International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:10, No:9, 2016

A Static Android Malware Detection Based on Actual
Used Permissions Combination and API Calls

Xiaoqing Wang, Junfeng Wang, Xiaolan Zhu

Abstract—Android operating system has been recognized by most
application developers because of its good open-source and
compatibility, which enriches the categories of applications greatly.
However, it has become the target of malware attackers due to the lack
of strict security supervision mechanisms, which leads to the rapid
growth of malware, thus bringing serious safety hazards to users.
Therefore, it is critical to detect Android malware effectively.
Generally, the permissions declared in the AndroidManifest.xml can
reflect the function and behavior of the application to a large extent.
Since current Android system has not any restrictions to the number of
permissions that an application can request, developers tend to apply
more than actually needed permissions in order to ensure the
successful running of the application, which results in the abuse of
permissions. However, some traditional detection methods only
consider the requested permissions and ignore whether it is actually
used, which leads to incorrect identification of some malwares.
Therefore, a machine learning detection method based on the actually
used permissions combination and API calls was put forward in this
paper. Meanwhile, several experiments are conducted to evaluate our
methodology. The result shows that it can detect unknown malware
effectively with higher true positive rate and accuracy while
maintaining a low false positive rate. Consequently, the AdaboostM 1
(J48) classification algorithm based on information gain feature
selection algorithm has the best detection result, which can achieve an
accuracy of 99.8%, a true positive rate of 99.6% and a lowest false
positive rate of 0.

Keywords—Android, permissions combination, API calls,
machine learning.

1. INTRODUCTION

N recent years, Android smartphones play a more and more

important role in people's daily life. Android, which is a
Linux-based operating system proposed by Google in 2007, has
attracted a large number of mobile phone manufacturers,
developers and users because of its good open source and user
experience. Therefore, it has accounted for absolute dominance
among the mobile operating system. As stated by Chinese
Internet Data Information Centre [1], Android operating system
occupies as high as 53.54% of Global mobile operating system
market share in 2015. In addition, according to strategy
analysis, the global sales of smartphones have reached 1.3
billion and among them Android has occupied 81% of absolute
advantage [2]. However, Android has become the target of
attackers due to the lack of strict security review mechanisms,
which provides a great convenience for malicious attackers and
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leads to the rapid growth of malware. Attackers often choose
popular applications and republish them with malicious codes
to attract users to download, which brings a huge security risk
for users. According to the statistics of Never Quit “cloud
security” monitoring platform, the number of mobile malware
reached 85970 in the first half of 2014 and the year to year
growth rate reached 68.3%. The infected phones reached 37.54
million and the year to year growth rate reached 78.6%, and
96% of mobile malwares were from Android platform [3]. As
an open source operating system, Android has brought a serious
security problem to users. All the time, Android’s mechanism
has not any restrictions for the number of permissions which an
application can request, which results in the abuse of
permissions and some malware are not correctly identified by
traditional Android malware detection methods. Therefore, it is
important to detect Android malware and its variants
effectively.

In this paper, we present a machine learning detection
method which is based on the actually used permission
combinations and API calls. To validate the performance of this
method, several experiments are conducted with 1170 malware
and 1205 benign samples. Moreover, five different machine
learning classification algorithms and two feature selection
algorithms are used for distinguishing between malware and
benign by using 10-fold cross-validation.

II. RELATED WORK

The malicious code of Android platform is mainly in binary.
There are many detection methods which include static analysis
methods and dynamic analysis methods.

Static analysis methods detect malware by extracting static
features from the disassembled codes decompiled by specific
tools. Static analysis process does not need to execute the
application, thus avoiding some problems caused by execution
of applications such as space, time and resource consumption.
Dynamic analysis methods detect malware by monitoring the
behavior during the execution of applications, such as the
sequence of function calls, the loading process of program and
system resource accesses. The methods determine whether
applications have malicious behavior through comparative
analysis of similarity between applications and the known
malware behavior model. Besides, dynamic analysis methods
need to simulate the execution of the application in a virtual
machine or sandbox, which is not suitable for Android platform
with small storage and low execution efficiency. Considering
above conditions and limitations, we focus on the research of
static analysis methods.
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Zhou et al. [4] collected about 1200 Android malware
samples which cover large number of malware families and
conducted several experiments in view of various respects such
as installation, activation mechanism and loading of malicious
codes. Besides, they detected these samples with anti-virus
software including AVG, LookOut, Norton and TrendMicro.
As a result, the detection result was 79.6% and 20.2% in the
best and worst case detection rate. What’s more, these samples
are widely used in security fields and lay the foundation for the
analysis of malware in Android.

Wei et al. [5] found that the number of dangerous
permissions will increase along with the expansion of
permission sets. In addition, they found a large numbers of
applications applied for more permissions than the permissions
they actually used. In other words, these applications do not
obey the "principle of least privilege." [6]

Felt et al. [7] proposed a tool called Stowaway, which is used
to detect whether the application is against “principle of least
privilege” in according with the permissions which are declared
in AndroidManifest.xml. In their research, about one-third
applications have broken the principle among 940 samples.

Au et al. [8] proposed Pscout automated framework to
improve the method that was put forward in [7]. They provided
the whole mapping information between permissions and API
calls through analysis of the permission system from Android
2.2t04.0.

Enck et al. [9] proposed Kirin security mechanism by
defining rules which can identify dangerous permissions
combination. Kirin will warn the danger when user tries to
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install applications. This mechanism prevents the intrusion of
malware to some extent.

Fuchs et al. [10] put forward an automated tool named
ScanDroid based on data stream static analysis technology.
ScanDroid can be used to detect malware based on the
consistency of the data stream and permissions requested in
AndroidManifest.xml.

Sanz et al. [11] distinguished applications with machine
learning classification algorithm such as Native Bayes, Support
Vector Machine, K Nearest Neighbor, Decision Trees and
Random Forest. Experiments show that Random Forest
classification algorithm achieves the best result with a detection
rate of 94.83%.

Aafer et al. [12] proposed a detection tool named
DroidAPIMiner which can distinguish malware and benign
samples with machine learning methods based on the API calls.

Yerima et al. [13] used Bayesian classification algorithm to
classify 1000 malware samples and 1000 benign samples by
extracting API calls and system commands from 49 malware
families. The detection result shows that the method can obtain
the detection rate of 90.6% and the accuracy rate of 92.1%.

Wu et al. [14] proposed detection framework named
DroidMat. The experimental results show that the DroidMat
can distinguish malware effectively and the recall rate of this
method is higher than malware analysis tool Androguard.

III. METHODOLOGY

In this section, a machine learning detection method based
on the actually used permissions combination and API calls is
put forward. The framework of this paper is shown in Fig. 1.

Fig. 1 The malware detection framework

The framework contains mainly four parts. The first part
disassemble application with the Apk tool. The second part is
designed to extract AndroidManifest.xml configure file and
Smali codes from the previous dissembled codes. The third part
aims to extract the actually used permissions combination from

AndroidManifest.xml and API calls from Smali codes. As a
result of this process, every application is represented as a
feature vector with binary code 0 and 1. Finally, the last part
makes full use of five classification algorithms with 10-fold
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cross validation approach in machine learning to differentiate

the applications to malware and benign categories.

Step 1:Extracting AndroidManifest.xml and Smali codes by
Apk tool.

Step 2:Firstly, extracting the permissions that declared in
AndroidManifest.xml with the package called
xml.dom.minidom in Python. Secondly, extracting API
calls through scanning Smali codes in according with
the mapping relation between permissions and API, and
get the actually used permissions. Finally, obtaining the
actually used permissions combination based on the
single permission.

Step 3:Generating feature vector, each application is
represented as an instance. we uses 0 and 1 signifies
whether this instance has current characteristic.1 means
the current feature is appear in this application and 0
means the current application has not this feature. In
addition, a class label is added in each instance to mark
its category, a malicious sample is presented as malware
and a benign sample is presented as benign.

Step 4:Using five machine learning classification algorithms,
including J48, Random Forest, SVM, KNN and
AdaboostM1 (J48), to realize the classification and
evaluation for applications.

IV. FEATURE EXTRACTION

A. Actually Used Permissions Combinations

Although permissions that requested in one application can
reflect its function and behavior to a large extent. However, it is
inaccurate to determine whether application contains malware
behaviors in according with the declared permissions lonely.
Therefore, this paper concentrates on the permissions that
applications are used actually and then combines them with
API calls based on PScout.

Through conducting statistical analysis between 1170
malware samples and 1205 benign samples in experimental
data set, we found 873 samples do not actually used at least 1
declared permission and 524 samples do not actually used at
least 2 declared permission. Figs. 2 and 3 give the top 20
permissions that are requested and actually used in these
experimental samples in terms of the frequency of each
permission.

Figs. 2 and 3 show that permissions abuse exists in both
malware and benign samples. INTERNET,
ACCESS NETWORK STATE and READ PHONE STATE
permissions are widely used in both malware and benign
samples. Therefore, it is inaccurate to determine the application
class only rely on the permissions declared. For example,
SEND_SMS permission is used for normal communication in
benign samples, while malware samples use it to order some
services related with charges automatically, thus bring
economic losses to users. However, except these single
permissions, their combination can be used to differentiate
samples more accurately. For example, single permission
READ CONTACTS and INTERNET do not go against users
generally, but great changes have happened when these two

permissions are used simultaneously. Usually, malware often
use READ CONTACTS permission to read contacts and then
use the INTERNET permission to send them to remote host,
thus resulting in the revelation of users’ privacy information.
Therefore, we extract the top 20 permissions combination and
their frequency in experimental data set with 1170 malware
samples and 1205 benign samples, as is shown in Table I.
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Fig. 2 Top 20 permissions that requested and actually used among
malware samples
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Fig. 3 Top 20 permissions that requested and actually used among
benign samples

From Table I, we can conclude that the frequency of the
same combination of permissions in malware samples is
significantly higher than benign samples and their function is
mainly concentrate on stealing of privacy data and Trojan
control. For instance, the combination of INTERNET and
READ PHONE STATE, as well as READ PHONE STATE
and READ SMS, can be used to reveal the IMEI of phone
through internet or message. Besides, the
PROCESS _OUTGOING_CALL, INTERNET and
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RECORD_AUDIO permissions can be combined to monitor
and record user conversations and transmit over the network.

B. API Calls

Android provides abundant API resources for applications to
interact with the underlying operating system. Generally, an
application is consisting of a large number of functions, and
they often achieve its function by calling lots of system API
functions. Therefore, in this section, we try to identify malware
based on the features of API calls in an application.

First of all, extract the Smali codes with the Apktool. Then,
scan these codes to extract functions that invoked in application
and select those system API calls according to PScout. Through
the statistical analysis of 1170 malware samples and 1205
benign samples, we display the top 20 API calls based on the
frequencies as shown in Figure 4.

From Fig. 4, compared with benign samples, malware
samples tend to call more particular APIs to implement their
malicious purpose. These APIs mainly involves reading users’
data, connecting with internet and tracking users’ location, such
as getDeviceld, getSubscriberld, getNetworklInfo,
sendTextMessage. This fact illustrates that it is feasible to
identify malware behavior in according with the call frequency
of particular APIs.

frequengey

1200 -

TABLE I
ToP 20 PERMISSION COMBINATIONS BETWEEN MALWARE AND BENIGN
SAMPLES
Permissions combination malware  benign
INTERNET 1149 896
READ_PHONE_STATE 1118 714
INTERNET, READ_PHONE_STATE 981 568
ACCESS_NETWORK_STATE 972 757
WRITE_EXTERNAL_STORAGE 813 727
ACCESS_WIFI_STATE 780 523
READ_SMS 752 68
RECEIVE_BOOT _COMPLETED 659 243
WRITE_SMS 633 45
INTERNET, WRITE_EXTERNAL_STORAGE 597 550
SEND_SMS 504 67
INTERNET, ACCESS_NETWORK_STATE, 455 95
READ_SMS
READ_PHONE_STATE, READ_SMS 425 26
INTERNET,ACCESS_WIFI_STATE, 422 90
RECEIVE_BOOT _COMPLETED
INTERNET, ACCESS_WIFI_STATE, 40 8
WRITE_SMS
INTERNET, READ_CONTACTS 420 135
INTERNET, 413 21
READ_PHONE_STATE,ACCESS_WIFI_STATE
ACCESS_NETWORK_STATE, READ_SMS, 372 10
WRITE_SMS
PROCESS_OUTGOING_CALL, INTERNET, 366 97
RECORD_AUDIO
RECEIVE_SMS, SEND_SMS 360 16

1000

Fig. 4 Top 20 API calls between malware and benign samples based on their frequency
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V.EXPERIMENTS AND DISCUSSION
A. Data Set

In order to verify the effectiveness of this method, we
collected a total of 2375 Android applications. Among them,
the 1170 malware samples are composed of 23 families from
genetic engineering [15]. Meanwhile, we get 1205 benign
samples with web crawler technology from Google official
market and Anzhi market to maintain the equivalent number of
malware samples. Table II gives the structure of the data set
that used in our methodology.

TABLE I
THE COMPONENT OF DATA SETS

Data set Samples Malware Families/Categories

malware 1170 ADRD, AnserverBot, Asroot, BaseBridge, BeanBot,
Bgserv, Crusewin, DroidKungFul, DroidKungFu2,
DroidKungFu3, DroidKungFu4, DroidDream,
DroidDreamLight, FakePlyer, Geinimi, GoldDream,
Pjapps, Plankton, KMin, SndApps, RogueSppush,
YZHC, ZSone.
safety, tools, browsers, input methods, personalization,
shopping, society, games, entertainment, reading, video,
finance, life.

benign 1205

B. Evaluation Metrics

In this paper, we use the following four metrics in order to
access the classification capability of different classification
algorithms.

a. True Positive Rate (TPR): The number of malware
samples that were correctly classified as malware in all of
the malware samples.

P

= - @))]
TP + FN
where TP is the number of malware samples that were correctly
classified as malware and FN is the number of malware that
were incorrectly classified.
b. False Positive Rate (FPR): The number of benign
samples that were incorrectly classified as malware in all
of the benign samples.

FP

FAR = ——
FP + TN

@

where FP is the number of benign samples that were incorrectly

classified as malware and FN is the number of benign samples

that were correctly classified.

c. Accu (Accuracy): The number of benign samples and
malware samples that were correctly classified in all of the
samples.

Accuracy = P+ IN 3)
Y S IN P AN

d. AUC (Area Under roc Curve): The area of ROC
(Receiver Operating Characteristic), which is the part of
the area that obtained under the curve that based on
detection rate for the vertical axis while the false positive

rate for the horizontal axis. Generally, the larger area
indicates the better performance of classifier.

C. Results

In this section, we evaluate the classification performance of
five different algorithms in terms of feature sets that have been
extracted from applications, including API calls, permissions
combination, the combination of actually used permissions
combination and API calls, requested permissions. In addition,
information gain and CFS feature selection algorithms are used
to select the most useful features to improve the efficiency of
classifiers. The purpose of this paper is to demonstrate that the
feature of actually used permissions combination an API calls
can achieve better performance. Therefore, four benchmarks
were established to evaluate the ability of different classifiers.
All experiments are on the base of 10 fold cross validation.

a. Actually Used Permissions Combination

The total number of feature set consists of 200 and 22
permission combinations after using information gain and CFS
selection algorithms respectively. The detection results are
shown in Table III. From Table III, we can conclude that the
optimal detection result is obtained by AdaboostM1 (J48)
classification algorithm based on the above two feature
selection algorithms, achieving a detection rate of 99%, an
accuracy of 99.3% and AUC of 0.994. Compared with CFS
method, KNN classification algorithm can obtain a better
detection result through information gain method, but a lower
detection rate than CFS with respect to 1ibSVM algorithm.

TABLE IIT
PERFORMANCE OF CLASSIFIERS OBTAINED WHEN USING PERMISSIONS
COMBINATION FEATURE SET WITH IG AND CFS METHODS

Algorithm 1G CFS

TPR FPR Accu AUC TPR FPR Accu AUC
(%) (%) (%) o) (o) (%)

148 982 03 989 098 98.1 04 989 0.983
RandomForest 98.6 02 992 0993 986 02 992 0.993
KNN 985 03 991 0992 982 02 99.0 0991

libSVM 972 02 985 0983 980 04 988 0.987
AdaboostM1  99.0 03 993 0994 99.0 03 993 0.9%

b. API Calls

The total number of feature set consists of 100 and 6
permission combinations after using information gain and CFS
selection algorithms respectively. The detection results
achieved from this kind of feature are shown in Table IV.

TABLE IV
PERFORMANCE OF CLASSIFIERS OBTAINED WHEN USING API CALLS FEATURE
SET WITH IG AND CFS METHODS

Algorithm 1G CFS

TPR FPR Accu AUC TPR FPR Accu AUC
(%) (%) (%) (%) (%) (%)

148 955 54 950 0958 951 7.1 94.0 0.954
RandomForest 964 44  96.0 0987 938 50 944 0982
KNN 96.1 56 952 0983 944 62 937 098

libSVM 92.7 5.1 93.8 0949 940 79 93.0 0927
AdaboostM1 ~ 96.8 3.1 96.8 0989 939 56 941 0978
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As shown in Table IV, the best classification algorithm is
obtained by AdaboostM1 (J48) algorithm in according
information gain feature selection method, which can achieve
an accuracy of 96.8 and AUC of 0.989. Meanwhile, the best
detection result is obtained by Random Forest algorithm after
CFS method is adopted, achieving an accuracy of 94.4% and
AUC 0f 0.982.

c. A Combination of Actually Used Permissions
Combination and API Calls

The total number of feature set consists of 300 and 28
permission combinations after using information gain and CFS
selection algorithms respectively. The detection results
achieved from this kind of feature are shown in Table V. From
Table V, we can conclude that these classifiers can achieve
good performance when the actually used permissions
combination and API class are integrated with respect to two
feature selection methods: information gain and CFS. The best
detection result is obtained by AdaboostM1 (J48) classifier
with a detection rate as high as 99.6%, an accuracy of 99.8%,
AUC 0f 0.999 while a false positive rate as low as 0. In general,
the combined feature set can achieve higher accuracy while
maintaining a lowest false positive rate, which can improve the
ability to identity of the malware in the wild.

VI. COMPARISON WITH RELATED WORK

In order to verify the efficiency of our method, we conducted
several experiments to make comparisons with related methods,
including permissions proposed in [11], single permissions
combination and single API calls feature sets. At the same time,
we implemented the detection method in [11] that is based on
the declared permissions in applications. The total number of
feature set is consisting of 100 and 30 after using information

gain and CFS selection algorithms to combine the above feature
sets respectively. The detection results achieved from this kind
of feature are shown in Table VI. As shown in Table VI, the
best performance is achieved by AdaboostM1 (J48) classifier
based on the above two feature selection methods. However,
this feature set can lead to a high false positive rate because that
most applications have broken the “principle of least privilege”.

The detection rate, AUC and false positive rate with the best
performance based on information gain and CFS feature
selection algorithms are shown in Figs. 5, 6 and 7, respectively.

TABLE V
PERFORMANCE OF CLASSIFIERS OBTAINED WHEN USING THE COMBINATION
OF PERMISSIONS COMBINATION AND API CALLS FEATURE SET WITH IG AND

CFS METHODS
Algorithm 1G CFS
TPR FPR Accu AUC TPR FPR Accu AUC
(o) (o) (%) (%) (o) (%)
148 992 05 994 0994 988 0.1 994 0.99
RandomForest  99.4 0 99.7 0998 993 0.1 99.6 0.999
KNN 99.1 03 994 0994 992 02 995 0.997

libSVM 98.1 0.1 99.0 0988 986 02 992 0991
AdaboostM1  99.6 0 99.8 0999 993 0.1 99.6 0.998

TABLE VI
PERFORMANCE OF CLASSIFIERS OBTAINED WHEN USING DECLARED
PERMISSIONS FEATURE SET WITH IG AND CFS METHODS

Algorithm 1G CFS
TPR FPR  Accu AUC TPR FPR Accu AUC
(%) (%) (%) (%) (%) (%)
J48 90.8 5.9 92.5 0949 91.0 6.1 92.5 0.948

RandomForest  95.6 4.6 95.5 0987 925 4.2 942 0098

KNN 96.8 7.5 946 0984 9238 6.0 933 097
libSVM 90.3 6.5 92.0 0919 892 6.5 91.4 0919
AdaboostM1  96.0 4.6 95.7 0987 952 4.6 953 0.987
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Fig. 5 Comparisons of TPR and Accu with best classifier under four kinds of data sets when information gain and CFS methods are used
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Fig. 6 Comparisons of AUC with best classifier under four kinds of data sets when information gain and CFS methods are used
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Fig. 7 Comparisons of FPR with best classifier under four kinds of data sets when information gain and CFS methods are used

Besides, Figs. 8 and 9 give the ROC curve based on the best
classifier with information gain and CFS feature selection
methods. The closer to the top left means the performance of
this classifier is more excellent.

From above comparisons, we can draw the following
conclusions: Compared with method that proposed in [11], our
method can improve the performance of classifiers
significantly. Secondly, the classifiers based on the
combination of actually used permissions can achieve better
identification. At last, no matter what kind of feature selection
algorithm is chosen, our method can obtain higher detection

rate, accuracy, AUC and lower false positive rate compared
with other feature sets under same experimental conditions.

VII. CONCLUSION

In this paper, a machine learning detection method that based
on the actually used permissions combination and API calls
was put forward. Our main contributions are as follows: Firstly,
we presented an Android malware detection method based on
its actually used permissions combination and API calls rather
than permissions just declared in AndroidManifest.xml.
Secondly, various machine learning algorithms, feature
selection methods and experimental samples are used to
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