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 
Abstract—Thermoacoustic refrigerator is a cooling device which 

uses the acoustic waves to produce the cooling effect. The aim of this 
paper is to explore the experimental and numerical feasibility of a 
standing-wave thermoacoustic refrigerator. The effects of the stack 
length, position of stack and operating frequency on the cooling 
performance are carried out. The circular pore stacks are tested under 
the atmospheric pressure. A low-cost loudspeaker is used as an 
acoustic driver. The results show that the location of stack installed in 
resonator tube has a greater effect on the cooling performance, than 
the stack length and operating frequency, respectively. The 
temperature difference across the ends of stack can be generated up 
to 13.7C, and the temperature of cold-end is dropped down by 5.3C 
from the ambient temperature. 
 

Keywords—Cooling performance, Refrigerator, Standing-wave, 
Thermoacoustics. 

I. INTRODUCTION 

UE to environmental concern caused by the current 
vapour-compression refrigeration system applying the 

environmentally hazardous refrigerants such as R134a, R12, 
the design and development of refrigerating systems 
particularly in the domestic refrigeration is becoming 
increasingly important. In order to restrict on the use of such 
refrigerants, research efforts have been made to develop the 
alternative refrigerants and novelty refrigeration technologies 
[1]-[4]. A thermoacoustic refrigeration is a kind of the novel 
technologies which is environmentally friendly by using inert 
gases or simply air as working fluids. These gases do not 
contain any toxic, flammable or ozone depleting substances 
comparing with the common refrigerants used in the present 
commercial refrigerators. In addition, thermoacoustic 
refrigeration has a simple structure and no moving parts which 
is beneficial such as high reliability, low-cost of manufacture 
and maintenance. 

Thermoacoustic refrigeration utilises the sound waves to 
generate the cooling effect. Within the solid boundaries, the 
working fluid interacts thermally with the surface of the solid 
plates aligned appropriately to the direction of wave 
propagation. The periodic compression and expansion of gas 
parcels in the flow field, combining with the heat transfer 
between gas parcels and solid surface within solid boundaries, 
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yield a heat-pumping cycle. The cooling capacity can be 
adjusted straightforward by altering the level of sound 
pressure, unlike the compressor in common refrigeration 
system which works just in on-off mode. 

The main component of the thermoacoustic refrigeration is 
a porous media namely “stack” which is sandwiched by two 
heat exchangers, and placed properly inside a resonator tube. 
The design and construction to achieve the robust, 
economical, efficient thermoacoustic refrigeration system are 
significantly the technical challenges. As been discussed in 
[5]-[7], the cooling performance of thermoacoustic 
refrigeration is relatively sensitive to the choice of design 
parameters, thus the optimisation would be required in order 
to achieve a high efficiency. 

Since the first Hofler’s thermoacoustic refrigerator [5] was 
revealed, many prototypes of thermoacoustic refrigerators 
have been developed to improve the cooling capacity and 
theirs efficiency [8]-[10]. These efforts were made in different 
ways to enhance their performances. Although the simple 
standing-wave refrigeration has a lower efficiency due to 
intrinsic irreversibility comparing with the complex travelling-
wave refrigeration, it is an initiation for developing the 
sophisticated devices and seeking the potential improvements. 
If the drawbacks of this technology have been solved or 
restrained, the environmentally friendly thermoacoustic 
refrigeration system will take the place of the common 
vapour-compression refrigeration in the future. 

The objective of this work is to explore the experimental 
feasibility of a standing-wave thermoacoustic refrigerator 
driven by a low-cost loudspeaker. The effects of the length of 
stack, position of stack placed in resonator tube and operating 
frequency on the cooling performance are investigated. In 
addition, the numerical simulations aided by computer 
programme DELTAEC [11] are modelled in order to validate 
the experimental results. The simulation results also help in 
identifying the way to improve the component design. 

II.  PRINCIPLES OF THERMOACOUSTIC REFRIGERATION 

Fig. 1 shows the schematic diagram and basic operation 
principle of a standing-wave thermoacoustic refrigeration. The 
system consists of the stack, ambient heat exchanger (AHX) 
and cold heat exchanger (CHX) placed inside the resonator 
with closed end. Once the sound is fed from loudspeaker to 
create a standing wave in the resonator tube, the gas parcels in 
the system start to oscillate forth-and-back. Considering on a 
single gas parcel located near the stack plate as shown in the 
magnified view of Fig. 1, firstly the parcel is moved left to 
higher pressure region by the peak-to-peak displacement 
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thermocouples (T1-T4) placed equally along the stack from 
the hot end to the cold end. All thermocouples installed are 
type-K 0.2 mm diameter PFA insulated. Six pressure sensors 
(P1-P6) are placed equally along the resonator tube, and two 
pressure sensors (P7-P8) are installed at the reducing cone in 
order to monitor the pressure amplitude distribution along the 
system. All pressure transducers are piezoelectric sensors, 
model 113B28 of PCB PIEZOTRONICS. The signals from 
the pressure transducers are monitored and analysed by the 
digital oscilloscope capable of measuring up to a sampling rate 
of 200 MHz and 2 Gsa/s. All signals of pressure and 
temperature are recorded by the high-speed data acquisition. 

IV. NUMERICAL MODEL 

According to the linear acoustic theory of Rott [14], all 
acoustic variables are taken to be harmonic in time with radian 
frequency, , as, 
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Substituting these acoustic variables into the continuity, 

momentum and energy equations and reduced to first-order, 
we obtain the approximate equations as: 
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In order to solve these equations, a computer programme 

DELTAEC [11] is aided. The system is simulated as the 
sequence of segments, such as duct, stack, transducer, etc., 
given by the user. Due to p1, and U1 being complex, this set of 
3 coupled equations, (6)-(8), is split into 5 coupled equations 
for sloving 5 variables, Re[p1], Im[p1], Re[U1], Im[U1], and 
Tm. Therefore, in order to integrate the system of these 
equations, five boundary conditions are required at one end of 
the segment. These boundary conditions are the mean 
temperature, and the real and imaginary part of the complex 
pressure and complex velocity. 

Once the boundary conditions are set at the starting end of 
the segment, the system equations can be solved and the 
complex amplitudes and temperature found at the other end of 
the segment. These values become the boundary conditions 
that are used to solve the appropriate equations for the next 
segment and so on. Fourth-order Runge-Kutta integration 
method is employed in this code. The matching of the pressure 
and volumetric velocity between regions is straightforward. 
However, obtaining the correct boundary conditions at the end 
of the resonator, along with the temperature and heat transfer 
rate at the free end of the segment, is not as easily achieved. In 
order to meet these boundary conditions requires iteratively 
adjusting selected upstream variables. This can be achieved by 
using a shooting method. 

V.  RESULTS AND DISCUSSION 

A.  Resonant Frequency  

Loudspeaker has a resonant frequency similar to all 
suspending objects. At this frequency, it will vibrate most 
freely. This can imply that its voice coil will vibrate with the 
maximum amplitude and velocity. Thus, the resonant 
frequency should be the operating frequency of the system. A 
simple and reliable method to determine the resonant 
frequency is described by [15]. By adjusting the frequency in 
the range of the specified resonance, the point that a maximum 
voltage across the loudspeaker is observed is defined as the 
resonant frequency. In addition, the resonant frequency of 
system can also be determined by measuring the pressure 
amplitude of gas in the resonator tube as function of the 
frequency. When a peak of pressure amplitude is detected, the 
resonance takes place. 

In Fig. 4, as the signal frequency is adjusted, there are two 
impedance peaks detected at 72 and 160 Hz, respectively. The 
second peak of impedance is much higher than the first one. 
Therefore, the operating frequency should be at 160 Hz as 
considering in terms of impedance. However, at the frequency 
of 160 Hz, the pressure amplitude of working fluid measured 
at P1 is very low comparing with at 72 Hz. This inconsistence 
of impedance and pressure amplitude leads to further 
investigation. 

Pressure sensors (P1-P8) are then installed to measure the 
pressure distribution along the resonator tube at both resonant 
frequencies. As shown in Fig. 5, the pressure variation of 72 
Hz characterises a quarter-wavelength manner, while one 
wavelength form can be comparative to the pressure 
distribution for case of 160 Hz. As been reported by Swift 
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investigated. The measurements also confirm that the 
performance of this refrigerator is satisfied as expected. A 
maximum temperature difference up to 13.7C is achieved, 
and the temperature can be dropped down by 5.3C from the 
ambient temperature. 

 

 

Fig. 11 The relationship of the maximum temperature difference 
across stack and the operating frequencies at different stack lengths 

comparing with the DELTAEC predictions 
 

 

Fig. 12 The relationship of the maximum temperature difference 
across stack and the positions of stack at various stack lengths 

comparing with the DELTAEC predictions 

NOMENCLATURE 

a Speed of sound, m/s 
cp Specific heat capacity, J/kgK 

E2
 Acoustic power, W 

f Frequency, Hz 

2H  Total power flux, W 

h Thermoviscous function 
i 1  

k Thermal conductivity, W/mK 
p1 Pressure, Pa 
r Radius, m 
rh Hydraulic radius, m 
T Temperature, K, C 
t Time, s 
U1 Volumetric flow rate, m3/s 
 Thermal expansion coefficient, K-1 
 Ratio of isobaric to isochoric specific heats 

 Difference 
 Penetration depth, m 
 Internal energy per unit mass, J/kg 
s Correction factor for finite solid heat capacity 
  Thermal diffusivity, m2/s 
 Wavelength, m 
 Dynamic viscosity, kg/ms 
 Kinematic viscosity, m2/s 
 Displacement of gas, m 
  Density, kg/m3 
 Prandtl number 
 Angular frequency, s -1 
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