International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:10, No:3, 2016

A State-Of-The-Art Review on Web Services
Adaptation

M. Velasco, D. While, P. Raju, J. Krasniewicz, A. Amini, L. Hernandez-Munoz

Abstract—Web service adaptation involves the creation of
adapters that solve Web services incompatibilities known as
mismatches. Since the importance of Web services adaptation is
increasing because of the frequent implementation and use of online
Web services, this paper presents a literature review of web services
to investigate the main methods of adaptation, their theoretical
underpinnings and the metrics used to measure adapters performance.
Eighteen publications were reviewed independently by two
researchers. We found that adaptation techniques are needed to solve
different types of problems that may arise due to incompatibilities in
Web service interfaces, including protocols, messages, data and
semantics that affect the interoperability of the services. Although
adapters are non-invasive methods that can improve Web services
interoperability and there are current approaches for service
adaptation; there is, however, not yet one solution that fits all types of
mismatches. Our results also show that only a few research projects
incorporate theoretical frameworks and that metrics to measure
adapters’ performance are very limited. We conclude that further
research on software adaptation should improve current adaptation
methods in different layers of the service interoperability and that an
adaptation theoretical framework that incorporates a theoretical
underpinning and measures of qualitative and quantitative
performance needs to be created.

Keywords—Web services adapters, software adaptation, web
services mismatches, web services interoperability.

[. INTRODUCTION

web service is a piece of software designed to carry out

interoperable machine-to-machine interaction in a
network [1]. The service is "identified by a URI, whose public
interfaces and bindings are defined and described using XML.
Its definition can be discovered by other software systems.
These systems may then, interact with the Web service in a
manner prescribed by its definition, using XML based
messages conveyed by Internet protocols” ibid. Hence, Web
services are distributed information systems that are an
essential part of the Internet since they enable software
programs to communicate seamlessly and efficiently,
delivering platform independent systems with high flexibility
[2] and allowing the integration of heterogeneous applications

M. Velasco, A. Amini and L. Hernandez-Munoz are with the Enterprise
Systems Lab at Birmingham City University, Millennium Point, Birmingham,
B47XG, United Kingdom (Phone: +44 121 331 7542; e-mail:
Margarita.Velasco@bcu.ac.uk, Ardavan.Amini@bcu.ac.uk, Luis.Hernandez-
Munoz@bcu.ac.uk).

D. While and J. Krasniewicz are with the Birmingham City University,
Millennium Point, Birmingham, B47XG, United Kingdom (e-mail:
David.While@bcu.ac.uk; Jan.Kransniewicz@bcu.ac.uk).

P. Raju is with the KBE Lab at Birmingham City University, Millennium
Point, Birmingham, B47XG, United Kingdom (e-mail:  Path.
Raju@bcu.ac.uk).

using open standards such as XML and Service-Oriented
Architectures (SOA) [3], [4].

Web services can be systems providing diverse
functionalities such as payment services, maps, on-line travel
and reservations [5]. Furthermore, Web services can wrap
active applications as services; consequently developers can
use Web services to enhance interoperability through standard
protocols such as SOAP (Simple Object Access Protocol) and
REST (Representational ~State Transfer) and SOA
architectures [6]. Nevertheless, despite advances in
communication protocols and software architectures there are
still  interoperability  issues among Web  services.
Interoperability can be defined as the capability among two or
more systems, networks, devices, components or applications
to exchange and use information across and within them [7].
Interoperability issues are reflected in Web services
mismatches. Mismatches are caused due to differences in the
specifications, interfaces, protocols, behavior or formats of the
interchanged messages, causing a disruption in the
communication [8]. For example, a behavioral mismatch
appears when two services keep waiting for each other to send
a message (deadlock mismatch). Mismatches can be resolved
using for example, schema mapping and transformation tools
implemented in a Web service adapter that provides a solution
to the interoperability issue. This is known as software
adaptation [9].

An adapter is a Web service that sits between two
components and compensates for the differences between their
interfaces (i.e., their specifications, protocols or behaviors)
[10]. Benatallah et al. [11] identified that the development of
adapters can be based on mismatch patterns, which are design
patterns used to capture differences among services (interfaces
and protocols). However, [12] states that the identification of
these patterns is not sufficient, thus gaps exist in the creation
of the adapter that solves any type of mismatch.

The role of an adapter, which is considered a mediator
service, makes the interaction seamless [13]. The use of
adapters can involve performing activities like storing and
receiving messages, transforming message data and invoking
service operations [3]. The adapter code can be generated
semi-automatically or automatically once the mismatch
pattern has been identified [13].

This paper provides results of a literature review aimed to
investigate what are the main adaptation methods published in
the academic literature and the type of theoretical frameworks
underpinning software adaptation research. This paper may
contribute to identify gaps in the development of algorithms
that can improve interoperability of Web services. The

445



International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:10, No:3, 2016

following section explains the methodology of this review.
Later, the results of the literature review are shown and
discussed. Finally, further work is outlined and conclusions
are provided.

II. METHODOLOGY

A. Sources of Information

A search for publications was performed with query strings
in the following sources: Web of Knowledge/Web of Science,
ACM Digital Library, IEEE xplore and Google Scholar.
Furthermore, we explored the following publications
manually: IEEE Transactions on Software Engineering, the
International Journal of Web & Semantic Technology
(IJWesT), the International Journal of Web Services Research
(IJWSR) and The Journal of Systems & Software.

B. Entry Strings

Our query strings included "web services adaptation",
"software adaptation”, "web service adapters", "web services
composition", "service composition adaptation" and "web
service mismatches". Since concepts such as Web services and
adaptation or adapters or mismatches must appear on the
papers, we linked the concepts with AND and OR operators.

C.Inclusion and Exclusion Criteria

Since hundreds of thousands of publications were retrieved
from our queries, our selection strategy involved three phases.
First, two researchers selected paper abstracts including: 1)
publications from 1995 to 2010 with the highest number of
citations and related to software adaptation (100 abstracts);
and 2) the most relevant abstracts on software adaptation from
2010 to 2015 (i.e., highly or lowly cited abstracts proposing a
strategy for software adaptation) (50 abstracts). Second,
papers written by similar authors which did not provided extra
information (47 papers) and papers not available for download
(33 papers) were eliminated. Third, from the 70 abstracts
remaining, the two researchers agreed to read in full the most
relevant (18 papers) in order to answer our research question.

D.Data Extraction

The 18 identified papers were analyzed using NVivo v10.
Thematic analysis was carried out to identify pre-selected
themes and themes emerging from the papers. Pre-selected
themes included: the need of software adaptation; type of
adaptation methods, main characteristics and limitations; and
theoretical frameworks used in the adaptation approach.
While, emerging themes found in the papers included:
software adaptation layers, adapter evaluation metrics and
opportunities for further research in software adaptation.

III. RESULTS

A.The Need of Software Adaptation

Software adaptation is needed since the number of Web
services is growing very rapidly, thus the issue of Web service
adaption has become of special importance in research and

practice [14]. In Web service adaptation the functional
description of a Web service includes their interface, protocol,
data and behaviour [14]. These elements are used in SOA
architectures to create service compositions as mechanisms of
seamless  integration, rapid deployment, reuse of
heterogeneous computing resources and service coordination
across organizations [8]. Service composition includes
systems of Web services that fulfill basic communication
requirements or larger networks of Web services that
accomplish more complex tasks [9]. Therefore, Web services
have to be designed with reusable interfaces that allow access
to their functionalities. The interfaces (i.e., messages,
functionalities, protocols and dependences) of Web services
are stored in an XML file known as WSDL (Web Service
Description Language) [15]. Different interoperability levels
can be identified in WSDLs. For example, signature, protocol,
quality of service and semantics [9]. Brogi and Popescu [16]
points out that service adaptation may be undertaken at
various levels of the interoperability services stack. For
example, signature-based adaptation aims to overcome
mismatches due to syntactic differences among the exchanged
messages, for instance, the order in which the part of a
message are delivered; ontology-based adaptation helps
improving semantic mismatches among the messages, for
instance, messages related to different ontology concepts; and
behavior-based adaptation helps with the integration of
services that have mismatches in their communicating
protocols, for instance, the order in which messages are
exchanged. The authors, nevertheless, highlighted that Web
service adaptation is an active area of research due to the
existence of only limited solutions to current mismatches
needs. In practice, Business Process Execution Language
(BPEL) is a compositions language industry standard that
allows the executions and communications of processes across
organizations and enables invoking web service operations in
a specific order [17]. BPEL is used to implement and test
software adaptation methods.

Since composition of Web services is rarely achieved
faultlessly because mismatches may occur at the different
interoperability levels, research has been undertaken to create
methods (or algorithms) aimed to solve those issues. These
software adaptation processes include methods containing
mismatching interfaces that generate mediating adapter
services [9]. Table I shows different types of adaptation
approaches found in our reviewed papers.

B. Software Adaptation Methods

Early research in software adaptation was carried out by
[10]. They used finite state machine algorithms to model the
adaptation process and pointed out that protocols are
responsible for the relationship among Web services and their
messages and that adapters can be formally defined to
eliminate the difference in their protocol interfaces.

446



International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:10, No:3, 2016

TABLEI
MAIN ADAPTATION METHODS FOUND IN THE REVIEWED PAPERS
Publication Type of adaptation Main characteristics Limitations
Kongdenfha et. Fast adaptation of Web services through the combination of ~Other higher level of service specifications such as policies

al. (2009) [3] Templates

Seguel et al.
(2009) [8]

Interaction Analysis
Matrix

Yellin and Strom . . .
(1997) [10] Finite state machine
Benatallah et al.

(2005) [11] Mismatch patterns

Depth-based

are needed.

To test the prototype to more real-life case studies and to
build an adaptor for more than two BPEL protocols is
needed.

Specifications were manually written and they required the
designer to fully understand the details of the components
involved.

mismatch patterns and aspect-oriented approach.

The method seemed to make service adaptation more efficient
at both design and at run-time.

Adapters were automatically generated from a high-level
description.

Identified and classified different kinds of adaptation
requirements to characterize the problem of adaptation of web
services.

The language design and the code generation was not
finalized.
Their approach significantly improved the effectiveness and To extend the algorithms to identify other classes of
mismatches is needed and interface and protocol matching
approaches can be incorporated.

Nezhad et al. approach, lterative the accuracy of matching results. Reduced the efforts for
(2010) [14] reference-based . .
adapter development in Web services.
approach
Dumas et al. Facilitated message interception, transformation and buffering

(2006) [15] Finite state machine

to approve the adaptation logic.

Techniques to semi-automatically deduce possible links
between both provided and required interfaces need to be
developed.

Behavioral mismatches among numerous interacting BPEL
processes need to be solved.

The approach should be validated in real-life case studies.

Verification methods need to be implemented.

Real-world experiments need to be performed and the
overhead of adapter generation needs to be measured.
Techniques to statically detect and reconcile all differences
between two service interfaces need to be designed.

Po B;:rsocgl ?211 (;io 6) Service execution Their methodology seems to be successfully employed to
P [lu 6] trees generate replaceability adapters.
Tan et al. (2009) Workflow net Analyzed web service compatibility. Automatically composed
[17] services.
Message and control flow adaptation were integrated.
Shan (2010) [18] Patterns Adapters could be created on the fly for matching parts of two
services.
Nezhad et al. . . . N
(2007) [19] Mismatch Tree Their solution seemed to simplify adapter development.
Wang et al. - . . o . .
(2008) [20] Finite state machine They introduced two metrics: ability and intention trust.
. Their middleware-level runtime module ran in an autonomous
La and Kim

011)[21] Design patterns
Lin et al. (2011)
[22]
Mateescu et al.
(2012) [23]

were defined.
Pushdown System
Model

On-the-fly reduction

Lahmar and Fine-erained Adapters provide an extra-functional behavior compared to
Belaid (2013) g the functional behavior. Adapters can be generated in few
template o
[24] milliseconds.

Velasco-Elizondo
etal. (2013) [25]

Alférez et al.
(2014) [26]

Taher et al.
(2011) [27]

Architectural style

Variability models

Complex Event
Processing

manner. Technical details for static and dynamic adapters
An adaptor is verified at the same time of being generated,
saving time and cost.

Adapter generation seems to be automated.

They seemed to automate tasks by combining architectural
modeling, model-generation and utility analysis.

Variability models were used to facilitate the reasoning of
dynamic adaptations

Automatically generated adapters capable of intercepting
incoming messages.

Need to assess the effectiveness and correctness of the
adapters.

Real-world experiments with large-scale systems are
needed in order to evaluate real-time issues.
Evaluation of algorithm need to be evaluated in different
contexts.

Validation and evaluations of the generated adapters is
required.

Consider real-life situations in different domains.

Verification operations at runtime need to be implemented
to avoid inconsistent service recompositions in the open
world.

Adapters on real services need to be evaluated. Tools to
assist designers to generate adapters need to be created.

Kongdentha et al. [3] proposed a tool and a framework to
support service adaptation based on the aspect oriented
programming approach. Their framework includes a
classification of different types of mismatches at interface and
protocol levels. They proposed two ways of using adapters to
solve the mismatches, developing a new Web service (stand-
alone) or modifying one of the Web services to make it
compatible with the other. They used IBM WebSphere
Integration Developer tool for schema mapping functionalities
to instantiate the templates and concluded that the second
approach was better to solve the mismatch.

Benatallah et al. [11] proposed the use of mismatch patterns
for the development of replaceability adapters. Nevertheless,
their approach is limited to the designer providing a template
of parameters, but complex behavioral mismatches were not
addressed.

Nezhad et al. [14] proposed a method to solve mismatches

semi-automatically at the service interface level. Their method
included a protocol-aware approach for Web service interface.
They used Java and Eclipse as the Interface Development
Environment; OntoBuilder library was used to implement the
static interface matching approach. Their results show that
their method enhanced the quality of matching among
services.

Brogi and Popescu [16] proposed a methodology to solve
mismatches that can appear at service behavioral levels
between two BPEL processes. Their algorithm generates
adapters automatically based on service execution trees. A
BPEL process adapter is built in order to allow the two
processes continue interoperating. However, [18] argues that
this type of adaptation seems to be too extensive because they
generate a service execution tree for every possible path and
because of the inconvenience created when buffering every
single activity.

447



International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:10, No:3, 2016

Tan et al. [17] focused on behavior mismatches. They used
BPEL to facilitate the logic of the Web services. First, they
evaluated the compatibility of two Web services, then they
transformed them into a service workflow net and finally they
generated an adaptor between the two Web services. While,
Nezhad et al. [19] presented a model for service adaptation
based on adapter protocol and interface mappings. SOA is
used as the platform to solve mismatches at both interface and
protocol level. Adapters are generated semi-automatically by
identifying parameters of mapping functions. Their algorithms
were developed using IBM WID (WebSphere Integration
Developer), where XML was used to represent rules and
Eclipse/Java for the implementation of the algorithm.

Wang et al. [20] developed an adaptation machine for
service interface adaptation at runtime. The adaptation
machine was placed between two services to resolve
mismatches by capturing, transforming and sending messages
with specific mapping rules. They used Finite State Machines
to represent the behavioral service interface. Moreover, they
introduced a tool called Megine (Service Mediation Engine) to
manage a repository of mapping rules that could capture
interfaces of both WSDL descriptions and finite state
machines.

La and Kim [21] defined a framework for service
adaptation (SAF) and also designed both, static and dynamic
adapters. They considered that there are two main problems
when Web services interoperate: mismatch at development
time and fault at run time. Furthermore, they derived
mismatches, faults, their causes and adapters by defining two
causal-effect relationships. The first one was including
mismatches and static adapters and the second one was
involving faults and dynamic adapters, both including causes.
For the development of static adapters, they defined practical
instructions and specified step-wise algorithms for the
dynamic adaptation.

Lin et al. [22] generated non-regular behavioral adapters
specifying the behavior of service interfaces. Behavior
interfaces were represented by Interface Automata and a
pushdown system model was used to represent adapters.
Pushdown systems were used to effectively detect that
messages were successfully sent and received through the
adapter. To support the automation of service adaptation, a
prototype tool was implemented. Their tool was developed in
C programming language and was able to read the behavior
interfaces of services that were described in an input file.

Mateescu et al. [23] proposed a model to support service
adaptation by removing incorrect behaviors in complex
adaptation scenarios. They focused on service interfaces rather
than service implementation. A tool that generated the adapter
was developed by considering the service protocol and
interfaces with adaptation contract and value passing. While,
[24] used an adaptation approach that was dynamic structural
based on the adaptation of applications through the
introduction of an adapter in the description of the service to
modify its functional behavior. The adapter was defined
through a fine-grained template. In addition, a proxy
component was used to compose the adaptive logic of the

adapter. They evaluated their approach by calculating the time
taken to generate the proxy.

Velasco-Elizondo et al. [25] presented an automatic
detection and solution of data mismatches. They considered
previous categorization of mismatches and extend them with
their data mismatch resolution approach. They formalized
their mismatches as rules to make them work between
architectural components. Furthermore, an architectural style
called SCORE was wused for representing end-users
composition and for mismatch detection. They used the
constrains and descriptions of SCORE to solve data
mismatches in a composition through a Mismatch Detection
Engine.

Alférez et al. [26] presented a framework to support
dynamic adaptation compositions based on variability models
at runtime. Their model was used at the context level when a
mismatch arises. The composition model changed according
to the variability model featuring activated or deactivated
states. Changes could be seen in the composition by including
or deleting fragments of BPEL composition schema at
runtime. Finally, [27] used complex event processing to
automatically generate adapters, but their approach would
need to be validated on real web services.

C.Layers of Service Interoperability

Three main layers were used in our reviewed papers. 1)
Table II shows that 13 papers reported work in the interface
layer, which comprises the set of operations the services
support [19]; 2) eight papers carried out research in the
protocol layer, which comprises the order in which operations
should be invoked to achieve a successful interaction [19]; and
3) seven papers involved work on the behavioral layer, which
comprises the interactions among the protocols [23]. These
results show that the interface layer was the most popular.
Hence, our review seems to show that there are many
opportunities to carry out further investigations in other
interoperability layers, including for example the policies and
nonfunctional properties layer.

D.Theoretical Frameworks and Evaluation Metrics Used in
Software Adaptation

Table III shows that the most popular theoretical framework
underpinning adaptation approaches was finite-state machines
(three papers) [10], [14], [19]. While, other 12 papers used
different theoretical models including mismatch patters [3],
structured process models [8], CORBA [10], concurrency
theory [15], Colored Petri nets [17], pattern based analysis
[18], abstract state machines [20], life cycle model [21],
pushdown automata [22], model driven [23], architectural
constructs [25], dynamic adaptations [26] and model
transformation [27]. While three papers did not report the use
of a theoretical framework [11], [16], [24]. Because the wide
variety of frameworks used in our reviewed papers, results
may reflect the lack of a standardized theory that can provide
the grounds needed to support software adaptation research
and perhaps a lack of consensus across different authors. Even
worst, because there are research projects not even grounded

448



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942
Vol:10, No:3, 2016

in any theoretical underpinning, future work should involve
the creation of an integrated framework that can help
improving web services interoperability grounded in a solid
theoretical perspective, which in turn may produce more
effective adaptation outcomes. Table III also shows that while
theoretical frameworks were somewhat used in our reviewed
papers, not many research reported the type of metrics used to
evaluate their adaptation methods (11 papers not reported their
metrics, though two reported using synthetic and real-life
cases). Nevertheless, there were interesting metrics such as [3]
that include the qualitative comparison of stand-alone and
aspect-oriented  characteristics, complemented by a
quantitative evaluation based on the adoption of the CK
metrics (e.g., Line Of Code (LOC) and Number Of Classes
(NOC)). While other research highlighted the evaluation of
adapters effectiveness and the usage of protocol-aware
approaches [14], adapters complexity [18], protocol
correctness [23], structural adaptation time [24], efficiency
and scalability [25], and generation efficiency and complexity
reduction [26]. This limited number of instruments to quantify
the benefits of adaptation processes may reflect the need to
create further mechanisms that help quantifying mismatch
identification, adapters creation and performance.

TABLEII
LAYERS OF SERVICE INTEROPERABILITY USED IN THE REVIEWED PAPERS
Publication Interface Protocol Behavioral
layer layer layer
Kongdentha et. al. [3] v R
Seguel et al. [8] 3
Yellin and Strom [10] \ \
Benatallah et al. [11] N v
Nezhad et al. [14] v \
Dumas et al. [15] v
Brogi and Popescu [16] \
Tan et al. [17] J
Shan [18] \ \
Nezhad et al. [19] v
Wang et al. [20] v
La and Kim [21] N v R
Lin et al. [22] R \
Mateescu et al. [23] v v
Lahmar and Belaid [24] v
Velasco-Elizondo et al. [25] v
Alférez et al. [26] R
Taher et al. [27] v Y

E. Opportunities for Further Research

Tables I-II show that there many opportunities for further
research. For example, Table I shows that work is needed in
the design of adaptation methods to create adapters semi-
automatically and automatically [10] and that behavioral
mismatches have to be identified [16]. Table II shows that the
identification of mismatches and the creation of adapters in
different layers need to be investigated, including the
interface, protocol and behavior layers and the service
specifications components that include policies [3], [14].
Furthermore, tools to assist designers to generate appropriate
adapters need to be created [27]. Very importantly, real-life

experiments in different domains have to be carried out in
large-scale systems to validate and evaluate the detection of
mismatches and the creation of adapters [8], [17], [19], [22]-
[28]. Finally, Tables I and III illustrate that future research
needs to be grounded in appropriated theoretical frameworks
to create appropriate, reliable and standardized metrics that
help validating, evaluating and quantifying the creation and
performance of adapters and their interoperability with other

type of software services.

TABLE III
SOFTWARE ADAPTATION THEORETICAL FRAMEWORKS AND EVALUATION
METRICS
Publication Theoretical Framework Evaluation Metrics
Qualitative-comparison of the stand-
Mismatch patterns alone and aspect-oriented. Quantitative
Kongdenfha . .
ot. al. [3] framework and aspect-  evaluation is based on the adoption of

oriented approach.

Seguel et al.
[8]

Structured process models

Yellinand Corba model and finite-
Strom [10] state machine model.
Benatallah
etal. [11] Not reported
Finite state machines

Nezhad et  (FSM) as the modeling

al. [14] formalism for business

protocols.

Dumas et Concurrency theo

al. [15] y theory.
Brogi and

Popescu Not reported.

[16]

Tanetal. Colored Petri nets (CPNs)
[17] as a formal model.
Shan [18] Pattern-based analysis

Nezhad et .. .
al. [19] Finite state machines.
War[lzgoit al. Abstract State Machines
(ASMs).
La a[r;(} ]K m Life-cycle model.
Lin et al. Pushdown automata
[22] model.

Mateescu et

al. [23] Model- driven approach.

Lahmar and

Belaid [24] Not reported.

Velasco- Model architectural
Elizondo et  constructs in Alloy and
al. [25]  architectural specification.
Alférezet  Model-driven dynamic
al. [26] adaptations
Taher et al. .
[27] Model transformation

the CK metrics (Line Of Code (LOC)
and Number Of Classes (NOC).

Not reported.
Not reported.

Not reported

They validated the effectiveness and
usage of protocol-aware approaches.

Not reported

Not reported.

Not reported (validations of their
approach through a real-life case).
They evaluate the complexity of the
created adapters.

Not reported (Used of synthetic and
real-world scenarios).

Not reported.

Not reported.

Not reported.

Use a 'CADP' toolbox, which is used to
verify the correctness of the contract
protocol.

They evaluated the structural
adaptation by calculating the time
required for the generation of the byte
code.

Efficiency and scalability aspects.

Generation efficiency and complexity
reduction of the adaptation space.
Goal/Question/Metric (GQM) method

Not reported

IV. DISCUSSION OF RESULTS

The main result of this literature review is that the variation

of methods changes from author to author, including the
methods of adaptation, the adaptation layer, the software used
and the evaluation methods. Some papers focused on the

449



International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:10, No:3, 2016

detection of mismatches and some others proposed methods
for detection of mismatches and the creation of adapters.
Common adaptation methods include semi-automatic or
automatically development of adapters in most -cases.
Furthermore, adapters can also be created statically or
dynamically, stand alone or aspect oriented, using templates,
process algebra or automata. Mismatches were identified the
interface layer including the protocols, the messages and the
behaviors. The most common type of mismatches was
signature, ordering, extra message, missing message, merge,
split message, quality of service, behavioral and data. While
the adaptation methods reviewed comprised single layer or
multilayer algorithms.

The most interesting methods found in the literature
included a model proposed by [23] to support service
adaptation by removing incorrect behaviors in complex
adaptation scenarios by using both on-the-fly reduction and
exploration techniques to make easy the generation of the
adapters; the method presented by [24], which introduced an
adapter in the description of the service to modify its
functional behavior through a fine-grained template; and the
method proposed by [25] that automatically detect and solve
data mismatches using rules to make them work between
architectural components through a Mismatch Detection
Engine.

Although this was a paper comprising a limited amount of
publications, our results confirm, actualize and extend
previous literature [21], [25], [28]. Nevertheless, our review
show that Web service adaptation is in its early stages and
current approaches provide only limited solutions for service
adaptation and there is none adaptation method that fits all
types of mismatches. Additionally, this literature review
highlights the need that adaptation frameworks and adaptation
metrics should be created to support future research on
software adaptation.

V. CONCLUSIONS

This papers contributes with a literature review that shows
current adaptation techniques used for mismatch detection and
web service adaptation. Web service adaptation are
mechanisms with great potential to solve mismatches among
web services. They can improve Web service interoperability,
foster the reuse of Web services and can save development
time and costs. The use of adapters can also solve mismatches
interoperability and can provide non-intrusive mechanisms for
software adaptation and service composition. Although there
is a variety of different methods and techniques to detect
mismatches and generate adapters at different layers of the
service integration, there is none that can solve
incompatibilities in all the levels of the service integration
stack. Besides, current approaches focus more in adaptation
techniques rather than mismatch detection. We hope this
review may stimulate research in the area of software
adaptation since the use of online web services is increasing.
Further work is expected to improve current services
adaptation methods and standardized ways to evaluate their
reliability, performance and accuracy based on a standardized

software adaptation framework.

ACKNOWLEDGMENT

We would like to thank Birmingham City University for all
the facilities provided to carry out this research. Specially, we
thank the people of the Enterprise Systems Lab for all their
support and feedback.

REFERENCES

[1] WC3, “Web Services Architecture,” 2003. (Online). Available:
http://www.w3.org/TR/ws- arch/ .

[2] E. Elabd, E. Coquery, and M.-S. Hacid, “Checking Compatibility and
Replaceability in Web Services Business Protocols with Access
Control,” 2010 IEEE International Conference on Web Services, pp.
409-416, Jul. 2010.

[3] W. Kongdenfha, H. R. Motahari-Nezhad, B. Benatallah, F. Casati, and
R. Saint-Paul, “Mismatch Patterns and Adaptation Aspects: A
Foundation for Rapid Development of Web Service Adapters,” IEEE
Transactions on Services Computing, vol. 2, no. 2, pp. 94-107, Apr.
2009.

[4] G.S. MacBeth, “Web Services,” no. Chapter 1, pp. 397405, 2004.

[5] F. M. Facca, S. Komazec, C. Guglielmina, and S. Gusmeroli, “COIN:
Platform and Services for SaaS in Enterprise Interoperability and
Enterprise Collaboration,” 2009 IEEE International Conference on
Semantic Computing, pp. 543-550, Sep. 2009.

[6] H. Nezhad, B. Benatallah, F. Casati, and F. Toumani, “Web services
interoperability specifications,” Computer, 2006.

[71 R. Ambrosio, “A framework for addressing interoperability issues,”
Power Engineering Society, pp. 1-5, 2007.

[8] R. Seguel, R. Eshuis, and P. Grefen, “Constructing minimal protocol
adaptors for service composition,” Proceedings of the 4th Workshop on
Emerging Web Services Technology - WEWST 09, pp. 29-38, 2009.

[9] J. Camara, J. A. Martin, G. Salaiin, J. Cubo, M. Ouederni, C. Canal, and
E. Pimentel, “ITACA: An integrated toolbox for the automatic
composition and adaptation of web services,” in Proceedings -
International Conference on Software Engineering, 2009, pp. 627-630.

[10] D. Yellin and R. Strom, “Protocol specifications and component
adaptors,” ACM Transactions on Programming Languages, vol. 19, no.
2, pp. 292-333, 1997.

[11] B. Benatallah, F. Casati, and D. Grigori, “Developing adapters for web
services integration,” Advanced Information Systems Engineering, 2005.

[12] X. Li, Y. Fan, S. Madnick, and Q. Sheng, “A pattern-based approach to
protocol mediation for web services composition,” Information and
Software Technology, no. 3. September, 2008.

[13] S. Ryu, F. Casati, and H. Skogsrud, “Supporting the dynamic evolution
of web service protocols in service-oriented architectures,” ACM
Transactions on the Web (TWEB), vol. 2, no. 2, 2008.

[14] H. R. Nezhad, G. Y. Xu, and B. Benatallah, “Protocol-aware matching
of web service interfaces for adapter development,” Proceedings of the
19th international conference on World wide web - WWW "10. p. 731,
2010.

[15] M. Dumas, M. Spork, and K. Wang, “Adapt or perish: Algebra and
visual notation for service interface adaptation,” Business Process
Management, pp. 65-80, 2006.

[16] A. Brogi and R. Popescu, “Automated generation of BPEL adapters,”
Service-Oriented Computing—ICSOC 2006, 2006.

[17] W. Tan, Y. Fan, and M. Zhou, “A petri net-based method for
compatibility analysis and composition of web services in business
process execution language,” IEEE Transactions on Automation Science
and Engineering, pp. 1-13, 2009.

[18] Z. Shan, “Integrated Service Adaptation,” 2010 6th World Congress on
Services, pp. 140-143, Jul. 2010.

[19] H. R. Nezhad, B. Benatallah, A. Martens, F. Curbera, and F. Casati,
“Semi-automated adaptation of service interactions,” Proceedings of the
16th international conference on World Wide Web - WWW *07, p. 993,
2007.

[20] Y. Wang, F. Ishikawa, and S. Honiden, “Business Semantics Centric
Reliability Testing for Web Services in BPEL,” 2010 6th World
Congress on Services, pp. 237244, Jul. 2010.

[21] H. J. La and S. D. Kim, “Static and dynamic adaptations for service-
based systems,” Information and Software Technology, 2010.

450



[22]

[23]

[24]

[25]

[26]

[27]

[28]

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:10, No:3, 2016

H.-H. Lin, T. Aoki, and T. Katayama, “Automated Adaptor Generation
for Services Based on Pushdown Model Checking,” 2011 18th IEEE
International Conference and Workshops on Engineering of Computer-
Based Systems, pp. 130-139, Apr. 2011.

R. Mateescu, P. Poizat, and G. Salaun, “Adaptation of service protocols
using process algebra and on-the-fly reduction techniques,” IEEE
Transactions on Software Engineering, vol. 38, no. 4, pp. 755-777,
2012.

1. B. Lahmar and D. Belaid, “Developing Adapters for Structural
Adaptation of Component-Based Applications,” 2013 Workshops on
Enabling Technologies: Infrastructure for Collaborative Enterprises,
pp. 92-97, Jun. 2013.

P. Velasco-Elizondo, V. Dwivedi, D. Garlan, B. Schmerl, and J. M.
Fernandes, “Resolving data mismatches in end-user compositions,” in
Lecture Notes in Computer Science (including subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in Bioinformatics), 2013,
vol. 7897 LNCS, pp. 120-136.

G. H. Alférez, V. Pelechano, R. Mazo, C. Salinesi, and D. Diaz,
“Dynamic adaptation of service compositions with variability models,”
Journal of Systems and Software, vol. 91, no. August 2015, pp. 24-47,
May 2014,

Y. Taher, M. Parkin, M. Papazoglou, and W. J. van den Heuvel,
“Adaptation of Web Service Interactions Using Complex Event
Processing Patterns”, Service-Oriented Computing, pp. 601-609, 2011
M. Eslamichalandar, K. Barkaoui, and H. R. Motahari-Nezhad, “Service
Composition Adaptation: An Overview,” 2012 Second International
Workshop on Advanced Information Systems for Enterprises, pp. 20-27,
Nov. 2012.

451



