighbors of
u. If G̃ is a component inG\E′ which is not the same as any
component inG\X3+ , then there must exist a componentH
in G\X3+ such that|X ∪ V (G̃)| ≥ |(X ∩ V (H))| + 1 and
Y ∩ V (G̃) = Y ∩ V (H). Now, all criteria in Theorem 3.7 are
made and the result follows.

This corollary assures that nontree components inG\X3+

do not prohibitG from being realizable. It is the tree compo-
nents inG\X3+ that matter the most. Theorem 3.7 fails when
tree components inG\X3+ are concentrated around some
vertices inX3+ . We give a method to detect this situation.

Given a bipartite graphG = (X,Y ), |X | ≥ |Y |, and
some tree componentsT1, . . . , Tt in G\X3+ , we define the
suspending numberof the collectionH = {T1, . . ., Tt},
written assusp(H), to be the cardinality of the set{u ∈ X3+ |u
is adjacent to some vertices ofTj in G, 1 ≤ j ≤ t}.

Corollary 3.10. Let G = (X,Y ), |X | ≥ |Y |, be a connected
bipartite graph with girth not less than eight,δ(G) ≥ 2 and
NG(u) ∩ NG(v) ∩ Y3+ = ∅ for all u, v ∈ X3+ and u 6=
v. If susp(H) ≥ |H| holds for every collectionH of tree
components inG\X3+ , thenG is realizable.

Proof: If T = (XT , YT ) is any tree component inG\X3+

whereXT = X ∩ V (T ) andYT = Y ∩ V (T ), then2|XT | =
|XT | + |YT | − 1 which implies that|XT | = |YT | − 1. LetU = {Ti|i ∈ I} be the collection of all tree components in
G\X3+ . We define a bipartite graphA = (I,X3+) in which
(i, v) is an edge ofA if and only if v is adjacent to some
vertices ofTi in G. For everyJ ⊆ I, let H = {Tj|j ∈ J},
then |NA(J)| = susp(H) ≥ |H| = |J |. By Hall’s Theorem,
there exists a matchingM in A that saturatesI. Let M =
{(i, vi)|i ∈ I} and, for eachi ∈ I, let v∗i be a vertex of
Ti which is adjacent tovi in G. For v ∈ X3+\{vi|i ∈ I},
v∗ can be arbitrarily chosen fromNG(v). Note that for any
u ∈ X3+ , NG(u)\{u∗} ⊆ IN(G). If this does not hold, then
there existsw ∈ NG(u)\{u

∗} with degG(w) = 1. The trivial
component{w} would be a tree component inG\X3+ . The
vertex w must beu∗, giving a contraction. Now, letE′ =
{uu′|u ∈ X3+ , u

′ ∈ NG(u)\{u∗}} and for all i ∈ I, we also
let T ∗

i be the graph obtained fromTi by attaching toTi each
edgevv∗ with v ∈ X3+ and v∗ ∈ V (Ti). The collection of
all tree components inG\E′ is exactly {T ∗

i |i ∈ I}. From
what we have shown at the beginning of this proof, one has
that |X ∩ V (Ti)| = |Y ∩ V (Ti)| − 1. This consequently gives
|X∩V (T ∗

i )| ≥ |X∩V (Ti)|+1 = |Y ∩V (Ti)| = |Y ∩V (T ∗
i )|.

Now, we have shown that all tree components inG\E′ satisfy
the criteria in Theorem 3.7. The proof of the previous corollary
guarantees that nontree components also do. The result of this
corollary follows immediately.

IV. CONCLUSION

In this paper, we extend the ideac∗(T ) = d∗(T ) for trees to
general graphs and determine the exact values of the optimal
average information ratio for some classes of bipartite graphs.
Appendantly, we also conclude that the covering{Sy|y ∈ Y }
is a star covering with the least vertex-number sum for each
of these realizable bipartite graphs.

There still is a lot of room for exploration in this direction
of research. First of all, identifying exact conditions under
which a bipartite graph is realizable is an interesting problem
to investigate. Besides, the idea of the deduction of a star
covering can be further generalized. One can define the
deduction of a complete multipartite covering in the same way.
Finding proper complete multipartite coverings of a graph with
the largest deduction to match the core number of that graph
is an intriguing generalization of what we have proposed in
this paper.
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