
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:11, 2015

2407


Abstract—In the present case study we examined the

development and testing methods of systems that contain safety-
critical elements in different industrial fields. Consequentially, we
observed the classical object-oriented development and testing
environment, as both medical technology and automobile industry
approaches the development of safety critical elements that way.
Subsequently, we examined model-based development. We introduce
the quality parameters that define development and testing. While
taking modern agile methodology (scrum) into consideration, we
examined whether and to what extent the methodologies we found fit
into this environment.

Keywords—Safety-critical elements, quality management, unit
verification, model base testing, agile methods, scrum, metamodel,
object-oriented programming, field specific modelling, sprint, user
story, UML Standard.

I. INTRODUCTION

N the present study we examined development and testing
environments in the development of software, for medical

technology and automobile industry, that contains safety-
critical elements. Embedded systems can be encountered in
both fields and we found that development in an object-
oriented environment is based on the V-model. We observed
factors influencing the verification of the object-oriented
environment and the difficulties that arose from programming
over the full development cycle. Subsequently we examined
model-based automated test- generation as a new field of
research. A number of methods and tool may be mentioned
regarding this field, including but not limited to: the
STATEMATE state chart software tool, the AGEDIS
(Automated Generation and Execution of Test Suites for
Distributed Component-based Software) [4], the Mutation
Analysis Technique combined with a model examiner, the
abstract state machine (ASM), the BZ-Testing Tool, etc. In the
present case study we examined ASM and UML based models
in detail, thus, we focused on specification based testing
criteria as quality parameters.

II. THE CASE STUDY

A. Service Safety

Service safety is crucial in both fields. In order to achieve it,
the basic goal is creating useful, highly reliable (Telekom
service, five nines 99.999%), reparable (maintainable)

Miklos Taliga is a PhD student with the Budapest University of

Technology and Economics, Department of Control Engineering and
Information Technology, Budapest, H-1117 Magyar Tudosok Korutja 2
Hungary (e-mail: taliga@iit.bme.hu, www.iit.bme.hu).

software. In safety-critical systems, standards determine the
frequency of errors. Safety Integrity Levels (SILs) show the
number of errors in safety-critical functions hour wise, that is,
basically, the number of errors during a given life cycle.
Service safety can be influenced by error occurring during
software development and software operation. During
software development, design and implementation errors may
occur. Their numbers can be decreased by quality assurance
and a better choice of development methodology. It must be
taken into consideration, however, that the larger and more
complex the software becomes, the harder it is to realize
flawless design and implementation. For that reason, great
emphasis must be put on both verification and validation
procedures. If the software is already working, hardware error
and operator error may still occur. Hardware error means a
choice of hardware with improper specifications [2], [11]. To
achieve service safety, the service provided by the software
must be able to meet its requirements, which must then be
verified by measurements and analysis. In software
development, data security and service safety are closely
connected, with both integrity and confidential data handling
being important aspect.

B. Testing Related to Object-Oriented Programming

From the perspective of service safety, standards used in the
development of embedded systems only provide by and large
suggestions for verification and validation methods and tools.
In practice, that meant that software developers chose software
development technologies and environments that were well
known to them. Also, methodological and technological tools
to these development tools were at their disposal to plan
design and execute appropriate tests. During the verification of
object-oriented systems the system itself is tested, which
requires mainly, input and output data from the system. These
data, naturally, are derived from observations during system
operation. However, the same principles of the OO
programming paradigm that enhance code-recycling and
efficient development, make testing more difficult, since every
object is affected by encapsulation and data hiding. For that
reason, the observed class or method must have a publicly
accessible, open-to-all interface (or interfaces) that can be
used to observe the behaviour of the object or class.
Additionally, their data must still be possible to use in testing.
The shared data space for observing certain systems used by
the medical technology development company could be
mentioned as an example.

As seen on Fig. 2, the shared memory space between the
Display system and the Graphical User Interface can be used
for the verification procedure.

A Study of Quality Assurance and Unit Verification
Methods in Safety Critical Environment

Miklos Taliga

I

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:11, 2015

2408

Fig. 1 V-model (IEC 62304 Standard)

Fig. 2 Generated task environment

C. Field Specific Modelling for Testing

In field specific modeling, a static structure representing the
problem at hand must be built by defining the meta- models.
The qualities of the structural elements can be described by
the properties of the static element attributes. The problem
with defining meta-models is that it does not provide a
realistic picture of the dynamic problems that arise with the
model. It is thus necessary to create languages for the
description of dynamics, which enable a more accurate and
efficient formulation of problems in various fields.

Both the Finite State Machine (FSM) and the Timed
Automation (or Hybrid Automaton) belongs to the dynamic
descriptive languages. To be tested, the meta-model must be
transformed into an Abstract State Machine (ASM) [8]. The
transformation is done by semantic anchoring which results in

semi-formal language that can be used to produce automatic
test cases. The ASM check can be used to check if the
dynamics description is correct. In large and complex systems
the static structure of the system may affect the ultimate
implementation: as a solution, the source model can be
transformed to different field specific language [3].

Whether the system operates correctly can be checked in
different simulation environments. One such environment is
the MATLAB Simulink that is highly suitable for the
simulation of embedded systems [1].

Fig. 3 Core weaving metamodel

D. Model Based Automated Test Generation

From the models belonging to test methods, we will
examine the UML state chart model in further detail.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:11, 2015

2409

Fig. 4 Abstract State Machine – ASM

Fig. 5 UML 2.x component diagram

The advantage of this model is that the input/output points
and interfaces of the system are more easily identified, and so
are the system-related events. The model helps the developers
in establishing a unified approach, and provides assistance in
recognizing hidden inconsistencies within the specification.
Temporal logic formulas are assigned to each test requirement
based on a coverage criterion chosen previously in the model.
The model created from the UML state chart is transformed to
the input language of the examiner [10]. The model examiner,
examines the negations of the determined formulas
individually, one after the other, based on the test
requirements. Running the model examiner results in a
converted test series, possibly with negated instances because
of the negation [6], [7]. As a high the number of test
requirements are processed, negated instances must be

highlighted in the test series. Model-based automated test
generation can save time and money by generating and
running test cases based on an automatically predetermined
model, in a shorter time. Yet another argument for automated
test generation is the fact that the generated tests can be
swiftly reproduced.

III. OBJECT-ORIENTED DEVELOPMENT AND MODEL-BASED

TESTING IN AGILE METHODOLOGY

When examining development and testing systems, the
principle of individuals and communication being more
important than the development and testing methodologies and
tools themselves must be taken into consideration. According
to the next agile principle, a working software is more
important than comprehensive documentation. In this case,

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:11, 2015

2410

during automated test generation in embedded systems that
may contain safety critical elements, it was important to know
which part(s) of the documentation can be left out without
compromising the test requirements of safety critical elements.
In the case of both development and testing systems, emphasis
can be shifted to testing working software if evaluation after
testing is connected to automated documentation. According
to the next agile methodology principle, close cooperation
with the procurer if more important than a strict adherence to
the contract. Finally, the agile methodology places more
importance on adaptation to change than on following plans
rigorously. Fig. 6 illustrates the importance of time, which
fundamentally influences planning in development and testing
(scrum) [9].

Fig. 6 Scrum process

A. Testing Related to Object-Oriented Programming

When inspecting the criterion “Delivering correct and
valuable software to the procurer early and continuously”, we
found that V-model based testing mechanisms (verification
and validation) fit the specification based testing strategy well.
Currently, in the two fields of the present study, software
developed and tested with the V-model did not contain
automated testing tools. Additionally, whether we mention
testing and development in automobile or medical technology
industry, service safety must be of utmost importance in
embedded systems, especially if the contain safety critical
elements. No margin of error is acceptable, so the conditions
of service safety must be taken into consideration. As that
requires thorough and repeated testing, it is difficult to achieve
using with the agile methodology. An early and continuous
delivery of the software cannot be guaranteed. Automated
testing tools that can speed up the testing process and thus
ensure early and continuous delivery have to be installed in
the system. When inspecting the criterion “the change of
requirements is acceptable even in the late stages of
development”, we found that the development model must be
flexible. The V-model fulfills those criteria, so change
management used in this model can be utilized according to
the agile methodology. Short period software deliver (possibly
even cycles of a few weeks) always refers to completing a new
product. In the agile methodology, communication between
the procurer, the developers and the testers is especially
important. When inspecting communication, we found that in
V-model based development the procurer could not provide
direct feedback during the entire development. In practice, the
procurer gets the result of 2 or 3 months’ worth of

development for user acceptance test. Thus, this practice
cannot be implemented in the agile methodology in its current
form. In the development of software for automobile and
medical technology industry, the development of modules
handling complicated tasks may frequently be necessary. In
such modules, testing in the early stages of development is
difficult, mainly because these modules are highly dependent
on other modules. For that reason, such modules may only be
tested with complete dependence criteria. With the criterion
“the main measure of progress is working software”, the
criterion of service safety must still be considered, as it is
necessary in order to comply with the requirements of testing
safety critical elements. The “constant focus on technical
excellence and good planning” criterion can be fully adapted
from V-model based development and testing.

B. Model Based Automated Test Generation

In the case of the criterion “Delivering correct and valuable
software to the procurer early and continuously”, we found
that during model based test generation, functions to be
developed must be organized into well-defined user stories,
while paying attention to the time of sprint. Naturally, that
influences model creation. If the creation of the model has fits
the time of sprint, delivering software to the procurer early and
continuously is possible. If the model in development is highly
dependent on another module (e.g. in a module responsible for
complex tasks), care must be taken so that even if it is
dismantled into subsets based on dependencies, testing still
remains definitely sensible and reproducible [5]. When
examining the criterion “the change of requirements is
acceptable even in the late stages of development”, we found
that model based test generation is fundamentally affected by
the complexity of the model. The principle formulated in the
first point still applies, only with the condition that if a multi-
dependent module is affected by change in a late stage of
development, it will affect model changes in all the modules it
is dependent upon. In practice, that means the model of every
dependent module has to be modified. That, of course, results
in extra work and more time needed, which must be taken into
consideration. The complexity of the mode is also important in
the short period delivery criterion, with cycles only a few
weeks long in model based test generation. During sprint
planning, it is important to pay attention to what parts the
function in development is separated into. With the criterion
“the main measure of progress is working software”, just like
with object oriented development and testing, high service
safety must be in focus. Yet again, the service safety can only
be ensured is the requirements of the testing of safety critical
elements are met. In the agile methodology, the criteria of
working software can be achieved with designing the modules
or functions defined in sprints, since user stories and their
respective testing tasks guarantee the delivery of a
continuously developed and tested module or function.
Looking at the criterion “constant focus on technical
excellence and good planning”, techniques used in object-
based development and testing and model-based development
and testing can be perfectly adapted to the agile methodology.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:11, 2015

2411

IV. CONCLUSION

In the present case study, we examined the development
and testing methods of systems that contain safety critical
elements in different industrial fields. We identified and
illustrated the quality attributes related to the different
development and testing environments. In the following part
of our research, we aim to create unified viewpoint system
based on these quality attributes, that can provide assistance
for development and testing teams working in the
aforementioned fields, so that they are able to choose the
development and testing toolkits and procedures that suit them
best. Additionally, we examined how well the development
and testing procedures used in different industrial fields fit
into the agile methodology, which is quite widespread today.
We have determined the conditions of possible utilization and
demonstrated the cases in which case agile methodology is
inappropriate for testing the software functions of a given
product. Further research would be required in model-based
automated test generation, as there is a growing need for such
tools in the field of embedded systems, especially when the
testing of safety critical elements are involved.

ACKNOWLEDGMENT

The author thanks a medical device developer company and
automotive industrial field developers for helping the case
study.

REFERENCES
[1] MATLAB – Simulink http://www.mathworks.com/products/simulink/
[2] ISO/IEC 12207:2008. Systems and software engineering -- Software life

cycle processes.
[3] IEC 62304:2006. Medical device software -- Software life cycle

processes.
[4] IEC 60601-1 Medical Electrical Equipment Package, 2009.
[5] IEC 61508-3 Functional Safety of Electrical/Electronic/Programmable

Electronic Safety-related Systems.
[6] ISO 14971:2007. Medical devices -- Application of risk management to

medical devices. ISO13485:2003: Medical devices -- Quality
management systems -- Requirements for regulatory purposes.

[7] Model-based test generation - http://www.cis.upenn.edu/~rtg/testgen/
[8] Paul E. Ammann, Paul E. Black, and William Majurski, Using Model

Checking to Generate Tests from Specifications, Proceedings of
ICFEM'98, Brisbane, Australia (December 1998)

[9] B. Legeard et al : BZ-Testing-Tools: A Tool-Set for Test Generation
from Z and B using Constraint Logic Programming, In proc. of
FATES'02, Formal Approaches to Testing of Software, 2002

[10] UML 2.x component diagram (an Agile introduction) -
http://agilemodeling.com/artifacts/componentDiagram.htm

[11] Medical device software standard IEC 62304 et al:
http://www.chemgineering.com/en/Scientific%20Articles/$/Medical-
device-software-standard-IEC-62304-et-al./22

