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Abstract—Fault-proneness of a software module is the 

probability that the module contains faults. To predict fault-
proneness of modules different techniques have been proposed which 
includes statistical methods, machine learning techniques, neural 
network techniques and clustering techniques. The aim of proposed 
study is to explore whether metrics available in the early lifecycle 
(i.e. requirement metrics), metrics available in the late lifecycle (i.e. 
code metrics) and metrics available in the early lifecycle (i.e. 
requirement metrics) combined with metrics available in the late 
lifecycle (i.e. code metrics) can be used to identify fault prone 
modules using Genetic Algorithm technique. This approach has been 
tested with real time defect C Programming language datasets of 
NASA software projects. The results show that the fusion of 
requirement and code metric is the best prediction model for 
detecting the faults as compared with commonly used code based 
model.  
 

Keywords—Genetic Algorithm, Fault Proneness, Software Fault 
and Software Quality. 

I. INTRODUCTION 

IGH assurance and complex mission-critical software 
systems are heavily dependent on reliability of their 

underlying software applications. A software fault prediction 
is a proven technique in achieving high software reliability. 
Prediction of fault-prone modules provides one way to 
support software quality engineering through improved 
scheduling and project control. Quality of software is 
increasingly important and testing related issues are becoming 
crucial for software. Although there is diversity in the 
definition of software quality, it is widely accepted that a 
project with many defects lacks quality. Methodologies and 
techniques for predicting the testing effort, monitoring process 
costs, and measuring results can help in increasing efficiency 
of software testing. Being able to measure the fault-proneness 
of software can be a key step towards steering the software 
testing and improving the effectiveness of the whole process.  

A software fault is a defect that causes software failure in 
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an executable product. For each execution of the software 
program where the output is incorrect, we observe a failure. 
Software engineers distinguish software faults from software 
failures. Faults in software systems continue to be a major 
problem. Many systems are delivered to users with excessive 
faults. This is despite a huge amount of development effort 
going into fault reduction in terms of quality control and 
testing. It has long been recognized that seeking out fault-
prone parts of the system and targeting those parts for 
increased quality control and testing is an effective approach 
to fault reduction. A limited amount of valuable work in this 
area has been carried out previously. Despite this it is difficult 
to identify a reliable approach to identifying fault-prone 
software components. Using software complexity measures, 
the techniques build models, which classify components as 
likely to contain faults or not. The modeling techniques 
applied cover the main classification paradigms, including 
principal component analysis, discriminate analysis, logistic 
regression, logical Quality will be improved as more faults 
will be detected. Predicting faults early in the software life 
cycle can be used to improve software process control and 
achieve high software reliability. Timely predictions of faults 
in software modules can be used to direct cost-effective 
quality enhancement efforts to modules that are likely to have 
a high number of faults. Prediction models based on software 
metrics, can estimate number of faults in software modules. 
Software metrics are attributes of the software system and 
may include process, product, and execution metrics. Various 
attributes, which determine the quality of the software, include 
maintainability, defect density, fault proneness, normalized 
rework, understandability, reusability etc. 

With real-time systems becoming more complex and 
unpredictable, partly due to increasingly sophisticated 
requirements, traditional software development techniques 
might face difficulties in satisfying these requirements. Future 
real-time software systems may need to dynamically adapt 
themselves based on the run-time mission-specific 
requirements and operating conditions. This involves dynamic 
code synthesis that generates modules to provide the 
functionality required to perform the desired operations in 
real-time. However, this necessitates the need to develop a 
real-time assessment technique that classifies these 
dynamically generated systems as being faulty/fault-free. A 
variety of software fault predictions techniques have been 
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proposed, but none has proven to be consistently accurate. 
These techniques include statistical method, machine learning 
methods, parametric models and mixed algorithms as 
discussed in [1]-[22]. 

Genetic algorithm is being successfully applied for solving 
both classification and regression problems. It is therefore 
important to investigate the capabilities of this algorithm in 
predicting software quality. In order to perform the analysis 
we validate the performance of the GA method for dataset 
derived from the NASA’s MDP (Metric Data Program) data 
repository. Hence, The aim of proposed study is to explore 
whether metrics available in the early lifecycle (i.e. 
requirement metrics), metrics available in the late lifecycle 
(i.e. code metrics) and metrics available in the early lifecycle 
(i.e. requirement metrics) combined with metrics available in 
the late lifecycle (i.e. code metrics) can be used to identify 
fault prone modules using Genetic Algorithm technique. 

II. METHODOLOGY  
The methodology consists of the following steps: 

A. Find the structural code and requirement attributes 
The first step is to find the structural code and requirement 

attributes of software systems i.e. software metrics. The real-
time defect data sets are taken from the NASA’s MDP data 
repository, available online at http://mdp.ivv.nasa.gov.in 
named as PC1 dataset which is collected from a flight 
software from an earth orbiting satellite coded in C 
programming language, containing 1107 modules and only 
109 have their requirements specified [23]. PC1 has 320 
requirements available and all of them are associated with 
program modules. All these data sets varied in the percentage 
of defect modules, with the PC1 dataset containing the least 
number of defect modules.  

B. Select the suitable metric values as representation of 
statement 

The suitable metrics like product requirement metrics and 
product module metrics out of these data sets are considered. 
The product requirement metrics are as follows: 

• Module 
• Action 
• Conditional 
• Continuance 
• Imperative 
• Option 
• Risk_Level 
• Source 
• Weak_Phrase 

The product module metrics are as follows: 
• Module 
• Loc_Blank 
• Branch_Count 
• Call_Pairs 
• LOC_Code_and_Comment 

• LOC_Comments 
• Condition_Count 
• Cyclomatic_complexity 
• Cyclomatic_Density 
• Decision_Count 
• Edge_Count 
• Essential_Complexity 
• Essential_Density 
• LOC_Executable 
• Parameter_Count 
• Global_Data_Complexity 
• Global_Data_Density 
• Halstead_Content 
• Halstead_Difficulty 
• Halstead_Effort 
• Halstead_Error_EST 
• Halstead_Length 
• Halstead_Prog_Time 
• Halstead_Volume 
• Normalized_Cyclomatic_Complexity 
• Num_Operands 
• Num_Operators 
• Num_Unique_Operands 
• Num_Unique_Operators 
• Number_Of_Lines 
• Pathological_Complexity 
• LOC_Total 

C. Analyze, refine metrics and normalize the metric values  
In the next step the metrics are analyzed, refined and 

normalized and then used for modeling of fault prediction in 
software systems. PC1 static code based dataset contains 43 
static code metrics of which various metrics that do not impact 
binary classification are removed like module identifier, call 
pairs, condition count, cyclomatic density, Decision count, 
Decision density, Edge count, Essential density, etc and the 
remaining 22 have been used for training and testing data. In 
the requirement based dataset the number of Input Metrics are 
eight. 

D. Combine Requirement and code metrics 
Combining requirements and code metrics have done using 

inner join database operation. An inner join creates a new 
result table by combining column values of two tables (A and 
B) based upon the join-predicate. The query compares each 
row of A with each row of B to find all pairs of rows which 
satisfy the join-predicate. When the join-predicate is satisfied, 
column values for each matched pair of rows of A and B are 
combined into a result row. 
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Fig. 1ER diagram relates project requirements to modules and 

modules to faults 
In figure1 ER diagram relates the inner join between 

product_requirement_metric,product_requirement_relation 
and product_module_metric. The result of the join can be 
defined as the outcome of first taking the Cartesian product 
(or cross-join) of all records in the tables (combining every 
record in table A with every record in table B) - then return all 
records which satisfy the join predicate. Application of this 
operation to join requirement and code is possible using three 
metrics product_module_metrics, product_ requiremen 
t_metrics and  product_requirement_realtion. Join operation is 
performed onproduct_module_metrics and product 
requirement relation using common attribute Module ID and 
result is stored in temporary table. Then taking all records 
from temporary table and joining with 
product_requirement_metrics using Requirement ID. After 
joining of PC1 static code based dataset contains 43 static 
code metrics with 8 requirement based metrics and thereafter 
polishing in the joined dataset there are 31 total input metrics.  

E. Identification of the Important Attributes 
Correlation-based Feature Subset Selection is used for the 

evaluate the worth of a subset of attributes by considering the 
individual predictive ability of each feature along with the 
degree of redundancy between them. Hence, subsets of 
features that are highly correlated with the class while having 
low intercorrelation are preferred and are identified using 
BestFirst Algorithm [25]. 

BestFirst Searches the space of attribute subsets by greedy 
hillclimbing augmented with a backtracking facility. Setting 
the number of consecutive non-improving nodes allowed 
controls the level of backtracking done. Best first may start 
with the empty set of attributes and search forward, or start 
with the full set of attributes and search backward, or start at 
any point and search in both directions (by considering all 
possible single attribute additions and deletions at a given 
point) [25]. 

F. Genetic algorithm for classification of the software 
components into faulty/fault-free systems 

Genetic algorithms are used in search and optimization, 

such as finding the maximum of a function over some domain 
space.  

• In contrast to deterministic methods like hill climbing 
or brute force complete enumeration, genetic 
algorithms use randomization.  

• Points in the domain space of the search, usually real 
numbers over some range, are encoded as bit strings, 
called chromosomes.  

• Each bit position in the string is called a gene.  
• Chromosomes may also be composed over some 

other alphabet than {0, 1}, such as integers or real 
numbers, particularly if the search domain is 
multidimensional.  

• GAs are called ``blind'' because they have no 
knowledge of the problem. 

An initial population of random bit strings is generated. 
• The members of this initial population are each 

evaluated for their fitness or goodness in solving the 
problem.  

• If the problem is to maximize a function f(x) over 
some range [a, b] of real numbers and if f(x) is 
nonnegative over the range, then f(x) can be used as 
the fitness of the bit string encoding the value x. 

From the initial population of chromosomes, a new 
population is generated using three genetic operators: 
reproduction, crossover, and mutation. 

• These are modeled on their biological counterparts.  
• With probabilities proportional to their fitness, 

members of the population are selected for the new 
population.  

• Pairs of chromosomes in the new population are 
chosen at random to exchange genetic material, their 
bits, in a mating operation called crossover. This 
produces two new chromosomes that replace the 
parents.  

• Randomly chosen bits in the offspring are flipped, 
called mutation. 

The new population generated with these operators replaces 
the old population. 

• The algorithm has performed one generation and then 
repeats for some specified number of additional 
generations.  

• The population evolves, containing more and more 
highly fit chromosomes.  

• When the convergence criterion is reached, such as 
no significant further increase in the average fitness 
of the population, the best chromosome produced is 
decoded into the search space point it represents. 

Genetic algorithms work in many situations because of 
some hand waving called The Schema Theorem. 

• Short, low-order, above-average fitness schemata 
receive exponentially increasing trials in subsequent 
generations.'' 

In short genetic algorithm (GA) is a search technique used 
in computing to find exact or approximate solutions to 
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optimization and search problems. Genetic algorithms are 
categorized as global search heuristics. Genetic algorithms are 
a particular class of evolutionary algorithms (EA) that use 
techniques inspired by evolutionary biology such as 
inheritance, mutation, selection, and crossover. This 
Technique used the feature of random search. Random search 
feature selection searches the best possible solution over a 
range of data. Random features and input given produce good 
result. In the beginning start with a large “population” of 
randomly generated “attempted solutions” to a problem then 
repeatedly do the following: 

• Evaluate each of the attempted solutions 
• Keep a subset of these solutions (the “best” ones) 
• Use these solutions to generate a new population 
• Quit when you have a satisfactory solution (or you 

run out of time). 
The flowchart of the Genetic algorithm used is shown 

below: 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Randomly Classes of Metrics taken along with fitness 

An initial population of random range is generated 

The members of this initial population are evaluated on each 
Metrics for their fitness or goodness in solving the problem 

If the problem is to 
maximize a Classes of 
Metrics f(x) over some 
range [a,b] of real 
numbers and if f(x) is 
nonnegative over the 
range, then f(x) can be 
used as the fitness of the 

From the initial population 
of chromosomes, a new 
population is generated 
using three genetic 
operators: reproduction, 
crossover, and mutation 

The new population 
generated with these 
operators replaces the old 
population 

The population evolves, containing 
more and more highly fit 

chromosomes 

No 

Yes 

 
Fig. 2 Flowchart of Genetic Algorithm Used 

G. Implementing the model and finding the result  
The proposed approach is implemented in Visual Basic 

environment and MATLAB is used to calculate the 
performance of the algorithm. 

H. Performance Criteria  
The comparisons are made on the basis of the least value of 

Accuracy, MAE and RMSE values. The mean absolute error 
is chosen as the standard error. The technique having lower 
value of mean absolute error is chosen as the best fault 
prediction technique. 

• Mean absolute error: Mean absolute error, MAE is the 
average of the difference between predicted and actual value 
in all test cases; it is the average prediction error [26]. The 
formula for calculating MAE is given in equation shown 
below: 

n
cacaca nn −++−+− ...2211  

(1) 

Assuming that the actual output is a, expected output is c. 
• Root mean-squared error: RMSE is frequently used 

measure of differences between values predicted by a model 
or estimator and the values actually observed from the thing 
being modeled or estimated [26]. It is just the square root of 
the mean square error as shown in equation given below:         

The mean-squared error is one of the most commonly used 
measures of success for numeric prediction. This value is 
computed by taking the average of the squared differences 
between each computed value and its corresponding correct 
value. The root mean-squared error is simply the square root 
of the mean-squared-error. The root mean-squared error gives 
the error value the same dimensionality as the actual and 
predicted values.  

The mean absolute error and root mean squared error is 
calculated for each machine learning algorithm. 

III. RESULTS AND DISCUSSIONS 
The NASA MDP datasets are used in this approach to 

estimate the quality of a software product. The dataset used is 
PC1. We used requirement metrics, code metrics and join the 
requirement and code metrics as specified in [24] for 
modeling.  First, the CFS algorithm is applied to the evaluate 
the worth of a subset of attributes by considering the 
individual predictive ability of each feature along with the 
degree of redundancy between them. The direction of the 
BestFirst search is set to the Forward direction and the 
maximum size of the lookup cache of evaluated subsets is set 
to 1. This is expressed as a multiplier of the number of 
attributes in the data set. The snapshot of results of CFS 
algorithm applied on Combined dataset and code based 
dataset is shown in figure 3 and figure 4. 

Attribute Selection on all input data === 
 
Search Method: 
 Best first. 
 Start set: no attributes 
 Search direction: forward 
 Stale search after 5 node expansions 
 Total number of subsets evaluated: 287 
 Merit of best subset found:    0.362 
 
Attribute Subset Evaluator (supervised, Class (numeric): 32 Faulty/Non-Faulty): 
 CFS Subset Evaluator 
 Including locally predictive attributes 
 
Selected attributes: 4,12,23,25,30,31 : 6 
                     Metric4 
                     Metric12 
                     Metric22 
                     Metric24 
                     Metric29 
                    Metric30  

Fig. 3 Snapshot of Result of CFS Algorithm applied on Combined 
Dataset. 

( ) ( ) ( )
n

cacaca nn−−− +++
222 ...2211  

(2) 
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== Attribute Selection on all input data === 
 
Search Method: 
 Best first. 
 Start set: no attributes 
 Search direction: forward 
 Stale search after 5 node expansions 
 Total number of subsets evaluated: 153 
 Merit of best subset found:    0.318 
 
Attribute Subset Evaluator (supervised, Class (numeric): 22 Faulty/Non-Faulty): 
 CFS Subset Evaluator 
 Including locally predictive attributes 
 
Selected attributes: 14,15,16,18 : 4 
                     Metric14 
                     Metric15 
                     Metric16 
                     Metric18  

Fig. 4 Snapshot of Result of CFS Algorithm applied on Code 
Based Dataset. 

 
The CFS algorithm has proposed 6 significant attributes and 

4 significant attributed in the combined dataset and code 
based dataset respectively for the predication of fault prone 
modules. 

Thereafter, the significant attributes are taken further 
analysis. In case of the combined dataset the statistics of the 
attributes selected is shown below: 

 
 

 
Fig. 5 Statistics of the selected attributes for the Combined Dataset 

 
In case of the code based dataset the statistics of the 

attributes selected is shown in figure 6. 
 
 

 
Fig. 6 Statistics of the selected attributes for the Code Based 

Dataset. 
 
 
The Genetic algorithm based fault proneness prediction system is 

developed in Visual Basic 6.0 and the Graphical User Interface 
developed and loaded with the selected combined dataset and code 
based dataset is shown in figure 7 and 8 respectively. 

 

 
 
Fig. 7 Developed GUI loaded with the selected Combined Dataset 

 

 
 

Fig. 8 Developed GUI loaded with the selected Code based 
Dataset 

 
The interface is further used to predict the fault proneness 

of the examples after the training. Thereafter, the MATLAB 
based routine is used to calculate the performance criteria 
Accuracy %, MAE and RMSE values. The results recorded 
are shown in Table I. 

TABLE I 
 PERFORMANCE OF PREDICTION OF FAULT PRONENESS 

Performance 
Criteria 

PC1 Dataset 

Code Based Dataset 
Combined Code and 
Requirement 
Dataset 

Accuracy 92.8765 97.0650 
MAE 0.0712 0.0294 

RMSE 0.2669 0.1713 

 

IV. CONCLUSION 
In this study we predict that knowing the fault prone data at 

early stages of lifecycle combined with data available during 
code can help the project managers to build the projects with 
more accuracy and it will reduce the testing efforts as faulty 
areas are already predicted, so these modules can be handled 
properly. 
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The results of the fusion or combined model are  better with 
97.0650, 0.0294 and 0.1713 as Accuracy, MAE and RMSE 
values respectively as compared to 92.8765, 0.0712 and 
0.02669 values in case of code based model. 

Hence, Data available in the early stages can help the 
analyst to plan the required resources as and when required 
for development, testing. However, further investigation can 
be done and the impact of attributes on the fault prediction can 
be found. Also, more algorithms can be evaluated and then we 
can find the best algorithm. 
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