International Journal of Engineering, Mathematical and Physical Sciences
ISSN: 2517-9934
Vol:6, No:9, 2012
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Perfect Secret-Sharing Schemes for
Access Structures Based on Bipartite Graphs
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Abstract—A perfect secret-sharing scheme is a method focused on the discussion of theformation ratio and the
distribute a secret among a set of participants in such a Way tayerage information ratioThe information ratio of a secret-
only qualified subsets of participants can recover the secre the sharing scheme s the ratio of the maximum length (in bits)
joint share of participants in any unqualified subset isistiaally f th h . ¢ tici t to the | th of th
independent of the secret. The collection of all qualifietssts is o es ‘_ire given 1o a_par |C|p_an 0_ _e eng : 0 e
called the access structure of the perfect secret-shacinen. In  Secret, while the average information ratio is the ratiohsf t
a graph-based access structure, each vertex of a @agpresents average length of the shares given to the participants to the
a participant and each edge f represents a minimal qualified |ength of the secret. These ratios represent the maximum and
subset. The average information ratio of a perfect set@® 5\ erage number of bits the participants have to remember for
scheme X realizing the access structure based @nis defined h bit of th ret respectively. Note that some litegatu
as AR = (3, H(C))/(IV(G)H(C,)), where ¢, is the ©aCh DIt OF e S€c p y- NC : _
secret and(, is the share ofs, both are random variables fromUSes information rate (resp. average information ratelciwhi
¥ and H is the Shannon entropy. The infimum of the averagé exactly the reciprocal of the information ratio (respe th
information ratio of all possible perfect secret-sharinchesnes average information ratio). For higher efficiency of a secre
realizing a given access structure is called the optimara@e sharing scheme, the information ratio and average infaomat

information ratio of that access structure. Most known ftesu ... ; ;
about the optimal average information ratio give upper hisuor ratio are expected to be as low as possible. Given an access

lower bounds on it. In this present paper, we study the accedgucture, the infimum of the (average) information rati@bf
structures based on bipartite graphs and determine the eaaes of possible secret-sharing schemes realizing this accesdise
the optimal average information ratio of some infinite csssf them. is called theoptimal (average) information ratiof the access

structure. It has been shown that, for general access stesct
Keywords—secret-sharing scheme, average information ratio, siife infimum is not always a minimum [1].

covering, core sequence. In this paper, we consider graph-based access structares. |

such an access structure, each vertex of a géapbapresents
. INTRODUCTION a participant and each edger ¢ E(G) of G represents a
secret-sharing schenis a method to distribute a secretminimal qualified subset. A secret-sharing schethéor the
A among a set of participants such that only participanécess structure based @ris a collection of random variables
in a qualified subset can recover the secret. If, in additioq, and ¢, for v € V(G) with a joint distribution such that
the joint share of the participants in any unqualified sulisset
statistically independent of the secret, then this sesinating
scheme is callegerfect We will use “secret-sharing scheme
for “perfect secret-sharing scheme” since all secretisgar
schemes considered in this paper are perfect. The colheatio
all qualified subsets in a secret-sharing scheme isatoess
structureof this scheme. An access structure is required to beRecall that the Shannon entropy of a discrete random
monotonewhich means any subset of participants containirgriableX with possible value$z, . . ., z,, } and a probability
a qualified subset must also be qualified. Therefore, an accéistribution {p(z;)}_, is defined asf(X) = — 31, p(z;)
structurel is determined by the family of all minimal qualifiedlog p(zi). This value reflects the average number of bits
subsets, théasisof I needed to represent the elementinfaithfully, cf [14]. The
Shamir [21] and Blakley [2] independently introduced th#éformation ratio of3 can be defined using Shannon entropy
first kind of secret-sharing schemes called the)-threshold as Rz = max,ey () {H((,)/H((s)} and the average infor-
scheme in 1979. In such a scheme, the basis of the acd@&ion ratio asARs = (3-,cy(q) H(G))/([V(G)H(G)).
structure consists of all-subsets of the set of participantd=or convenience, in what follows, with the same symbol
of size n. Problems related to secret-sharing schemes hdve we will denote both the graph and the access structure

then received considerable attention. Extensive studypbas based on it. Consequently, “a secret-sharing scheme for the
access structure based 6fi is described as “a secret-sharing
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of Applied Mathematics, National Chaio Tung University, ilkthu, Taiwan ot the access structure base Is written as “the optima

30010 e-mail: hjlu@nuu.edu.tw (average) information ratio ofs”. As mentioned above, the

(i) ¢ is the secret and, is the share of;

, (i) if w e E(G), then¢, and(, together determine the
value of(,; and

(i) if A C V(G) is an independent set i@, then(, and
the collection{(,|v € A} are statistically independent.
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optimal information ratioR(G) (resp. the optimal average Since we are dealing with bipartite graphs with girth nosles
information ratio AR(G)) of G is the infimum of Ry (resp. than six, the only possible complete multipartite subgszanie
ARy) over all secret-sharing schemé&srealizing G. It is the stars. For the construction of a secret-sharing schdathe w
well-known thatR(G) > AR(G) > 1 and R(G) = 1 if and higher efficiency, a star covering with the least vertex-bam
only if AR(G) = 1. A secret-sharing scheme with (averagedum is what we are aiming for. We follow the notation used
information ratio equal to one is then called @eal secret- in [17] for trees and extend the idea to general graphs. Let
sharing scheme. An access structureeslif there exists an IN(G) = {v € V(G)|deg(v) > 2} andin(G) = [IN(G).
ideal secret-sharing scheme on it. Given a star coverin@l of G with vertex-number sumny,

Determining the exact values oR(G) and AR(G) is we define thedeductionof IT asdy = |V(G)| +in(G) — mir.
extremely hard, it can be quite challenging even for smal star covering with the least vertex-number sum gives the
graphs. So, most of the known results give bounds on thelargest deduction. We then let the largest deduction over al
see for example, [3-8], [10], [11], [15], [16], [18], [19]20], star coverings of7 be the deduction of7, denoted agd*(G).
[22—24]. stinson [24] showed thd(G) < (d + 1)/2 where We restate Stinson’s result in the language of deduction for
d is the maximum degree df and AR(G) < (2m +n)/2n later use.
wheren = |V(G)| andm = |E(G)|. This upper bound on .

R(G) has been shown to be tight [3]. As to the exact values ;gvﬂﬁoéeergu%t?o([r;q)t.h:ﬁ;%%?g)a :ﬁ%ﬂéﬁ’)’?ﬂ@?jﬁ a grapty
these ratios, the problems have been settled for graphswith 1 = V(G)] )
more than five vertices [6], [16]. Exact values of the optimal For the derivation of lower bounds oAR(G), we use
information ratio for most of the six-vertex graphs haveoalsinformation theoretic approach [3-5], [9—-13], [15]. LStbe
been solved [15]. To the best of our knowledge, paths, cyclesecret-sharing scheme 6hin which ¢; and¢,, v € V(G),
and trees are the only infinite classes of graphs whose optimage the secret and the sharewofespectively. Define a real-
information ratio and optimal average information rati@ arvalued function f on the set of all subsets of (G) as
known [6], [7], [17]. In the present paper, we determing(A) = H({(,|v € A})/H((;) where H is the Shannon
the exact values of the optimal average information ratio fentropy. If f({v}) is written as f(v) for simplicity, then
some infinite classes of bipartite graphs. In Section Il, somRy = 13 o f(v), wheren = [V(G)|. It was shown
definitions, notations and known results to be used latdr with [9] that f satisfies the following inequalities:
be introduced. In Section Ill, we give an extension of theaide (q) F(0) =0 and f(A) > 0;
used in [17] for trees first and subsequently present our maify) if 4 C B C V(G), thenf(A) < f(B);
results. A concluding remark will be given in the final sentio () f(A) + f(B) > f(ANB) + f(AUB);
(d) if AC B C V(G), A is an independent set arfd is

II. PRELIMINARIES not, thenf(A) +1< f(B); and

If there is no specification, any graph considered in the pape(€) if neither A nor B is independent butl N B is, then
is a connected simple graph without loops. The ideal graph- f(4) + f(B) =1+ f(AN B) + f(AUB).
based access structures have been completely charadteyize Csirmaz and Ligeti defined @ore of a graphG in [12] as a
Brickell and Davenport [7] in 1991. subsetl, of V(G) satisfying that (i)V, induces a connected
subgraph ofG; (ii) each vertexv € V, has a neighbow
outsideV,, and not adjacent to any other vertex ¥y; and
(iii) {v|v € V,} is an independent set ifi. They also showed
the following result.

To establish upper bounds on the optimal average infolr
mation ratio for a graph that is not complete multipartited
the most commonly used method is to actually construc
a secret-sharing schen® on it. The average information In the next section, we shall make use of the stated results
ratio ARy, of the schemet naturally makes an upper boundo derive a lower bound o R(G) and determine the exact
on AR(G). Stinson’s decomposition construction [24] envalues of the optimal average information ratio for some
ables us to build up secret-sharing schemes of larger grapifinite classes of bipartite graphs.
throughcomplete multipartite coveringé complete multipar-
tite covering is a collection of complete multipartite sudyghs I1l. THE MAIN RESULTS
I = {Gi,Go,...,G;} of G such that each edge df A Ap extension
appears in at least one subgraph in this collection. The su
mm = 22:1 |V (G;)| is called thevertex-number surof II.

Theorem 2.1 ([7]). Suppose thaty is a connected graph.
Then R(G) = AR(G) = 1 if and only if G is a complete
multipartite graph.

heorem 2.4 ([13]). Let V; be a core of a graplty and f is
?fined as above, thep, y, f(v) > 2[Vo| — 1.

n]_u and Fu [17] defined a core sequence of a tfeeWe
now define similarly acore sequence of length of a graph
Theorem 2.2 ([24]). Suppose thail = {G1,G>,...,Gi} is G as a collectiorC = {Vi, Va,...,V,} of nonempty subsets
a complete multipartite covering of a gragh with V(G) = of IN(G) such thatiy, Vs, ..., Vj, form a partition of [ N (G)
{1,2,...,n}. Letk; = |{j]i € V(G;)}|, then there exists a and eachV; is a core ofG. The length ofC is written ascc.
secret-sharing schere on G with information ratioRs, and  The core numberof G, ¢*(G), is the minimum length of all
average information ratioARyx, where Ry = maxi<i<n k; core sequences @f. Now, we have a useful lower bound on
and ARy, = %2?:1 k; = %22:1 |[V(G;)]. AR(G) in terms of the length of a core sequence.
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Theorem 3.1. Let G be a connected graph. f is a core Theorem 3.4. LetG = (X,Y') be a connected bipartite graph
sequence ofy, then AR(G) > M(G)din(G)—cc with girth not less than six andX| > [Y]. If degg(z) < 2

V(G
for all X, thend is realizable and:*(G) = | Yo+ |.
Proof: Let C = {V1,V,,...,Vi} and & be a secret- Te (G) = [Yor|

sharing scheme o6'. Then the functionf defined in Section Proof: Recall thatYs+ = {y € Y|degg(y) > 2}. We

Il by the random variables frorl satisfies inequalities (a) to use S, to denote the star centeredzatand having its leaves
(e) and Theorem 2.4. Sing@ is connectedf(v) > 1 for all  all neighbors ofy. ThenIl = {S,|y € Y'} is a star covering

v e V(G) [9]. We havezkjvev(g) f) =Y eine flo) + of G \U/lvith v?;ter numbe(l; sumny = |}1//(G)'\\I+ |X2+|.dT?_is
Zv:degc(vk)zl J0) 2 2 Lvev [(0) F el depg(v) = g:;/?)srie?]ta_ttign(org Elr?élp)u; Z(larés?nlcﬁrté c(ca))r(g ga%ueenlcr:fwe
1} = 35, @2Vil = 1) + Holdegg(v) = 1} = [V(G)| +

in(G) — k. Hence, ARy, > W(\V(GH +in(G) — k) for need.

any secret-sharing schemon é m Case 1. If G contains a cycleC, then we start with an
From Theorem 2.3 and Theorem 3.1, we have the followiragientation of the edges af’ so thatC' becomes a directed

immediate result. cycle. Next, we repeat the following process until all edges

G are oriented. We take @av-trail passing through unoriented
any core sequence of a connected graplg. In particular edges Whe_reu_ is a vertt_ex to which at least two oriented
N . ' ' edges are incident and is a 1l-vertex or a repeated vertex
c*(G) 2 d*(G). on the trail or also a vertex to which at least two oriented

Corollary 3.3. If there exists a star coverindl and a edges are incident and then orient the trial frento v. By
core sequenc€ of a connected graply of order n such repeatedly doing this, we will eventually obtain an oridiota
that cc = dy, then ¢*(G) = d*(G) = dn = cc and of G because of its connectedness.
AR(G) = @Gy c/©) c _ B o
ase 2. If G is a tree, letX; = {z € X|degy(z) = 1}.

The equalityc* (G) = d*(G) makes a criterion for examin- Counting the edges afr, we have|X:| + 2(|X| — |X1]) =
ing whether the upper bound and the lower bounddd®(G) | X|[+[Y[—1 < 2|X|—1 which implies| X | > 1. Letz € X3
will match or not.G is said to beealizableif ¢*(G) = d*(GG) be the root ofG and orient all edges toward the leaves. We
holds. In the next part of this section, we shall propose sori@ve the orientation we need.
?nfinittla_ clzalsses of bipartite graphs and show that each ofithe \te that in both cases, each vertex IN(G)
is realizable.

Theorem 3.2. ¢¢ > dp holds for any star coverindl and

has at least
one in-neighbor and one out-neighbor in the orientation we
defined. Now, we construct a core sequence&zofinitially,

B. New results we label the vertices iY,+ differently, that is, letg : Yo+ —

Our approach is to define a star coverifigof the given 11:2:---,k}, k =[Y5+], be a bijection. Then, we will extend
bipartite graphG first and then, based on this coveringth® domain ofg to IN(G) and keep its image unchanged at
construct a core sequenceof G satisfyingcc = dy. We (he same ftime. For each € Xy, defineg(z) = g(y) if
use N¢(u) to denote the set of all neighbors efin G and (¥:%) 1S an arc in the orientation. Sinekg (z) = 2 for 3"
NG (S) = Uyes Ne(v) for any setS C V(G). A vertex of & € X,+, z actually has exacFIy one in-neighbgre Y, .
degree one is calledlavertex If V' is any subset of (G), we 1 nerefore, the extended mappigg IN(G) — {1,2,....k}
useV/, to denote the set of all vertices Iff whose degree is IS Well-defined. » » » _
not less thark, that is,V;, = {v € V'|degg(v) > k}. From ~ We claim thatC = {g~'(1),9~ (2)7_-1»-79 _(f‘)} Is a
now on, we mainly consider connected bipartite graphs wiif'® sequence af. First, by definition,g~'(1), g~ (2), N
girth not less than six. For a better description of our apphp 9 (k) clearly form a partition of/N(G) and eachy™" (i)

we express a core sequence in terms of a vertex labeling§fuces a connected subgraph(@f Besides, eacly € Y5+
IN(G). LetC = {Vi,Va,...,Vi} be a core sequence Gf. has at least one in-neighbor which is either a 1-vertex or a

Defineg : IN(G) — {1,...,k} such that §(v) = i < v € vertexx € X who receives the label from its in-neighbor
V;". Theng~1(i) = V; andcc = |g(IN(G))|. In this case, y'. # y. Hence eacly € Y5+ has a neighbor not ig*l(g(y)):

we say that the inverse images @fform the core sequenceSimilarly, eachz < X,. receives the label from its in-
C of G. Furthermore, given a star coveriijof G and a set N€ighbory € Yp+ and also has at least one out-neighbor
E' C E(G), a componenty’ of G\E' has an induced star y' # y which is a 1-vertex or has initially gotten a label
covgring Il = {T\E'|T € II and E(T) N BE(G") # 0}. different from y’s. So eachxr € X,+ also has at least one
Note that, inT"\ E’, we remove not only the edges i but N€ighbor not ing~(g(z)). Now, each vertex iy~'(i) does
also the resulting isolated vertices frdf So, eactr’\E’ in have a neighbor outsidg™' (i) and these outside neighbors
Il|¢ is again a star irG’. of vertices ing~'(i) certainly form an independent set @

In the proof of the next theorem, we need to define 41£CUS& (i) induces a connected subgraph of diameter at
orientation onG. Let vg, v1,. .., v, be successive vertices onMOSt two andx has girth not less then six. This shows that
a vou-trail (the vertices may repeat). By “orienting the trailS indeed a core sequence of lengthwherek = [Ys+ | = dn.

from vy to v;” we mean choosing the orientation — v;41 o . n
for each edge;vi1, i =0,...,1— 1. In a graphG, k-subdividingan edge is the operation of

replacing the edge with a path of lendthA graphG’ is called
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an even-subdivisiof G if it is obtained by2k.-subdividing for eachu € X3+ and alter the labels ofi;'s (: > 2) by
each edge € E(G), wherek, > 1. redefiningg(a;) = g(u1) fori =2,3,...,degs(u) — 1. After

Corollary 3.5. If G is a simple connected graph, then an{}hls alterationlg(Yor U Xy )| = k=3 ex, , (degg(u) —2).

even-subdivisior’ of G is realizable. In addition, ifG’ is ~ L€tG1,G2,..., G, be the components i¥\ E’, thenG; =

obtained by2k.-subdividing each edge of G and G is nota  (XNV.(Gi), YNV(G:)). Applying the proof of Theorem 3.4 to
, |V(G)\—\E(G)\+3§§€E(G> ke eachG,;, we can extend the domaing»fwmm(a ) to IN(G;)
tree, thenAR(G’) = V@I=IB@)H+2) ], gy ke and keep its image unchanged. Jointfy, we have extended the
domain ofg to IN(G) and kept its image unchanged. In the

Proof: We may assume tha& is not a tree. Let . L A ;
e o . S . remainder of the proof, it will be verified that the inverse
vi,v5,...,v5, _, be the consecutive internal vertices of the

Ly e . , Images ofg form a core sequence @f. It suffices to prove
pgth n G’ that rgplacgs th? edge in G. Then ¢ is a that eachg~!(g(v)) is a core, for eachv € IN(G). First
bipartite graph with bipartitionX = {v§, ,le € E(G), .
i=0,1,... ke—1}andy = {oS|e € B(G)i=1,..., kn— we show that each vertex ¢ IN(G) has a neighbor not
1 UV(G). So,|X| = 3 4 and[Y] = 3 (ho— g HgW)). If v = u for someu € Xj, there exists
1+ \V(é)| 0! > eeb;ﬁ(G)i iE(G)| L |V(56)|E(Ci) |;(| y" € Ng(u)—N*(u) who is either a 1-vertex or has a different
Since the irt; ofogig(ﬁ())t Tess than six and — 2 label fromu’s because,’ was initially given a label different

9 ) : eggr (1) = from @;’s and has never been alteredal= 4; € N*(u) for
for all z € X, we know thatG’ is realizable by Theorem

34 and¢(G') = Yarl = Soepelhe — 1) + in(G). 2omew € Xar anddesg(u) =2, theni; Is a 1-vertex of

With the facts|V(G")| = ZeeE(G)(le “1) 4 V(@) and someG;. Accord|gg to the way we exterm},;mm(aj), the
in(G') = ZeeE(G)(2k€ — 1) + 1n(G), the optimal average neighbor ofu, in G; has a label different fron;’s. Finally,

information ratio ofG’ can be easily evaluated. if v e IN(G)\Xs+\{u; € N*(u)|u € X3+,degg(u;) = 2},
) Y . thenv € IN(G;) for somej. It has been shown that has
AR(CY) = V(G| +in(G) — e*(G) a neighbor inG; who is either a 1-vertex or has a label
V(G different fromv's in the proof of Theorem 3.4. Hence, each
V(G| = [EG)] +3 X ccnq) ke vertexv € IN(G) has a neighbor not ig~'(g(v)). These
- V(@) - |EG)] + QzeeE(G) k. outside neighbors of vertices g !(g(v)) certainly form an

independent set i becausg~!(g(v)) induces a connected
) ) ) B subgraph of diameter at most four and the girttGois at least
This proof actually also works whe@ is not simple and gjght. We conclude that the inverse imagesydbrm a core

G’ has girth not less than six. sequence of G with cc = k — 3, c v+ (degg(u) — 2). On
Corollary 3.6. Let G be a connected graph with multiplethe other hand, the star coverihhas vertex-number sum
edges and loops. Any even-subdivis@hof G is realizable mi = |V(G)| + Z (dege(u) — 1)
if G’ is of girth not less than six. uEX gt

In the proof of Theorem 3.4, we could have omitted the case = V(@] + Z (degg(u) —2) + | Xo+]|.
where(G is a tree because the result has been shown in [17]. UEX 4t

However, we give the proof for self-containedness and malf'ﬁerefore it has deductioty — [V (G)| + | Xos | + [Var | —

:/tvsl?aer to be referred to for the proof of the next theorem 5. — cc as desired and the proof is completed. -

We apply Theorem 3.7 to some classes of graphs. First, a
Theorem 3.7. Let G = (X,Y), |X| > |Y], be a con- graphG is more likely to be realizable if the size of;+
nected bipartite graph with girth not less than eight anés small. We give an easy example for this. Tewnnectivity
Ne(u)NNg(v)NYs+ = 0 for all u,v € X5+ andu # v. Iffor  #(G) of a graphG is the minimum number of vertices whose
eachu € X3+, there exist neighbors, s, . . . , Udeg,, (u)—1 deletion disconnect§ or results in a single vertex: is called

in IN(G) such that each componert in G\E', where F-connectedf «(G) > k.

E' = {utilu € Xz+,i = 1,...,degg(u) — 1}, satisfies Corollary 3.8. LetG = (X,Y), |X| > Y|, be ak-connected

X N V(G)] > |V nV(G)], then G is realizable and pipartite graph with girth not less than eight ami; (u) N
(G) = Yar| = 2 ex,, (degg(u) - 2). Ng(v)NYs+ = O for all u,v € X3+ andu # v. If | Xz | < K,

Proof: Let N*(u) = {@|i = 1,...,degg(u) — 1} be the NeNG is realizable.
set of the neighbors af € X5+ stated in the theorem. We first Proof: If k£ = 1, then|X3+| = 0. This result holds by
claim thatN*(u) N N*(v) = 0 for all u,v € X3+ andu #v. Theorem 3.4. Assume that> 2. For anyu € X3+, let N*(u)
If this does not hold, then, by assumption, there exists texer be a set of anyleg,(u) — 1 neighbors ofu andE’ = {ua;|u €
w € N*(u) N N*(v) with deg,(w) = 2. As a consequence, X+, @; € N*(u)}. Since|X3+| < k, G\E' is connected and
the isolated verteXw} C Y would be a component i&\E’. has the same bipartition as does.G is then realizable by

This contradicts to the given conditions. Next, as in theoproTheorem 3.7. ]
of Theorem 3.4, we gives a star coveringll = {S,|ly € Next, we consider graphs with minimum degiEér) > 2
Y} and initially defineg : Yo+ — {1,2,...,k}, wherek = and examine the properties of the component§i;-+ that

|Y2+]|, to be a bijection. Let us further defindu) = g(u1) may hinder the grapld” from being realizable.
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Corollary 39. Let G = (X,Y), | X| > |Y], be a connected Now, we have shown that all tree component&inE’ satisfy
bipartite graph with girth not less than eighi(G) > 2 and the criteriain Theorem 3.7. The proof of the previous camil
Ng(u) N Ng(v) NYz+ = 0 for all u,v € X3+ andu # v. guarantees that nontree components also do. The resuisof th
If none of the components i@\ X5+ is a tree, thenG is corollary follows immediately. ]
realizable.

Proof: Let H = (X, Yi) be any component af\ X+, IV. CONCLUSION

whereXy = X NV(H) andYy =Y NV (H). Since each  In this paper, we extend the ide&T") = d*(T) for trees to

vertex in Xy is of degree 2 and{ is not a tree, one hasgeneral graphs and determine the exact values of the optimal

2|Xg| > | Xu|+|Yw| which gives| Xy | > |Yy|. For anyu €  average information ratio for some classes of bipartit@lgsa

X3+, if there is a neighbow € Ng(u) who is a 1-vertex, then Appendantly, we also conclude that the cover{iffj|y € Y}

{w} would be a tree component i@\ X3+. So all neighbors is a star covering with the least vertex-number sum for each

of u must be inNfN(G). In this case, we may choose thgs, of these realizable bipartite graphs.

i=1,...,degg(u) — 1, to be anydeg(u) — 1 neighbors of  There still is a lot of room for exploration in this direction

u. If G is a component iz\ E’ which is not the same as anyof research. First of all, identifying exact conditions end

component inG\ X5+, then there must exist a componéiit which a bipartite graph is realizable is an interesting feob

in G\ X3+ such that X UV(G)| > (X NV (H))|+ 1 and to investigate. Besides, the idea of the deduction of a star

YNV(G) =Y NV(H). Now, all criteria in Theorem 3.7 are covering can be further generalized. One can define the

made and the result follows. B deduction of a complete multipartite covering in the samg.wa
This corollary assures that nontree component§'iiX;+  Finding proper complete multipartite coverings of a grajitinw

do not prohibitG from being realizable. It is the tree compothe largest deduction to match the core number of that graph

nents inG\ X5+ that matter the most. Theorem 3.7 fails whei$ an intriguing generalization of what we have proposed in
tree components irG\ X3+ are concentrated around soméhis paper.

vertices inX3+. We give a method to detect this situation.

Given a bipartite grapi? = (X,Y), |X| > |Y], and
some tree components;, ..., T; in G\ X3+, we define the
suspending numbeof the collectonH = {Ti, ..., T;},
written assusp(H), to be the cardinality of the st € X5+ |u
is adjacent to some vertices 8} in G, 1 < j < t}.

Corollary 3.10. LetG = (X,Y), |X| > |Y|, be a connected
bipartite graph with girth not less than eighi(G) > 2 and
Ng(u) N Ng(v) NYs+ = 0 for all u,v € X3+ and u #
v. If susp(H) > |H| holds for every collectioriH of tree
components irG\ X3+, thenG is realizable.

(1]

Proof: If T' = (Xp, Yr) is any tree component i\ X3+
where Xy = X NV(T) andYr =Y NV(T), then2|Xr| =
|X7| + |Yr| — 1 which implies that| Xp| = |Yr| — 1. Let
U = {T;|i € I} be the collection of all tree components in
G\ X3+. We define a bipartite grapA = (I, X3+) in which
(i,v) is an edge ofd if and only if v is adjacent to some
vertices ofT; in G. For everyJ C I, let H = {T;|j € J},
then|Na(J)| = susp(H) > |H| = |J|. By Hall's Theorem,
there exists a matching/ in A that saturated. Let M =
{(i,v;)|[i € I} and, for eachi € I, let v} be a vertex of
T; which is adjacent ta; in G. Forv € X3+\{v;|i € T},
v* can be arbitrarily chosen fromVg(v). Note that for any
u € X3+, Ng(u)\{u*} C IN(G). If this does not hold, then (g
there existaw € Ng(u)\{u*} with deg,(w) = 1. The trivial
component{w} would be a tree component i@\ X;+. The [10]
vertex w must beu*, giving a contraction. Now, lef2’ [11]
{uv/|u € X3+,u’ € Ng(u)\{u*}} and for alli € I, we also
let T be the graph obtained froffi; by attaching tdl; each [12]
edgevv* with v € X3+ andv* € V(T;). The collection of 43
all tree components iG\E’ is exactly {T;|i € I}. From
what we have shown at the beginning of this proof, one hH4!
that| X N V(T;)| = [Y N V(T;)| — 1. This consequently gives ;5
(XNV(TP)| = [XAV(T)|+1 = Y V(T)| = [YnV(T7).
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