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A simple epidemiological model for typhoid with
saturated incidence rate and treatment effect

Steady Mushayabasa

Abstract—Typhoid fever is a communicable disease, found only in
man and occurs due to systemic infection mainly by Salmonella typhi
organism. The disease is endemic in many developing countries and
remains a substantial public health problem despite recent progress
in water and sanitation coverage. Globally, it is estimated that
typhoid causes over 16 million cases of illness each year, resulting
in over 600,000 deaths. A mathematical model for assessing the
impact of educational campaigns on controlling the transmission
dynamics of typhoid in the community, has been formulated and
analyzed. The reproductive number has been computed. Stability of
the model steady-states has been examined. The impact of educational
campaigns on controlling the transmission dynamics of typhoid has
been discussed through the basic reproductive number and numerical
simulations. At its best the study suggests that targeted education
campaigns, which are effective at stopping transmission of typhoid
more than 40% of the time, will be highly effective at controlling the
disease in the community. The abstract goes here.

Keywords—Mathematical model, Typhoid, saturated incidence
rate, treatment, reproductive number, sensitivity analysis.

I. INTRODUCTION

TYPHOID fever is a systemic infection caused by

Salmonella enterica serotype typhi (S typhi). A very

similar but often less severe disease is caused by S paratyphi
A, B, and sometimes C. S typhi, a highly adapted human-

specific pathogen that evolved about 50 000 years ago, [1],

[2] has remarkable mechanisms for persistence in its host [2],

[3]. It is endemic in most parts of Central America [4]–[6],

Southeast Asia [7]–[9], and the Indian subcontinent [10],

[11], and recently increasing numbers of cases have been

reported in Africa [12], [13]. The disease is estimated to have

caused 21.6 million illnesses and 216 500 deaths globally

in 2000, affecting all ages [3]. The disease is transmitted by

feco-oral route or urine-oral route, either directly through

hands soiled with feces or urine of cases or carriers or

indirectly by ingestion of contaminated water, milk, food or

through flies [14]. It is an acute generalized infection of the

reticuloendothelial system, intestinal lymphoid tissue, and the

gall bladder. Incubation period usually 10-14 days but it may

be as short as 3 days or as long as 21 days depending upon

the dose of the inoculums.

A brief survey on previous works provides the context

of this paper. Various theoretical studies have been carried

out on mathematical modelling of typhoid transmission

dynamics, focusing on a number of different issues, see
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[15]–[19] to mention a few. Motivated by the 2012 typhoid

outbreak in Zimbabwe, a simple deterministic mathematical

model is developed and analyzed to assess the impact of

treatment and educational campaigns on controlling typhoid

outbreak. Incidence plays an important role in the modeling

of epidemic dynamics. It has been suggested by several

authors that the disease transmission process may have a

saturation incidence rate (see, for example, [20]–[22]). In

many epidemic models , the bilinear incidence rate βSI
and the standard incidence rate βSI/N are frequently used.

The model developed in this study considers a saturated

incidence rate g(I) = βI/(1 + αI), where βI measures the

infection force of the disease and 1/(1 + αI) measures the

inhibition effect from the behavioral change of the susceptible

individuals when their number increases or from the crowding

effect of the infective individuals. This incidence rate seems

more reasonable than the bilinear incidence rate βSI , because

it includes the behavioral change and crowding effect of the

infective individuals and prevents the unboundedness of the

contact rate by choosing suitable parameters.

The paper is structured as follows. The typhoid transmission

model is formulated and simplified in the next Section.

Simulation results and projection profiles of typhoid are

round up the paper.

II. MODEL FORMULATION

Based on the individual’s epidemiological status, the human

population denoted by N constitutes the following classes:

susceptible S, latently infected individuals E, and infectious

individuals I. Thus, N = S +E + I. Assuming homogeneous

mixing of the population, the model is given by

dS

dt
= Λ − β(1 − θ)IS

1 + αI
− μS + ωE + ρI,

dE

dt
= p

β(1 − θ)IS

1 + αI
− (μ + φ + ω + d)E,

dI

dt
= (1 − p)

β(1 − θ)IS

1 + αI
+ φE − (μ + ρ + δ)I,

(1)

where Λ is the recruitment rate of individuals into the com-

munity by birth or migration (assumed susceptible), β is the

rate of typhoid transmission from infectious individuals to

susceptible individuals, μ is the natural mortality rate. Upon

Analytical results of the model are presented in Section III.

presented in Section IV. Summary and concluding remarks
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TABLE I
MODEL PARAMETERS.

Parameter definition Symbol

Proportion of individuals who join E class p

Progression from latency to infectious φ

Disease-induced mortality for E class d

Disease-induced mortality for I class δ

Treatment rate for E class ω

Treatment rate for I class ρ

Educational adjustment θ

Natural mortality rate μ

Modification factor α

Recruitment rate Λ

Transmissibility β

Fig. 1. Model flow diagram

infection with the disease, a fraction p join the latent class,

and the complementary fraction (1 − p) become infectious.

Treatment is offered to individuals in class E and I at rates

ω and ρ, respectively. The role of educational campaigns is

captured by θ, 1/(1 + αI) measures the inhibition effect

from the behavioral change of the susceptible individuals

when their number increases or from the crowding effect of

the infective individuals. Furthermore, d and δ represents the

disease-induced death rates of individuals in class E and I ,

respectively.

The structure of the model is presented in Fig. 1.

III. ANALYTICAL RESULTS

A. Basic properties of the model

In this section, we study the basic properties of the solutions

of model system (1), which are essential in the proofs of

stability.

Lemma 1: The equations preserve positivity of solutions.

Proof: The vector field given by the right hand side of

(1) points inward on the boundary of �3
+ \ {0}. For example,

if I = 0, then, I ′ = φE ≥ 0. In an analogous manner, the

same result can be shown for the other model components

(variables).

Lemma 2: All solutions of system (1) are bounded.

Proof: Using system (1) we have N ′ = Λ− μN − dE −
δI ≤ Λ − μN. Assume that N(t) ≤ M for all t ≥ 0 where

M =
Λ
μ

+ 1. Suppose the assumption is not true then there

exists a t1 > 0 such that

N(t1) =
Λ
μ

+ 1, N(t) <
Λ
μ

+ 1, t < t1,

N ′(t1) ≥ 0, N ′(t1) ≤ Λ − μN(t1) = −μ < 0.

(2)

which is a contradiction meaning the assumption is true. This

means N(t) ≤ M for all t ≥ 0.

Therefore all feasible solutions of system (1) enter the region

Ω =
{

(S,E, I, ) ∈ �3
+ : N ≤ Λ

μ

}
. (3)

Thus, Ω is positively invariant and it is sufficient to consider

solutions of system (1) in Ω. Existence, uniqueness and

continuation results for system (1) hold in this region and

all solutions of system (1) starting in Ω remain in Ω for all

t ≥ 0. All parameters and state variables for model system

(1) are assumed to be non-negative (for biological relevance)

∀t ≥ 0 since it monitors human population.

B. Disease-free Equilibrium and Stability Analysis

Model system (1) has an evident disease-free (DFE), (de-

noted by E0), given by

E0 =
(
S0, E0, I0

)
=

(Λ
μ

, 0, 0
)
. (4)

The basic reproductive number is defined as the number of

secondary cases generated by a primary case when the virus

is introduced in a population of fully susceptible individuals

at a demographic steady state [23]. Following van den

Driessche et al [24], and using the notation defined therein,

the matrices F and V for the new infection terms and the

remaining transfer terms are, respectively, given by

F =

⎡
⎢⎢⎢⎣

0
pβ(1 − θ)Λ

μ

0
(1 − p)β(1 − θ)Λ

μ

⎤
⎥⎥⎥⎦

and

V =
[

k1 0
−φ k2

]
,

(5)

with k1 = (d + μ + φ + ω), and k2 = (μ + ρ + δ). Thus, the

reproductive number for system (1) denoted by R0 is given

by

R0 =
β(1 − p)(1 − θ)Λ

μk2
+

β(1 − θ)pφΛ
μk1k2

=
β(1 − θ)Λ[pφ + (1 − p)k1]

μk1k2)
.

(6)
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R0 measures the average number of new infections generated

by a single typhoid infective during his/her entire infectious

period when he/she is introduced into a susceptible population

in the presence of the aforementioned intervention strategies.

To examine the local stability of DFE (E0) we evaluate

the Jacobian matrix at E0.

J(E0) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−μ ω −β(1 − θ)Λ
μ

+ ρ

0 −k1
pβ(1 − θ)Λ

μ

0 φ
β(1 − p)(1 − θ)Λ

μ
− k2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (7)

We have the following stability result that shows R0 is a sharp

threshold.

Theorem 1: E0 is locally-asymptotically stable (LAS) if

R0 < 1, and unstable otherwise.

Proof: One eigenvalue of J(E0) is λ1 = −μ < 0. Thus,

system (7) reduces to

A =

⎡
⎢⎢⎢⎣

−k1
pβ(1 − θ)Λ

μ

φ −k2 +
β(1 − p)(1 − θ)Λ

μ

⎤
⎥⎥⎥⎦ . (8)

We want to show that, when R0 < 1, then the Routh-Hurwitz

conditions hold, namely tr(A) < 0 and det(A) > 0. Simple

calculations show that

tr(A) = k2

[
β(1 − p)(1 − θ)Λ

μk2
− 1

]
− k1.

Since R0 < 1 it follows that

β(1 − p)(1 − θ)Λ
μk2

+
β(1 − θ)pφΛ

μk1k2
< 1,

which implies that

β(1 − p)(1 − θ)Λ
μk2

< 1,
β(1 − θ)pφΛ

μk1k2
< 1.

This shows that, tr(A) < 0. Now we calculate

det(A) = μk1k2

[
1 − β(1 − θ)Λ[pφ + (1 − p)k1]

μk1k2

]

= μk1k2 [1 −R0] .
(9)

Therefore det(A) > 0 if and only if R0 < 1. This concludes

the proof.

Following Castillo-Chavez et al., (2002) [25], we write system

(1) in the form

X ′(t) = F (X,Y ),

Y ′(t) = G(X,Y ), G(X, 0) = 0
(10)

where X = S and Y = (E, I). Here X ∈ �1
+ denotes

(its components) the number of uninfected individuals and

Y ∈ �2
+ denoting (its components) the number of infected

individuals. The disease-free equilibrium is now denoted by

E0 = (X0, 0) where X0 =
Λ
μ

. We have to prove that the two

conditions

(H1) For X ′(t) = F (X,0), X is a globally

asymptotically stable,

(H2) Ĝ(X,Y ) = UY − G(X,Y ), Ĝ(X,Y ) ≥ 0
for (X,Y ) ∈ Ω,

(11)

are satisfied where Ω is a positively invariant attracting do-

main. Consider

F (X,0) =
[

Λ − μS
]

U =

⎡
⎢⎢⎢⎣

−k1
pβ(1 − θ)Λ

μ

φ
β(1 − p)(1 − θ)Λ

μ
− k2

⎤
⎥⎥⎥⎦

Thus,

Ĝ(X,Y ) =

⎡
⎣ Ĝ1(X,Y )

Ĝ2(X,Y )

⎤
⎦

=

⎡
⎢⎢⎢⎢⎣

pβ(1 − θ)
(

Λ
μ
− S

1 + αI

)

(1 − p)β(1 − θ)
(

Λ
μ
− S

1 + αI

)
⎤
⎥⎥⎥⎥⎦ .

(12)

Since, Λ
μ ≥ S

1+αI at E0, it follows that Ĝ(X,Z) ≥ 0. We

summarize the result in Theorem 2

Theorem 2: The fixed point E0 = (X∗,0) is a globally

asymptotically stable equilibrium of system (1) provided that

R0 ≤ 1, and unstable otherwise

C. Endemic equilibrium: Existence and Stability

Model system (1) has an endemic equilibrium

E∗ = (S∗, E∗, I∗) given by,

S∗ =
Λk1k2

m1 + m2
, E∗ =

p(1 − θ)λ∗k2

m1 + m2
,

I∗ =
λ∗Λ(1 − θ)(pφ + (1 − p)k1)

m1 + m2
,

(13)

with,

λ∗ =
βI∗

1 + αI∗
,

m1 = pλ∗(1 − θ)(ρφ + ωk2),

m2 = k1[λ∗(1 − θ)(1 − p) − (λ∗(1 − θ) + μ)k2.
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Substituting I∗ into λ∗ one gets

λ∗(m3 + m4) = 0,

where

m3 = pλ∗(1 − θ)(φ(αΛ − ρ) + ωk2,

m4 = k1(λ∗(1 − p)(1 − θ)(αΛ − ρ) + (λ∗(1 − θ) + μ)k2),
(14)

which is a quadratic equation with roots

λ∗
1 = 0, which is the disease-free equlibrium,

λ∗
2 =

μk1k2

m5 + m6
(R0 − 1),

where

m5 = p[φ(αΛ − ρ) + ωk2],

m6 = (1 − θ)[(δ + μ + αΛ(1 − p) + pρ)(d + μ + φ + ω)].
(15)

λ∗
2 denotes the endemic equilibrium point for system (1) which

exists for R0 > 1.
Theorem 3: E∗ of system (1) exists if and only if R0 > 1.

Since system (1) has a unique equilibrium point for R0 > 1,

we now employ the Centre Manifold Theory [26] to analyze

the stability of this equilibrium point as described in Theorem

4.1 [27], to establish the local asymptotic stability of the

endemic equilibrium. To apply Centre Manifold Theory, the

following simplifications and change of variables are made

first. Let S = x1, E = x2, I = x3, and λ =
(1 − θ)βx3

1 + αx3
.

Further, by using vector notation x = (x1, x2, x3)T , model

system (1) can be written in the form
dx
dt

= F (x), with F =

(f1, f2, f3)T , such that

x′
1 = f1 = Λ − λx1 − μx1 + ωx2 + ρx3,

x′
2 = f2 = pλx1 − (μ + φ + ω + d)x2,

x′
3 = f3 = (1 − p)γx1 + φx2 − (μ + δ + ρ)x3.

(16)

The Jacobian of (7) is given by

J(E0) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−μ ω −β(1 − θ)Λ
μ

+ ρ

0 −k1
pβ(1 − θ)Λ

μ

0 φ −k2 +
β(1 − p)(1 − θ)Λ

μ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(17)

with k1 = μ+φ+ω +d and k2 = μ+ δ +ρ. It can be shown

that the reproductive number is

R0 =
β(1 − θ)Λ[pφ + (1 − p)k1]

μk1k2
. (18)

If β is taken as a bifurcation parameter and if we consider the

case R0 = 1 and solve for β, we obtain

β = β∗ =
μk1k2

(1 − θ)Λ(pφ + (1 − p)k1)
. (19)

Note that the linearized system of the transformed (16) with

the bifurcation point β∗ has a simple zero eigenvalue. Hence,

the Centre Manifold Theory [26] can be used to analyze the

dynamics of (16) near β = β∗. It can be shown that the

Jacobian of (16) at β = β∗ has a right eigenvector associated

with the zero eigenvalue given by w = [w1, w2, w3]T , where

w1 = −
[
β(1 − θ)Λ

μ

(
1 − p

k1

)
− ρ

μ

]
w3,

w2 =
pβ(1 − θ)Λ

μk1
w3, w3 > 0.

(20)

The left eigenvector of J(E0) associated with the zero eigen-

value at β = β∗ is given by v = [v1, v2, v3]T , where

v1 = 0, v2 =
φ

k1
v3, v3 > 0. (21)

Further, we use Theorem 6 from Castillo-Chavez and Song

[26], stated below for elucidation.

Theorem 4: Consider the following general system of ordi-

nary differential equations with a parameter φ

dx

dt
= f(x, φ), f : �n ×� → � and f ∈ (�n ×�),

(22)

where 0 is an equilibrium of the system that is f(0, φ) = 0
for all φ and assume

A1: A = Dxf(0, 0) =
(

∂fi

∂xj
(0, 0)

)
is the linearisation

of

system (22) around the equilibrium 0 with φ evaluated at

0. Zero is a simple eigenvalue of A and other eigenvalues

of A have negative real parts;

A2: Matrix A has a right eigenvector u and a left eigenvector

v corresponding to the zero eigenvalue.

Let fk be the kth component of f and

a =
n∑

k,i,j=1

zkwiwj
∂2fk

∂xi∂xj
(0, 0),

b =
n∑

k,i=1

zkwi
∂2fk

∂xi∂φ
(0, 0).

(23)

The local dynamics of (22) around 0 are totally governed by

a and b.

i. a > 0, b > 0. When φ < 0 with |φ| << 1, 0 is locally

asymptotically stable, and there exists a positive unstable

equilibrium; when 0 < φ << 1, 0 is unstable and there

exists a negative and locally asymptotically stable

equilibrium;

ii. a < 0, b < 0. When φ < 0 with |φ| << 1, 0 unstable;

when 0 < φ << 1, 0 is locally asymptotically stable, and

there exists a positive unstable equilibrium;
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iii. a > 0, b < 0. When φ < 0 with |φ| << 1, 0 is unstable,

and there exists a locally asymptotically stable negative

equilibrium; when 0 < φ << 1, 0 is stable, and

a positive unstable equilibrium appears;

iv. a < 0, b > 0. When φ changes from negative to positive,

0 changes its stability from stable to unstable.

Correspondingly a negative unstable equilibrium becomes

positive and locally asymptotically stable.

Computations of a and b

For system (7), the associated non-zero partial derivatives of

F at the disease-free equilibrium associated with a are given

by

∂2f2

∂x1∂x3
= 2pβ(1 − θ),

∂2f2

∂x2
3

= −2pαβ(1 − θ)Λ
μ

,

∂2f3

∂x1∂x3
= 2β(1 − p)(1 − θ),

∂2f3

∂x2
3

= −2αβ(1 − p)(1 − θ)Λ
μ

.

(24)

From (24) it follows that

a = −2β(1 − θ)(1 − p)αΛ
μ

Hw2
3v3

− 2β(1 − θ)
(

β(1 − θ)Λ
μ

(
1 − p

k1

)
− ρ

μ

)
Hw2

3v3

with H =
[
(1 − p) +

pφ

k1

]
.

(25)

For the sign of b, it is associated with the following non-

vanishing partial derivatives of F ,

∂2f2

∂x3∂β∗ =
p(1 − θ)Λ

μ
,

∂2f2

∂x4∂β∗ =
(1 − p)(1 − θ)Λ

μ
.

(26)

It follows from expressions in (26) that

b =
(1 − θ)Λ

μ

[
(1 − p) +

pφ

k1

]
w3v3. (27)

Since, a < 0 and b > 0 and using Theorem 4, we have

established the following result.

Theorem 5: The unique endemic equilibrium E∗ guaranteed

by Theorem 4 is locally asymptotically stable for R0 > but

close to 1.

IV. NUMERICAL RESULTS

In order to illustrate the results of the foregoing analysis, we

have simulated model system (1) using the parameters in Table

II.

Fig. 2 demonstrates the impact of p on cumulative latent

typhoid cases and infectious cases. Here, we observe that an

increase on p may lead to an increase on cumulative typhoid

cases, but with a more impact on latent cases.

TABLE II
MODEL PARAMETERS.

Symbol Units Value Source

p - 0.5(0.0-1.0) Assumed

φ /year 0.03(0.03-0.05) [16]

d /year 0.013(0.01-0.3) [16]

δ /year 0.9(0.1-0.9) [16]

ω /year 0.115(0.01-0.25) [16]

ρ /year 0.096(0.01-0.3) [16]

θ - 0.5(0.0-1.0) Assumed

μ /year 0.02(0.01-0.02) [19]

α - 6.0 [28]

Λ People/year 1000000 [15]

β - 0.0001(0.00001-0.002) Assumed
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b)

Fig. 2. Effects of p on (a) latent typhoid cases, and (b) infectious
cases is demonstrated over time. Parameter values used are in Table II,
with the following assumed initial conditions S = 10000, E = 500
and I = 250.

Results on Fig. 3 suggests that increasing educational cam-

paigns may have a significant impact on controlling the trans-

mission dynamics of typhoid (since increasing θ on (a) and

(b) reduces cumulative typhoid cases). The impact of treatment

on controlling typhoid prevalence has been investigated using

numerical simulations depicted on Fig. 4 (effects of early
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Fig. 3. Simulation results for system (1) showing the effects of
educational campaigns on controlling the transmission dynamics of
typhoid in the community, parameter values are in Table II, with
the following assumed initial conditions S = 10000, E = 500 and
I = 250.

therapy, that is treatment administered to latently infected

individuals) and Fig. 5 (treatment of infectious individuals),

respectively. Comparing the results displayed on Fig. 4 and

Fig. 5, we note that early therapy has a more significant impact

on reducing new typhoid cases compared to treatment of infec-

tious individuals (since varying ω gives a remarkable change of

both, cumulative latent cases and cumulative infectious cases),

however, this does not suggests that treating infectious typhoid

is not important, but the study may be only stressing the

importance of early therapy as a typhoid intervention strategy.

We, further examine the impact of the three aforementioned

typhoid intervention strategies using sensitivity analysis.

A. Sensitivity analysis

Sensitivity analysis assesses the amount and type of change

inherent in the model as captured by the terms that define the

reproductive number (R0) [29], [30]. If R0 is very sensitive

to a particular parameter, then a perturbation of the conditions

that connect the dynamics to such a parameter may prove

useful in identifying policies or intervention strategies that

0 100 200 300 400 500 600 700 800 900 1000
0

100

200

300

400

500

Time (days)

E
(
t)

ω=0
ω=0.1
ω=0.2

a)
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0
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200
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I(
t)

ω=0

ω=0.1

ω=0.2

b)

Fig. 4. Simulation results for system (1) showing the effects of
early therapy (treatment of latent typhoid cases) on controlling the
transmission dynamics of typhoid in the community, parameter values
are in Table II, with the following assumed initial conditions S =
10000, E = 500 and I = 250.

reduce epidemic prevalence. We begin by estimating the

correlation between the reproductive number and the model

parameters which define it using Partial Rank Correlation

Coefficients (PRCCs).

Fig. 6 illustrates that the reproductive number R0 is

most sensitive to education adjustment (θ). An increase

in θ will reduce the magnitude of R0. It is also worth

noting that treatment of infectious individuals has a strong

influence on reducing the magnitude of R0. Since the

educational adjustment parameter has a significant effect on

the reproductive number, we examined the dependence of the

reproductive number in this parameter in more detail (Fig.

7). We used Latin Hypercube Sampling and Monte Carlo

simulations to run 1000 simulations, where all parameters

were simultaneously drawn from across their ranges.

Fig. 7 illustrates the effect of educational adjustments

on controlling typhoid in the community. The results suggests
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Fig. 5. Simulation results for system (1) showing the impact of
treating infectious typhoid infectives on controlling the transmission
dynamics of typhoid in the community, parameter values are in Table
II, with the following assumed initial conditions S = 10000, E =
500 and I = 250.

that, in the presence of treatment for latently infected

and infectious individuals in the community, an increase

in educational campaigns results in a decrease on the

reproductive ratio. If educational efforts can be effective 40%

of the time or more, then the disease will be controlled.

Fig. 7 illustrates the effect of educational adjustments on

controlling typhoid in the community. The results suggests

that, in the presence of treatment for latently infected and

infectious individuals in the community, an increase in ed-

ucational campaigns results in a decrease on the reproductive

ratio. If educational efforts can be effective 40% of the time

or more, then the disease will be controlled.

V. CONCLUSION

Typhoid fever is an important public-health problem in

south-central and southeast Asia, the middle east, Africa,

and South America, mainly affecting children and young

adults. Motivated by the recent outbreak of typhoid in

Zimbabwe, a simple deterministic mathematical model for

assessing the impact of educational campaign on controlling

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6

Disease mortality rate for E class

Disease mortality for for I class

Progression rate

Treatment rate for E class

Natural mortality rate

Proportion of latent indvividuals

Transmissibility

Treatment rate for I class

Recruitment rate

Educational adjustment

Fig. 6. Partial Rank Correlation Coefficients (PRCCs) showing the
effects of parameter variation on, R0 using ranges in the table.
Parameters with positive PRCCs will increase R0 when they are
increased, whereas parameters with negative PRCCs will decrease
R0 when they are increased.

the transmission dynamics of typhoid has been formulated

and comprehensively analyzed. The reproductive number

has been computed. Qualitative analysis of the model

reveals the following. The disease-free equilibrium is both

locally and globally-asymptotically stable whenever the

reproductive number is less than unity. With the aid of robust

mathematical techniques it has been shown that the model

has a unique endemic equilibrium point which exists if the

reproductive number is greater than unity. Center Manifold

theory has been used to show that the endemic equilibria

is locally asymptotically stable when the reproduction

number is greater than unity, but close to unity. Partial rank

correlation coefficients (PRCCs) were calculated to estimate

the correlation between values of the reproductive numbere

and the ten model parameters across 1000 random draws

from the empirical distribution of the reproductive number

and its associated parameters. From Fig.6, we note that the

reproductive number is most sensitive to the educational

adjustment parameter. Examining the effects of education

more closely, we determined that education was highly likely

to control the disease if it can be more than 40% effective

(Fig. 7).

The model proposed in this study has limitation(s), which

should be acknowledged. The model developed in this

study assumes that the disease is transmitted through human
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Fig. 7. Latin Hypercube Sampling for varying effectiveness of
educational strategies. (A) Varying θ across all possible values. (B)
If education is greater than 40% effective, then the disease can be
controlled.

contact only, although the disease can be acquired through

consumption, mainly of water, but sometimes of food, that

has been contaminated by sewage containing the excrement

of people suffering from the disease. Furthermore, recruited

individuals are assumed to be susceptible which might not be

case in some communities.
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