International Journal of Engineering, Mathematical and Physical Sciences
ISSN: 2517-9934
Vol:13, No:4, 2019

A Study of Two Disease Models: With and Without
Incubation Period
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Abstract—The incubation period is defined as the time from
infection with a microorganism to development of symptoms. In this
research, two disease models: one with incubation period and another
without incubation period were studied. The study involves the use of
a S — | — S mathematical model with a single incubation period. The
test for the existence and stability of the disease free and the endemic
equilibrium states for both models were carried out. The fourth order
Runge-Kutta method was used to solve both models numerically.
Finally, a computer program in MATLAB was developed to run the
numerical experiments. From the results, we are able to show that the
endemic equilibrium state of the model with incubation period is
locally asymptotically stable whereas the endemic equilibrium state of
the model without incubation period is unstable under certain
conditions on the given model parameters. It was also established that
the disease free equilibrium states of the model with and without
incubation period are locally asymptotically stable. Furthermore,
results from numerical experiments using empirical data obtained from
Nigeria Centre for Disease Control (NCDC) showed that the overall
population of the infected people for the model with incubation period
is higher than that without incubation period. We also established from
the results obtained that as the transmission rate from susceptible to
infected population increases, the peak values of the infected
population for the model with incubation period decrease and are
always less than those for the model without incubation period.

Keywords—Asymptotic ~stability, incubation period, Routh-
Hurwitz criterion, Runge Kutta method.

I. INTRODUCTION

HE current trend in the spread and causes of disease out

breaks has made the mathematical study of epidemics
imperative. Studies have come up with astonishing and quality
number of models with explanations for epidemic outbreaks
[1]. It is indeed a known fact that the high rate of deaths caused
by diseases is presently on the alarming rate in the world. In
recent years several studies have come up, which have not only
explained various diseases due to socioeconomic aspects but
gained triumphs for developing medicine [2].

The emergence of new diseases and reoccurence of old ones
makes the idea for interdisciplinary involvement more pressing.
Modeling disease infections is gaining great interest in the study
of epidemiology. The main objective of modeling is to ascertain
the role of infectious diseases in regulating natural population
[3]. In the study of disease models, the entire population could
be grouped into two categories which are namely; the
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susceptible and infected class. The infected population can
transmit the infection to the susceptible one. In the S —1 —§
models, the total population size at any instant is N = S + 1,
where S is the susceptible population and [ is the infected
population at that point.

As the simple S — I — S model suggests, the population from
the susceptible class joins or transfers to the infected class
continuously. But in reality this process is not always the case,
in fact, in the case of any viral disease and many other diseases,
the susceptible individual stays for some definite period after
leaving the susceptible class and joining the infected class. This
intermediate period may be termed as the incubation period.
The incubation period is defined as the time from exposure to
onset of disease and when limited to infectious disease,
corresponds to the time from infection with a micro-organism
to symptoms development [4].

A careful study of the role of incubation period in a disease
model by assuming an intermediate class called the incubated
population would be useful in understanding the treatment
strategies required in tackling and eradicating disease
epidemics [S]. Moreover, during an outbreak of a newly
emerged directly transmitted disease, the incubation period
distribution permits determination of the length of quarantine
required for a potentially exposed individual (i.e., by restricting
movement of an exposed individual for a duration sufficiently
longer than the incubation period). Further, if the time lag
between acquiring infectiousness and symptom onset appears
long (i.e., if the incubation period is relatively long compared
to the latent period), it implies that isolation measures (e.g.
restriction of movement until the infectious individual loses
infectiousness) are likely to be ineffective, complicating disease
control [6].

In view of the above, the role of incubation period in a
disease model is studied by assuming an intermediates class in
the S — I — S model which is the incubated class, I. The paper
is presented as follows: Section II describes a “susceptible —
infected — susceptible” and a “susceptible — incubation —
infected — susceptible” mathematical model. In Section III, we
studied the existence of the equilibrium system for both the
model with and without incubation period. In Section IV, we
studied the dynamical behavior and stability analysis of both
models. In Section V, the result of the numerical analysis of
both models was studied. Finally, in Sections VI and VII, we
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discussed the results of the numerical experiments and the came
up with a conclusion on the study.

II. THE MATHEMATICAL MODEL

The model by [2] considered the density at any time t of the
susceptible and infected (or disease) populations to be S(t) and
D(t), respectively. Let, b = Disease contact rate, § = Rate of
removal from disease class due to natural death (natural death
rate), y = Fraction of the infected population recovering from
disease that will rejoin the susceptible class, K = Carrying
Capacity of the population, r = Intrinsic growth rate of the
population, 4 = Death rate of the infected class due to infection.

Then the model without incubation period by [2] is explicitly
given as follows:

ds S
E=r$(1—;)—b5D+yD (1)
2 — pSD — 8D —yD — ubD )

dac

with initial populations S(0) >0, D(0) > 0and N(t) =
S(t) + D(¢t).

Therefore, using the following transformations for the
systems (1) and (2).

we get the following re-scaled system for the model without
incubation,

dx

E=x(1—x)—axy+yc 3)
d
d—i':axz—ye 4)
where,
bK y 61
a=—,C=—,e=—
r T r

and x(0) > 0,y(0) > 0.

The model by [2] also examined the case in which the
susceptible class instead of going straight to the infected class
but rather goes through a middle class called the incubated
class.

Let, B = Fraction of the incubated population that will go to
the disease class.

Then the model with incubation period by [2] is explicitly
given as follows:

as S

E:rS(l—E)—bSD+yD (5)
= =bSD — Bl — 51 (6)

& = BI— 6D —yD — D 7

where,

S(0)>0,1(0)>0,D(0) >0and N(t) = S(t) +1(t) +
D(t)

Also, using the below transformations for the systems (5)-(7)

s 1 D .
X= gy SgiZ=g T=T
we get the following re-scaled system for the model with
incubation period:

dx _ _ _
e x(1—x)—axz ®)
o —
L= axz dy )
dz _
e d,y—ez (10)
where,
bK 6.
a=—;c=Z,d=&; dl =£‘e=—1
r r r r

and x(0) > 0,y(0) > 0 and z(0) > 0.
In the next section, we will study the existence of all possible
steady and endemic equilibrium states of both systems.

1II. EXISTENCE OF EQUILIBRIUM STATES
There are three feasible equilibrium states for systems (1) and
(2), and (5)-(7), namely: Model without incubation, E, = (0,0)
is the trivial state; E; = (K, 0) is the disease free state and E, =
(S, D) is the endemic equilibrium state, where,

5,

§=2 and p = &b
b

b2K(y—67) an
It is clear from equation that E, € R3, if§; — bK andy —
6, have the same sign and are non-zero.
Also, for model with incubation period we have, E, =
(0,0,0), E; = (K,0,0) and E, = (S, I, D), where,
MD

§51bK(yb—rM) (yb+rM)bK

—_ D _ —
S= b’ I'= B(Kb2C+rM?2) and D = Kb2M+rM?2 (12)
and
68,
M= & + 7

Also, It is clear from (12) that E, € R3,if b > %

Theorem 1: For the model without incubation period, if
K, 61, b,y, 7 > 0, then, there exist equilibrium state

8, r8,(8; — bK
Ey = (0,0); Ey = (K,0)and E, =< 1 76:(8 ))

b’ b2K(y — &)

provided that §; > bK andy > §;.
Theorem 2: For the model with incubation period,
if, K,68,b, B, 51,7, Y1, 4 > 0, then there exists equilibrium states
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E, = (0,0,0) E; = (K,0,0) and E,
_(MD 6,bK(yb—rM) (yb+1rM)DK
"\ b "B(Kb2M +1rM?2)’ Kb2M + rM?2

provided that b > %

IV. DYNAMICAL BEHAVIOR OF THE SYSTEM

We have already established the fact that the system (1) and
(2) has three equilibrium states as stated above in the previous
section. The general Jacobian Matrix corresponding for systems
(1) and (2) is given by

2rS = c
]=(r_7__bD —IiS+y> (13)
bD bS — 6,

Corresponding to the trivial steady state E, = (0,0) the
Jacobian matrix J in (13) has the following eigenvalues 4, =
r>0orl, = —3§; <0, thus the equilibrium state, E, = (0,0)
is unstable.

Again, evaluating the Jacobian matrix in (13) for the disease
free equilibrium state, E; = (K, 0,), the following eigenvalues
are obtained, A; = —r <0or4d, = bK —§; < 0provided
that bK < §;. Thus, we conclude that the equilibrium state
(K,0) is locally asymptotically stable since both eigenvalues
are negative.

Finally, corresponding to the endemic equilibrium state

E 6, r6,(6, — bK)
*\b’b?K(y =60 )
we have,
_r(y(bK —26)) +6,%)
trace(Jg,) = RO — 6 >0,
bK < §;andy < 6,

by Theorem 1.

761(6; — bK) X (y — 61)  —161(6; — bK)

det(Je,) = = K (y — 8,) bK
r6;(bK — 67) .
N — < 0,since

8, > bK by Theorem 1.
Therefore, we conclude, by Hartman-Grobman stability
criterion that the equilibrium state

61 7'61 (61 - bK)
<?’ b2K(y — 61)>

2 =

is an unstable equilibrium state.

We have also established that the system (5)-(7) has three
equilibrium states as stated above in the previous section. The
general Jacobian Matrix corresponding for systems (5)-(7) is
given by

2rS

r—T—bﬁ 0 y-—bS
J= bD -, bS (14)
0 B =6

Corresponding to the trivial steady state E, = (0,0,0), the
Jacobian matrix J in (14) has the following eigenvalues 1, =
r>0,1,=—p; <0and 1; = —=§; <0, thus, we conclude
that the equilibrium state, E, = (0,0,0) is an unstable
equilibrium state.

Again, corresponding to the disease free equilibrium state
E, = (K, 0,0), the Jacobian matrix J in (14) has the following
eigenvalues ; = —r < 0 and A, 5 are the roots of the quadratic
equation 22 + A(B + &,) + BS; — BbK = 0.

_—(B+8) + (B +8,) — 4(B8, — BbK)
2

A2

If bk < &y, then

1 <—(ﬁ+51)+\/(ﬁ+51)2_
5 =
2

0

and

A3

_=B+8) —2\/(/% Yo7,
wly A3 <0,

Hence, we conclude, that the equilibrium state E; = (K, 0,0)
is locally asymptotically stable since all the roots of the
quadratic equation are negative.

Finally, corresponding to the endemic equilibrium state,

_ (MD 6,bK(yb—7rM) (yb+rM)bK
27\ b 'B(Kb2M 4+ rM?)’ Kb2M + rM?

The Jacobian matrix J in (14) has the following
characteristics equation.

s g 2r§  _
B (r—===bD—f -6

2rpS 218, S _
—A(ﬁlrwlr—i—L—BIbD

— b8, — B8, + ﬁb§> — 18, + brS

2r8,8,5  2rBbS? .
+ rﬂ% - % + bB.8,D — Bb?DS
— byB,D + Bb?DS = 0

Clearly, the above equation is of the form

AB+A1244+B+C=0 (15)
where,
2r§
A =T_—7—_bD _ﬁl —51
2rBS  2ré,S — — _
B=pyr+8r————————,bD —b6;D — .6, + BbS
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2rp,6,S  2rpbS?

C= ﬂb25§+ ﬁbT§+ K A + bﬁ1515 —1rP16;

— Bb2DS — by, D

Now from Routh-Hurwitz criterion [7], a necessary and
sufficient condition for all roots of (15) to have negative real

part are:
i. AB,C>0and
ii. AB—C>0

Clearly, under stable choice of parameter values, we were
able to establish the above stated two conditions, thus E, is
locally asymptotically stable.

Theorem 3: Given thatK,§,b,[, 8,7, Y1, 14 >0, then the
equilibrium states E, = (0,0,0), E; = (K,0,0) and E, =
(§,I,D) of the model with incubation period is locally
asymptotically stable under suitable choice of parameter values.

V. NUMERICAL EXPERIMENTS

The classical Runge-Kutta method (RK4) was used to solve
for the numerical solution for the models with and without
incubation period as represented in (1) and (2), and (5)-(7)
respectively. Computer programs using in-built MATLAB
function ode45 [8] was used for solving the systems of non-
linear ODE. Let, b =Transmission rate from susceptible to
infected population, y = Fraction of the disease population
recovering from the disease that will again join the susceptible
class c = 0.01;d = 0.11; d; = 0.1 and e = 0.08.

TABLE I
PARAMETER VALUES FOR THE NUMERICAL EXPERIMENTS FOR MODEL
WITHOUT INCUBATION PERIOD [9]

Nf:i 1 2 3 4
Parame

b 0.001  0.002 0003  0.004
K 500 500 500 500
T 0.1 0.1 0.1 0.1
Y 0.001  0.001 0001  0.001
5 0.006  0.006 0006  0.006
" 0.001 0001 0001 0.0l
5(0) 200 200 200 200
D(0) 120 120 120 120

TABLE II
PARAMETER VALUES FOR THE NUMERICAL EXPERIMENTS FOR MODEL WITH
INCUBATION PERIOD [9]

\gfi 1 2 3 4
Parame

b 0.001 0.002  0.003 0.004
K 500 500 500 500
r 0.1 0.1 0.1 0.1
B 0.011 0.011 0.011 0.011
o 0.006 0.006  0.006 0.006
Y 0.001 0.001 0.001 0.001
u 0.001 0.001 0.001 0.001
5(0) 200 200 200 200
1(0) 120 120 120 120
D(0) 20 20 20 20

From the data obtained [2] and based on some hypothetical
values, some graphs will be plotted to investigate the effects of
incubation period on the disease models as the transmission rate
from susceptible to infected population increases.

In order to carry out the above task, the parameters b, i, 8,
B.,7, K,y as defined in Section II are assigned some data values
as well as the initial values for S(0), I(0) and D(0) as shown
in Tables I and II.

The numerical values generated from the various parameter
values in Tables I and II and the figures obtained from the
corresponding tables are given in Figs.1-4.
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Fig. 1 The graph of the infected population for model without
incubation (D,) and with incubation (D) versus time at b = 0.001
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Fig. 2 The graph of the infected population for model without
incubation (D) and with incubation (D,) versus time at b = 0.002

VI. RESULTS AND DISCUSSION

In this section, we will discuss the result of our numerical
experiments carried out by increasing the transmission rate
from susceptible to infected population at various parametric
values. The parameter values for the experiments are shown in
Tables I and II. The graphs, plotted using these results, are
shown in Figs. 1-4.

Experiment one: Here, we investigate the situation where
the transmission rate from susceptible to infected population, b
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is 0.001. The result displayed in Fig. 1 showed that the
population of the infected people for both models increases and
peaked at different values before decreasing. At the initial stage,
the population of the infected people for the model without
incubation period is higher than that with incubation period but
with time, the final results shows that the overall population of
the infected people for the model with incubation period
becomes higher than that without incubation period.
Furthermore, the result also shows that the peak values of the
population of the infected people for the model with incubation
period (D,) is 340 in Fig. 1 as compared to a peak value of 380
also in Fig. 1 for the model without incubation period (D, ).
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Fig. 3 The graph of the infected population for model without
incubation (D;) and with incubation (D) versus time at b = 0.003
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Fig. 4 The graph of the infected population for model without
incubation (D;) and with incubation (D) versus time at b = 0.004

Experiment two: In this case, we investigate the situation
where the transmission rate from susceptible to infected

population, b is 0.002. The result displayed in Fig. 2 showed
that the population of the infected people for both models
increases and peaked at different values before decreasing. At
the initial stage, the population of the infected people for the
model without incubation period is higher than that with
incubation period but with time, the final results shows that the
overall population of the infected people for the model with
incubation period becomes higher than that without incubation
period. Furthermore, the result also shows that the peak values
of the population of the infected people for the model with
incubation period (D,) is 240 in Fig. 2 as compared to a peak
value of 340 also in Fig. 2 for the model without incubation
period (D).

Experiment three: Here, we investigate the situation where
the transmission rate from susceptible to infected population, b
is 0.003. The result displayed in Fig. 3 showed that the
population of the infected people for both models increases and
peaked at different values before decreasing. At the initial stage,
the population of the infected people for the model without
incubation period is higher than that with incubation period but
with time, the final results shows that the overall population of
the infected people for the model with incubation period
becomes higher than that without incubation period.
Furthermore, the result also shows that the peak values of the
population of the infected people for the model with incubation
period (D,) is 200 in Fig. 3 as compared to a peak value of 340
also in Fig. 3 for the model without incubation period (D, ).

Experiment four: Here, we investigate the situation where
the transmission rate from susceptible to infected population, b
is 0.004. The result displayed in Fig. 4 showed that the
population of the infected people for both models increases and
peaked at different values before decreasing. At the initial stage,
the population of the infected people for the model without
incubation period is higher than that with incubation period but
with time, the final results shows that the overall population of
the infected people for the model with incubation period
becomes higher than that without incubation period.
Furthermore, the result also shows that the peak values of the
population of the infected people for the model with incubation
period (D,) in Fig. 4 is 180 as compared to a peak value of 330
also in Fig. 4 for the model without incubation period (D, ).

VII. CONCLUSION

In this research work, we have reviewed and studied two
disease models: the model without incubation period and the
model with incubation period. The model parameters are given
in Section III. Runge-Kutta method for numerical analysis was
used in the numerical experiments.

From this study the following conclusions may be drawn:

1) The stability of the disease free state and the endemic
equilibrium states for both models were studied and we are
able to prove that the endemic equilibrium state of the
model with incubation period is locally asymptotically
stable (LAS) under certain conditions on the given model
parameters whereas the endemic equilibrium state for the
model without incubation period is unstable.
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2)

3)

4)

(6]

(7
(8]

The Local Asymptotic Stability (LAS) of the disease free
equilibrium state of the model with and without incubation
period were ascertained.

Numerical experiments, using published data from the
Nigeria Centre for Disease Control also shows that as the
transmission rate from susceptible to infected population
increases, the overall population of the infected people for
the model with incubation period is higher than that
without incubation period.

Numerical results also show that as the transmission rate
from susceptible to infected population “b” increases, the
peak values of the infected population for the model with
incubation period decreases sharply and always less than
the peak values of the infected population for the model
without incubation period. This is as a result of the
presence of incubation period which acts as a delay
constant to the development of the disease symptoms.
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