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A Special Algorithm to Approximate the Square
Root of Positive Integer

Hsian Ming Goo

Abstract—The paper concerns a special approximate algorithm of
the square root of the specific positive integer, which is built by the
use of the property of positive integer solution of the Pell’s equation,
together with using some elementary theorems of matrices, and then
takes it to compare with general used the Newton’s method and give
a practical numerical example and error analysis; it is unexpected to
find its special property: the significant figure of the approximation
value of the square root of positive integer will increase one digit by
one. It is well useful in some occasions.

Keywords—Special approximate algorithm, square root, Pell’s
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I. INTRODUCTION

THERE are many algorithms for approximating the square
root of the positive number published in many literature.

For instance, F. Karakuş has introduced a history of Babylo-
nian square root method and what is the method [1]. Baby-
lonian method is helpful for lower grade mathematics lessons
for calculating square root was used to provide some basis of
the limits and infinity. In fact, this method is a variational algo-
rithm based on the Newton’s method. H. Davenport introduces
that how to use methods of continuous fraction to approximate
the square root of positive integer [2]. R. Garver also discusses
similar problem and puts forward some announcements in the
[3]. E.B. Escott has used skillfully some primary identities to
structure an interesting and valid approximation algorithm of
the square root which is convergent rapidly [4]. He states that
his method for extracting square root is probably the most
rapid method yet discovered. As it gives the square root in
the form of an infinite product, it is especially well adapted to
using with a computing machine. In computing a table of the
square roots by the method of differences it is important to
have an independent method of computing an occasional value
and this method is very good for that purpose. However, an
accurate approximate method established by using binomial
series of the specific function skillfully, is accounted in the
[5]. Then there are some iterative methods for approximating
the square root and some cautions which are based on the
Newton’s method and also including its variations, we can find
them in the papers [6] [9] [10] [19]. Many other distinctive
iterative methods to approximate square root of positive integer
have been developed well, reading relative papers in [11] [13]
[14] [15] [16] [17] [18], here we should point out approximate
method stated in the [17] is an inspiration for me. As a
whole, these methods to approximate the square root of the
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specific positive integer are based on iteration idea which is
used to approximation computing usually. We always hope the
convergence speed of approximation algorithm to become fast.
But we don’t hope so all along. Sometimes, we need to find
the approximation algorithm, which can make effective value
of approximation increase one digit by one. This algorithm
structured in this paper is useful for us to make a table of the
square root of the positive integers.

A. Main results and proofs

The main idea of this paper stems from a problem of [20],
also including its solutions. we review the problem without
giving the solutions as follows:
Proposition 1 If we consider these fractional sequences:
1
1 ,

3
2 ,

7
5 , · · · , pnqn , · · · , where pn+1 = pn+2qn, qn+1 = pn+qn,

then
(1) then pn

qn
are irreducible fractions for all n (n = 1, 2, . . .);

(2) and
∣∣∣pnqn −√

2
∣∣∣ can become arbitrarily small, also we prove

that signs of error by using it to approximate
√
2 will alternate

between positive and negative.
It is not hard to find that all points, which are structured by

above fractional sequences, (1, 1), (3, 2), (7, 5), · · · are integer
solutions of the Pell’s equation x2− 2y2 = ±1. It inspires me
to explore the relationship between the square root of positive
integer and integer solutions of the Pell’s equation.

It is well-known that a special Diophantus’s equation x2 −
dy2 = ±1, which is named by the Pell’s equation, there d is a
non-square and positive integer number [12]. We denote these
positive integer solutions of the Pell’s equation x2 − dy2 = 1
by the (x1, y1), (x3, y3), · · · , (x2n−1, y2n−1), then as well as
denote these positive integer solutions of the Pell’s equation
x2 − dy2 = −1 by the (x0, y0), (x2, y2), · · · , (x2n, y2n). At
last, we arrange them as follow:

(x0, y0), (x1, y1), · · · , (x2n−1, y2n−1), (x2n, y2n), (1)

We assume (x0, y0) is a known positive integer solution of
the x20 − dy20 = −1, then

x20 − dy20 = (x0 −
√
dy0)(x0 +

√
dy0) = −1, (2)

we let (x, y) be a solution of the x2 − dy2 = 1,

(x−
√
dy)(x0 −

√
dy0)(x+

√
dy)(x0 +

√
dy) = ±1, (3)

then

[((x0x+ dy0y)− (
√
dy0x+

√
dx0y))·

((x0x+ dy0y) + (
√
dy0x+

√
dx0y))] = ±1,

(4)
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or equivalently,

(x0x+ dy0y)
2 − d(y0x+ x0y)

2 = ±1. (5)

It turns out that (x0x+ dy0y, y0x+ x0y) is a positive integer
solution of the x2 − dy2 = ±1.

It suggests that if the (x0, y0) is a positive integer solution of
the x2 − dy2 = −1, then regardless of the (x, y) is a solution
of the x2 − dy2 = ±1, we always obtain that the (x0x +
dy0y, y0x + x0y) is a solution of the x2 − dy2 = ±1. Let
(xn−1, yn−1) be the solution of x2 − dy2 = ±1, then for
every (xn, yn), which is contented with following recursion
relation: {

xn = x0xn−1 + dy0yn−1,
yn = y0xn−1 + x0yn−1,

(6)

where n = 1, 2, · · · , are also solutions of the x2 − dy2 = ±1.
we rewrite it by a type of matrix relationship:(

xn
yn

)
=

(
x0 dy0
y0 x0

)(
xn−1

yn−1

)
= · · ·

=

(
x0 dy0
y0 x0

)n(
x0
y0

)
,

(7)

if we use A =

(
x0 dy0
y0 x0

)
, then the question that remains

is how do we compute An.
According to the [8], we considering the characteristic

polynomial of matrix A, then let

f(λ) =

∣∣∣∣ λ− x0 −dy0
−y0 λ− x0

∣∣∣∣ = (λ− x0)
2 − dy20 = 0, (8)

and finde out two different roots of the characteristic polyno-
mial as follows:

λ1 = x0 +
√
dy0 , λ2 = x0 −

√
dy0. (9)

They are also two eigenvalues of matrix A, then to find
eigenvectors associated with two eigenvalues: one eigenvector
associate with the eigenvalue λ1 = x0 +

√
dy0 is X1 =( √

d
1

)
, similarly, the other eigenvector associated with the

eigenvalue λ2 = x0−
√
dy0 is X2 =

( −√
d

1

)
, if we denote

T =

( √
d −√

d
1 1

)
, then |T | =

∣∣∣∣
√
d −√

d
1 1

∣∣∣∣ = 2
√
d �=

0, so the T is nonsingular, T−1 = 1
2
√
d

(
1

√
d

−1
√
d

)
is the

inverse matrix of T . Then we obtain

B = T−1AT =

( √
d −√

d
1 1

)−1(
x0 dy0
y0 x0

)
·( √

d −√
d

1 1

)
=

(
λ1

λ2

)
,

and combine with An = TBnT−1 and(
xn
yn

)
= An

(
x0
y0

)
= TBnT−1

(
x0
y0

)

= 1
2
√
d

( √
d[(x0 +

√
dy0)λ

n
1 + (x0 −

√
dy0)λ

n
2 ]

(x0 +
√
dy0)λ

n
1 − (x0 −

√
dy0)λ

n
2

)

= 1
2
√
d

(
λn+1
1 + λn+1

2

λn+1
1 − λn+1

2

)
.

meanwhile, we notice that λ1λ2 = −1:

limn→∞ xn

yn
= limn→∞

√
d
λn+1
1 +λn+1

2

λn+1
1 −λn+1

2

=
√
d
λn+1
1 +(−1

λ1
)n+1

λn+1
1 −(−1

λ )n+1

=

{ √
d, n = 2m,√
d, n = 2m+ 1.

Where m = 1, 2, . . ., once we give a specific value of natural
number n, so long as we can compute An easily, then it is
not difficult to get the value of xn

yn
. Along with value of n

become increasingly large, the xn

yn
will be tightly close to

√
d.

For instance, using previous method to approximate
√
2 by its

asymptotic approximation fractional sequences as follows:

d = 2,

{
x0 = 7,
y0 = 5,

{
xn = 7xn−1 + 10yn−1,
yn = 5xn−1 + 7yn−1,

then fractional sequences will approximate to
√
2. we conclude

the previous method as a new iterative method named the
Matrix methods, some theorems will be drawn as follows:

Theorem 1 If we suppose that the (x0, y0) is a known
positive integer solution of the x2 − dy2 = −1, and
(xn−1, yn−1)(n = 1, 2, · · ·) is positive integer solutions of
the x2 − dy2 = ±1, and then (xn, yn) which satisfies the
following recurrence relations:{

xn = x0xn−1 + dy0yn−1,
yn = y0xn−1 + x0yn−1,

will become the solution of the Pell’s equation x2−dy2 = ±1,
along with the other conclusion is induced, it is limn→∞ xn

yn
=√

d.
However, according to [7], it is unfortunate to know our

hypothesis that (x0, y0) is a known positive integer solution
of the Pell’s equation x2 − dy2 = −1 is probably wrong,
because the x2 − dy2 = −1 possibly has no solutions. When
the x2−dy2 = −1 have no positive integer solutions. To take
another kind of measures to approximate to square root; it is
similar to above method. Give a theorem as follows without
proof,

Theorem 2 If we suppose that the (x0, y0) is a known
positive integer solution of the x2 − dy2 = 1, and
(xn−1, yn−1)(n = 1, 2, · · ·) is positive integer solutions of
the x2 − dy2 = 1, and then the (xn, yn) which satisfies the
following recurrence relations:{

xn = x0xn−1 + dy0yn−1,
yn = y0xn−1 + x0yn−1,

will become the solution of the Pell’s equation x2 − dy2 =
1, along with the other conclusion is also induced, it is
limn→∞ xn

yn
=

√
d.

B. Numerical Examples and Error Analysis

First of all, it is necessary to compare the previous matrix
method with the frequently-used Newton’s method, which it is
used to approximate square root by using following recurrence
relations,

un+1 =
u2n + d

2un
=

1

2
(un +

d

un
), n = 0, 1, 2, . . . , (10)
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where d is any arbitrary positive integer.
Next, we use the ”ITS”, ”MM” and ”NM” to present

the iterations, Matrix methods and Newton’s methods re-
spectively, and compute the approximate value of

√
5 (

√
5 =

2.2360679774997896 · · ·) as a general example to compare
two methods in the Table I.

TABLE I
NUMERICAL RESULTS FOR TWO METHODS.

ITS MM NM
1 2 2
2 9/4=2.25 9/4=2.25
3 38/17 =2.235294117... 161/72 =2.236111111...
4 161/72=2.236111111... 51841/23184=2.236067977...
5 682/305=2. 236065573... . . .
6 2889/1292=2.236068111... . . .

. . . . . . . . .

It is not hard to find a regularity from Table I, when using
Matrix method to compute the approximate value of the square
root of the specific positive integer, its significant figure will
increase one digit by one, providedly, we do once recursion
operation. It is in favor of us to get all kinds of accuracy of
approximate value, and not to lose any information of the
approximate value of the square root. However, if we use
Newton’s method to compute the same approximate value,
but we fail to obtain all kinds of approximate value of square
root, although we will show that the Newton’s method has
a quadratic convergence rate, i.e., its speed of convergence
is quicker than the Matrix method. Many useful information
of approximate value will be lost at the price. At times, we
need more information of the approximate value of the square
root to do some count. Then matrix method will show its
great advantage for the calculation. For example, it is very
convenient for us to make a table of the square root of the
positive integers to help lower grade students to learn relative
knowledge.

Moreover, we can also find that approximation fractional
sequences of using the Newton’s method are part of the
approximation fractional sequences of the Matrix method.
According to this statement,
Remark If we let initial iterative value of Newton’s method
be a solution of the Pell’s equation x2 − dy2 = ±1, then
the approximation fractional sequences of using the Newton’s
method become a proper subset of the approximation frac-
tional sequences of above Matrix method.

In fact, it is not complex to prove above assumption. Let
initial iterative value of Newton Method be x0

y0
, there (x0, y0)

is a specific solution of the x2 − dy2 = ±1, then the first
iterative value is

x1
y1

=
1

2

(
x0
y0

+
dy0
x0

)
=
x20 + dy20
2x0y0

,

as well as we consider

x21−dy21 = (x20+dy
2
0)

2−d(2x0y0)2 = (x20−dy20)2 = 1, (11)

we can mimic previous strategy to obtain

x2n − dy2n = (x2n−1 + dy2n−1)
2 − d(2xn−1yn−1)

2

= (x2n−1 − dy2n−1)
2 = 1,

(12)

So we have proved above assumption. Other method has
similar property as above.

we should make an error analysis for the Matrix methods
as following: its absolute error is (x2n − dy2n = ±1 )

|xn

yn
−√

d| = |xn−
√
dyn|

yn
= 1

yn(xn+
√
dyn)

< 1√
dy2n

,
(13)

and the absolute error is

1√
d
|xn

yn
−√

d| = |xn−
√
dyn|√

dyn
= 1√

dyn(xn+
√
dyn)

< 1
dy2n

,
(14)

It has indicated straightforward that the convergent speed of
this algorithm is a little slower than the Newton’s method,
which has quadratic convergence speed. However, along with
n becoming increasingly large, xn, yn will also become more
and more larger, then the accuracy of

√
d get increasingly

high.

II. CONCLUSION

In conclusion, a special approximate method for computing
the square root of the positive integer has been structured
in this article. It is different from other methods presented,
the significant figure of the approximation of the square root
of the specific positive integer will increase one digit by
one by the use of previous matrix method, we can obtain
more information of the approximation value of the square
root because of these asymptotic approximation fractions in
above statement. Numerical example and remark have showed
Matrix method keep most information of approximate than
the Newton method, it is useful for us at sometimes, and also
showed that speed of convergence of matrix method is slower
than the Newton’s method. It often seems unavoidable to make
a alternative.
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