
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:12, 2010

1950

Abstract—Fault-proneness of a software module is the

probability that the module contains faults. To predict fault-
proneness of modules different techniques have been proposed which
includes statistical methods, machine learning techniques, neural
network techniques and clustering techniques. The aim of proposed
study is to explore whether metrics available in the early lifecycle
(i.e. requirement metrics), metrics available in the late lifecycle (i.e.
code metrics) and metrics available in the early lifecycle (i.e.
requirement metrics) combined with metrics available in the late
lifecycle (i.e. code metrics) can be used to identify fault prone
modules using Genetic Algorithm technique. This approach has been
tested with real time defect C Programming language datasets of
NASA software projects. The results show that the fusion of
requirement and code metric is the best prediction model for
detecting the faults as compared with commonly used code based
model.

Keywords—Genetic Algorithm, Fault Proneness, Software Fault
and Software Quality.

I. INTRODUCTION

IGH assurance and complex mission-critical software
systems are heavily dependent on reliability of their

underlying software applications. A software fault prediction
is a proven technique in achieving high software reliability.
Prediction of fault-prone modules provides one way to
support software quality engineering through improved
scheduling and project control. Quality of software is
increasingly important and testing related issues are becoming
crucial for software. Although there is diversity in the
definition of software quality, it is widely accepted that a
project with many defects lacks quality. Methodologies and
techniques for predicting the testing effort, monitoring process
costs, and measuring results can help in increasing efficiency
of software testing. Being able to measure the fault-proneness
of software can be a key step towards steering the software
testing and improving the effectiveness of the whole process.

A software fault is a defect that causes software failure in

Dr. Parvinder S. Sandhu is working as Professor with the Rayat & Bahra

Institute Of Engineering & Bio-Technology, Mohali-Sahauran14004. E-Mail:
parvinder.sandhu@gmail.com.

Sunil Khullar is working with the Rayat Institute Of Engineering &
Information Technology, Rail Majra, Ropar, Punjab, India.

Satpreet Singh & Gurvinder Singh are doing M.Tech CSE from RIEIT,
Rail Majra, Punjab.

Simranjit Kaur Bains & Manpreet Kaur are associated with CEC Landran,
Punjab, India.

an executable product. For each execution of the software
program where the output is incorrect, we observe a failure.
Software engineers distinguish software faults from software
failures. Faults in software systems continue to be a major
problem. Many systems are delivered to users with excessive
faults. This is despite a huge amount of development effort
going into fault reduction in terms of quality control and
testing. It has long been recognized that seeking out fault-
prone parts of the system and targeting those parts for
increased quality control and testing is an effective approach
to fault reduction. A limited amount of valuable work in this
area has been carried out previously. Despite this it is difficult
to identify a reliable approach to identifying fault-prone
software components. Using software complexity measures,
the techniques build models, which classify components as
likely to contain faults or not. The modeling techniques
applied cover the main classification paradigms, including
principal component analysis, discriminate analysis, logistic
regression, logical Quality will be improved as more faults
will be detected. Predicting faults early in the software life
cycle can be used to improve software process control and
achieve high software reliability. Timely predictions of faults
in software modules can be used to direct cost-effective
quality enhancement efforts to modules that are likely to have
a high number of faults. Prediction models based on software
metrics, can estimate number of faults in software modules.
Software metrics are attributes of the software system and
may include process, product, and execution metrics. Various
attributes, which determine the quality of the software, include
maintainability, defect density, fault proneness, normalized
rework, understandability, reusability etc.

With real-time systems becoming more complex and
unpredictable, partly due to increasingly sophisticated
requirements, traditional software development techniques
might face difficulties in satisfying these requirements. Future
real-time software systems may need to dynamically adapt
themselves based on the run-time mission-specific
requirements and operating conditions. This involves dynamic
code synthesis that generates modules to provide the
functionality required to perform the desired operations in
real-time. However, this necessitates the need to develop a
real-time assessment technique that classifies these
dynamically generated systems as being faulty/fault-free. A
variety of software fault predictions techniques have been

A Study on Early Prediction of Fault Proneness
in Software Modules using Genetic Algorithm

Parvinder S. Sandhu, Sunil Khullar, Satpreet Singh, Simranjit K. Bains,
Manpreet Kaur, Gurvinder Singh

H

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:12, 2010

1951

proposed, but none has proven to be consistently accurate.
These techniques include statistical method, machine learning
methods, parametric models and mixed algorithms as
discussed in [1]-[22].

Genetic algorithm is being successfully applied for solving
both classification and regression problems. It is therefore
important to investigate the capabilities of this algorithm in
predicting software quality. In order to perform the analysis
we validate the performance of the GA method for dataset
derived from the NASA’s MDP (Metric Data Program) data
repository. Hence, The aim of proposed study is to explore
whether metrics available in the early lifecycle (i.e.
requirement metrics), metrics available in the late lifecycle
(i.e. code metrics) and metrics available in the early lifecycle
(i.e. requirement metrics) combined with metrics available in
the late lifecycle (i.e. code metrics) can be used to identify
fault prone modules using Genetic Algorithm technique.

II. METHODOLOGY
The methodology consists of the following steps:

A. Find the structural code and requirement attributes
The first step is to find the structural code and requirement

attributes of software systems i.e. software metrics. The real-
time defect data sets are taken from the NASA’s MDP data
repository, available online at http://mdp.ivv.nasa.gov.in
named as PC1 dataset which is collected from a flight
software from an earth orbiting satellite coded in C
programming language, containing 1107 modules and only
109 have their requirements specified [23]. PC1 has 320
requirements available and all of them are associated with
program modules. All these data sets varied in the percentage
of defect modules, with the PC1 dataset containing the least
number of defect modules.

B. Select the suitable metric values as representation of
statement

The suitable metrics like product requirement metrics and
product module metrics out of these data sets are considered.
The product requirement metrics are as follows:

• Module
• Action
• Conditional
• Continuance
• Imperative
• Option
• Risk_Level
• Source
• Weak_Phrase

The product module metrics are as follows:
• Module
• Loc_Blank
• Branch_Count
• Call_Pairs
• LOC_Code_and_Comment

• LOC_Comments
• Condition_Count
• Cyclomatic_complexity
• Cyclomatic_Density
• Decision_Count
• Edge_Count
• Essential_Complexity
• Essential_Density
• LOC_Executable
• Parameter_Count
• Global_Data_Complexity
• Global_Data_Density
• Halstead_Content
• Halstead_Difficulty
• Halstead_Effort
• Halstead_Error_EST
• Halstead_Length
• Halstead_Prog_Time
• Halstead_Volume
• Normalized_Cyclomatic_Complexity
• Num_Operands
• Num_Operators
• Num_Unique_Operands
• Num_Unique_Operators
• Number_Of_Lines
• Pathological_Complexity
• LOC_Total

C. Analyze, refine metrics and normalize the metric values
In the next step the metrics are analyzed, refined and

normalized and then used for modeling of fault prediction in
software systems. PC1 static code based dataset contains 43
static code metrics of which various metrics that do not impact
binary classification are removed like module identifier, call
pairs, condition count, cyclomatic density, Decision count,
Decision density, Edge count, Essential density, etc and the
remaining 22 have been used for training and testing data. In
the requirement based dataset the number of Input Metrics are
eight.

D. Combine Requirement and code metrics
Combining requirements and code metrics have done using

inner join database operation. An inner join creates a new
result table by combining column values of two tables (A and
B) based upon the join-predicate. The query compares each
row of A with each row of B to find all pairs of rows which
satisfy the join-predicate. When the join-predicate is satisfied,
column values for each matched pair of rows of A and B are
combined into a result row.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:12, 2010

1952

PC1_product_requirement_metrics

REQUIREMENT
ACTION

CONDITIONAL
CONTUNANCE

IMPERATIVE
INCOMPLETE

OPTION
RISK_LEVEL

SOURCE
WEAK_PHRASE

PC1_requirement_product_relation
REQUIREMENT_ID
MODULE_ID

PC1_product_module_metric
MODULE
LOC_BLANK
BRANCH_COUNT

Fig. 1ER diagram relates project requirements to modules and

modules to faults
In figure1 ER diagram relates the inner join between

product_requirement_metric,product_requirement_relation
and product_module_metric. The result of the join can be
defined as the outcome of first taking the Cartesian product
(or cross-join) of all records in the tables (combining every
record in table A with every record in table B) - then return all
records which satisfy the join predicate. Application of this
operation to join requirement and code is possible using three
metrics product_module_metrics, product_ requiremen
t_metrics and product_requirement_realtion. Join operation is
performed onproduct_module_metrics and product
requirement relation using common attribute Module ID and
result is stored in temporary table. Then taking all records
from temporary table and joining with
product_requirement_metrics using Requirement ID. After
joining of PC1 static code based dataset contains 43 static
code metrics with 8 requirement based metrics and thereafter
polishing in the joined dataset there are 31 total input metrics.

E. Identification of the Important Attributes
Correlation-based Feature Subset Selection is used for the

evaluate the worth of a subset of attributes by considering the
individual predictive ability of each feature along with the
degree of redundancy between them. Hence, subsets of
features that are highly correlated with the class while having
low intercorrelation are preferred and are identified using
BestFirst Algorithm [25].

BestFirst Searches the space of attribute subsets by greedy
hillclimbing augmented with a backtracking facility. Setting
the number of consecutive non-improving nodes allowed
controls the level of backtracking done. Best first may start
with the empty set of attributes and search forward, or start
with the full set of attributes and search backward, or start at
any point and search in both directions (by considering all
possible single attribute additions and deletions at a given
point) [25].

F. Genetic algorithm for classification of the software
components into faulty/fault-free systems

Genetic algorithms are used in search and optimization,

such as finding the maximum of a function over some domain
space.

• In contrast to deterministic methods like hill climbing
or brute force complete enumeration, genetic
algorithms use randomization.

• Points in the domain space of the search, usually real
numbers over some range, are encoded as bit strings,
called chromosomes.

• Each bit position in the string is called a gene.
• Chromosomes may also be composed over some

other alphabet than {0, 1}, such as integers or real
numbers, particularly if the search domain is
multidimensional.

• GAs are called ``blind'' because they have no
knowledge of the problem.

An initial population of random bit strings is generated.
• The members of this initial population are each

evaluated for their fitness or goodness in solving the
problem.

• If the problem is to maximize a function f(x) over
some range [a, b] of real numbers and if f(x) is
nonnegative over the range, then f(x) can be used as
the fitness of the bit string encoding the value x.

From the initial population of chromosomes, a new
population is generated using three genetic operators:
reproduction, crossover, and mutation.

• These are modeled on their biological counterparts.
• With probabilities proportional to their fitness,

members of the population are selected for the new
population.

• Pairs of chromosomes in the new population are
chosen at random to exchange genetic material, their
bits, in a mating operation called crossover. This
produces two new chromosomes that replace the
parents.

• Randomly chosen bits in the offspring are flipped,
called mutation.

The new population generated with these operators replaces
the old population.

• The algorithm has performed one generation and then
repeats for some specified number of additional
generations.

• The population evolves, containing more and more
highly fit chromosomes.

• When the convergence criterion is reached, such as
no significant further increase in the average fitness
of the population, the best chromosome produced is
decoded into the search space point it represents.

Genetic algorithms work in many situations because of
some hand waving called The Schema Theorem.

• Short, low-order, above-average fitness schemata
receive exponentially increasing trials in subsequent
generations.''

In short genetic algorithm (GA) is a search technique used
in computing to find exact or approximate solutions to

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:12, 2010

1953

optimization and search problems. Genetic algorithms are
categorized as global search heuristics. Genetic algorithms are
a particular class of evolutionary algorithms (EA) that use
techniques inspired by evolutionary biology such as
inheritance, mutation, selection, and crossover. This
Technique used the feature of random search. Random search
feature selection searches the best possible solution over a
range of data. Random features and input given produce good
result. In the beginning start with a large “population” of
randomly generated “attempted solutions” to a problem then
repeatedly do the following:

• Evaluate each of the attempted solutions
• Keep a subset of these solutions (the “best” ones)
• Use these solutions to generate a new population
• Quit when you have a satisfactory solution (or you

run out of time).
The flowchart of the Genetic algorithm used is shown

below:

Randomly Classes of Metrics taken along with fitness

An initial population of random range is generated

The members of this initial population are evaluated on each
Metrics for their fitness or goodness in solving the problem

If the problem is to
maximize a Classes of
Metrics f(x) over some
range [a,b] of real
numbers and if f(x) is
nonnegative over the
range, then f(x) can be
used as the fitness of the

From the initial population
of chromosomes, a new
population is generated
using three genetic
operators: reproduction,
crossover, and mutation

The new population
generated with these
operators replaces the old
population

The population evolves, containing
more and more highly fit

chromosomes

No

Yes

Fig. 2 Flowchart of Genetic Algorithm Used

G. Implementing the model and finding the result
The proposed approach is implemented in Visual Basic

environment and MATLAB is used to calculate the
performance of the algorithm.

H. Performance Criteria
The comparisons are made on the basis of the least value of

Accuracy, MAE and RMSE values. The mean absolute error
is chosen as the standard error. The technique having lower
value of mean absolute error is chosen as the best fault
prediction technique.

• Mean absolute error: Mean absolute error, MAE is the
average of the difference between predicted and actual value
in all test cases; it is the average prediction error [26]. The
formula for calculating MAE is given in equation shown
below:

n
cacaca nn −++−+− ...2211

(1)

Assuming that the actual output is a, expected output is c.
• Root mean-squared error: RMSE is frequently used

measure of differences between values predicted by a model
or estimator and the values actually observed from the thing
being modeled or estimated [26]. It is just the square root of
the mean square error as shown in equation given below:

The mean-squared error is one of the most commonly used
measures of success for numeric prediction. This value is
computed by taking the average of the squared differences
between each computed value and its corresponding correct
value. The root mean-squared error is simply the square root
of the mean-squared-error. The root mean-squared error gives
the error value the same dimensionality as the actual and
predicted values.

The mean absolute error and root mean squared error is
calculated for each machine learning algorithm.

III. RESULTS AND DISCUSSIONS
The NASA MDP datasets are used in this approach to

estimate the quality of a software product. The dataset used is
PC1. We used requirement metrics, code metrics and join the
requirement and code metrics as specified in [24] for
modeling. First, the CFS algorithm is applied to the evaluate
the worth of a subset of attributes by considering the
individual predictive ability of each feature along with the
degree of redundancy between them. The direction of the
BestFirst search is set to the Forward direction and the
maximum size of the lookup cache of evaluated subsets is set
to 1. This is expressed as a multiplier of the number of
attributes in the data set. The snapshot of results of CFS
algorithm applied on Combined dataset and code based
dataset is shown in figure 3 and figure 4.

Attribute Selection on all input data ===

Search Method:
 Best first.
 Start set: no attributes
 Search direction: forward
 Stale search after 5 node expansions
 Total number of subsets evaluated: 287
 Merit of best subset found: 0.362

Attribute Subset Evaluator (supervised, Class (numeric): 32 Faulty/Non-Faulty):
 CFS Subset Evaluator
 Including locally predictive attributes

Selected attributes: 4,12,23,25,30,31 : 6
 Metric4
 Metric12
 Metric22
 Metric24
 Metric29
 Metric30

Fig. 3 Snapshot of Result of CFS Algorithm applied on Combined
Dataset.

() () ()
n

cacaca nn−−− +++
222 ...2211

(2)

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:12, 2010

1954

== Attribute Selection on all input data ===

Search Method:
 Best first.
 Start set: no attributes
 Search direction: forward
 Stale search after 5 node expansions
 Total number of subsets evaluated: 153
 Merit of best subset found: 0.318

Attribute Subset Evaluator (supervised, Class (numeric): 22 Faulty/Non-Faulty):
 CFS Subset Evaluator
 Including locally predictive attributes

Selected attributes: 14,15,16,18 : 4
 Metric14
 Metric15
 Metric16
 Metric18

Fig. 4 Snapshot of Result of CFS Algorithm applied on Code
Based Dataset.

The CFS algorithm has proposed 6 significant attributes and

4 significant attributed in the combined dataset and code
based dataset respectively for the predication of fault prone
modules.

Thereafter, the significant attributes are taken further
analysis. In case of the combined dataset the statistics of the
attributes selected is shown below:

Fig. 5 Statistics of the selected attributes for the Combined Dataset

In case of the code based dataset the statistics of the

attributes selected is shown in figure 6.

Fig. 6 Statistics of the selected attributes for the Code Based

Dataset.

The Genetic algorithm based fault proneness prediction system is

developed in Visual Basic 6.0 and the Graphical User Interface
developed and loaded with the selected combined dataset and code
based dataset is shown in figure 7 and 8 respectively.

Fig. 7 Developed GUI loaded with the selected Combined Dataset

Fig. 8 Developed GUI loaded with the selected Code based
Dataset

The interface is further used to predict the fault proneness

of the examples after the training. Thereafter, the MATLAB
based routine is used to calculate the performance criteria
Accuracy %, MAE and RMSE values. The results recorded
are shown in Table I.

TABLE I
 PERFORMANCE OF PREDICTION OF FAULT PRONENESS

Performance
Criteria

PC1 Dataset

Code Based Dataset
Combined Code and
Requirement
Dataset

Accuracy 92.8765 97.0650
MAE 0.0712 0.0294

RMSE 0.2669 0.1713

IV. CONCLUSION
In this study we predict that knowing the fault prone data at

early stages of lifecycle combined with data available during
code can help the project managers to build the projects with
more accuracy and it will reduce the testing efforts as faulty
areas are already predicted, so these modules can be handled
properly.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:12, 2010

1955

The results of the fusion or combined model are better with
97.0650, 0.0294 and 0.1713 as Accuracy, MAE and RMSE
values respectively as compared to 92.8765, 0.0712 and
0.02669 values in case of code based model.

Hence, Data available in the early stages can help the
analyst to plan the required resources as and when required
for development, testing. However, further investigation can
be done and the impact of attributes on the fault prediction can
be found. Also, more algorithms can be evaluated and then we
can find the best algorithm.

REFERENCES
[1] Saida Benlarbi,Khaled El Emam, Nishith Geol (1999), “Issues in

Validating Object-Oriented Metrics for Early Risk Prediction”, by Cistel
Technology 210 Colonnade Road Suite 204 Nepean, Ontario Canada
K2E 7L5.

[2] Fenton, N. E. and Neil, M. (1999), “A Critique of Software Defect
Prediction Models”, Bellini, I. Bruno, P. Nesi, D. Rogai, University of
Florence, IEEE Trans. Softw. Engineering, vol. 25, Issue no. 5, pp. 675-
689.

[3] Bellini, P. (2005), “Comparing Fault-Proneness Estimation Models”,
10th IEEE International Conference on Engineering of Complex
Computer Systems (ICECCS'05), vol. 0, 2005, pp. 205-214.

[4] Giovanni Denaro (2000), ”Estimating Software Fault-Proneness for
Tuning Testing Activities” Proceedings of the 22nd International
Conference on Software Engineering (ICSE2000), Limerick, Ireland,
June 2000.

[5] Mahaweerawat, A. (2004), “Fault-Prediction in object oriented
software’s using neural network techniques”, Advanced Virtual and
Intelligent Computing Center (AVIC), Department of Mathematics,
Faculty of Science, Chulalongkorn University, Bangkok, Thailand, pp.
1-8.

[6] Ma, Y., Guo, L. (2006), “A Statistical Framework for the Prediction of
Fault-Proneness”, West Virginia University, Morgantown.

[7] Thomas Zimmermann, Nachiappan Nagappan (2008), “ Predicting
Defects Using Social Network Analysis on Dependency Graphs”,
International Conference on Software Engineering (ICSE 2008),
Leipzig, Germany.

[8] Audris Mockus, Nachiappan Nagappan and Trung T.Dinh-Trong, (2009)
“Test Coverage and Post-Verification Defects: A Multiple Case Study,”
ACM-IEEE Empirical Software Engineering and Measurement
Conference (ESEM), Orlando, FL, 2009.

[9] Cagatay Catal & Banu Diri (2009), “A Systematic Review of Software
Fault Prediction Studies” Journal of Expert Systems with Applications,
Volume 36, Issue 4, May 2009.

[10] Jonas Boberg (2008), “Early Fault Detection with the Model-based
Testing” , 7th ACM SIGNPLAN workshop on ERLANG, 2008.

[11] Bindu Goel & Yogesh Singh (2008),“Emperical Investigation of Metrics
for Fault Prediction on Object Oriented Software” the Book series in
Computational Intelligence, 2008.

[12] Khoshgoftaar, T. M., Allen, E. B., Ross, F. D., Munikoti, R., Goel, N. &
Nandi, A. (1997), "Predicting fault-prone modules with case-based
reasoning". ISSRE 1997, the Eighth International Symposium on
Software Engineering (pp. 27-35), IEEE Computer Society (1997).

[13] Min-Gu Lee and Theresa L. Jefferson (2005), "An Empirical Study of
Software Maintenance of a Web-based Java Application", Proceedings
of the 21st IEEE International Conference on Software Maintenance
(ICSM’05), IEEE (2005).

[14] Marco D' Ambros and Michle Lanza (2006), "Software Bugs and
Evolution: A Visual Approach to uncover their relationship",
Proceedings of IEEE Conference on Software Maintenance and
Reegineering (CSMR' 06), IEEE (2006).

[15] George E. Stark (1996), "Measurements for Managing Software
Maintenance", IEEE computer Society, 1996.

[16] Khoshgoftaar, T.M. and Munson, J.C. (1990), “Predicting Software
Development Errors using Complexity Metrics”, Selected Areas in
Communications, IEEE Journal on, Volume: 8 Issue: 2, Feb. 1990,
Page(s): 253 -261.

[17] Menzies, T., Ammar, K., Nikora, A., and Stefano, S. (2003), “How
Simple is Software Defect Prediction?” Submitted to Journal of
Empirical Software Engineering, October (2003).

[18] Eman, K., Benlarbi, S., Goel, N., and Rai, S. (2001), “Comparing case-
based reasoning classifiers for predicting high risk software
components”, Systems Software, Journal of, Volume: 55 Issue: 3, Nov.
(2001), Page(s): 301 – 310.

[19] Fenton, N.E. and Neil, M. (1999), “A critique of software defect
prediction models”, Software Engineering, IEEE Transactions on,
Volume: 25 Issue: 5, Sept.- Oct. 1999, Page(s): 675 -689.

[20] Khoshgoftaar, T. M. and Seliya, N. (2002), "Tree-based software quality
estimation models for fault prediction", METRICS 2002, the Eighth IIIE
Symposium on Software Metrics (pp. 203-214). IEEE Computer Society
2002.

[21] Seliya N., Khoshgoftaar, T.M., Zhong S. (2005), "Analyzing software
quality with limited fault-proneness defect data", Ninth IEEE
international Symposium on 12-14 Oct, 2005.

[22] Lan Guo, Bojan Cukic, Harshinder Singh (2003), "Predicting Fault
Prone Modules by the Dempster-Shafer Belief Networks," ase, pp.249,
18th IEEE International Conference on Automated Software
Engineering (ASE'03), 2003.

[23] NASA IV &V Facility. Metric Data Program. Available from http:
//MDP.ivv.nasa.gov/.

[24] Jiang Y., Cukic B. and Menzies T. (2007), “Fault Prediction Using Early
Lifecycle Data”. ISSRE 2007, the 18th IEEE Symposium on Software
Reliability Engineering, IEEE Computer Society, Sweden, pp. 237-246.

[25] Hall M. A. (1998), Correlation-based Feature Subset Selection for
Machine Learning. Hamilton, New Zealand, 1998.

[26] Challagulla V.U.B., Bastani F.B., Yen I. L. and Paul (2005) “Empirical
assessment of machine learning based software defect prediction
techniques”, 10th IEEE International Workshop on Object-Oriented
Real-Time Dependable Systems, USA, pp. 263-270

