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Abstract— In this paper, we present a novel objective non-
reference performance assessment algorithm for image fusion. It takes
into account local measurements to estimate how well the important
information in the source images is represented by the fused image.
The metric is based on the Universal Image Quality Index and uses
the similarity between blocks of pixels in the input images and the
fused image as the weighting factors for the metrics. Experimental
results confirm that the values of the proposed metrics correlate well
with the subjective quality of the fused images, giving a significant
improvement over standard measures based on mean squared error
and mutual information.

Keywords—Fusion performance measures, image fusion, non-
reference quality measures, objective quality measures.

I. INTRODUCTION

IMAGE and video fusion is emerging as a vital technology
in many military, surveillance and medical applications. It

is a subarea of the more general topic of data fusion, dealing
with image and video data [1], [2]. The ability to combine
complementary information from a range of distributed sensors
with different modalities can be used to provide enhanced
performance for visualization, detection or classification tasks.
Multi-sensor data often present complementary information
about the scene or object of interest, and thus image fusion
provides an effective method for comparison and analysis of
such data. There are several benefits of multi-sensor image
fusion: wider spatial and temporal coverage, extended range
of operation, decreased uncertainty, improved reliability and
increased robustness of the system performance.

In several application scenarios, image fusion is only an
introductory stage to another task, e.g. human monitoring.
Therefore, the performance of the fusion algorithm must be
measured in terms of improvement in the following tasks.
For example, in classification systems, the common evaluation
measure is the number of the correct classifications. This sys-
tem evaluation requires that the ”true” correct classifications
are known. However, in experimental setups the ground-truth
data might not be available.

In many applications the human perception of the fused
image is of fundamental importance and as a result the fusion
results are mostly evaluated by subjective criteria [3], [4].
Objective image fusion performance evaluation is a tedious
task due to different application requirements and the lack
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of a clearly defined ground-truth. Various fusion algorithms
presented in the literature [5] have been evaluated objectively
by constructing an ”ideal” fused image and using it as a
reference for comparison with the experimental results [6],
[7]. Mean squared error (MSE) based metrics were widely
used for these comparisons. Several objective performance
measures for image fusion have been proposed where the
knowledge of ground-truth is not assumed. In [8], authors
used the mutual information as a parameter for evaluation of
the fusion performance. Xydeas and Petrovic [9] proposed a
metric that evaluates the relative amount of edge information
that is transferred from the input images to the fused image.

In this paper, we present a novel objective non-reference
quality assessment algorithm for image fusion. It takes into
account local measurements to estimate how well the impor-
tant information in the source images is represented by the
fused image, while minimizing the number of artefacts or the
amount of distortion that could interfere with interpretation.
Our quality measures are based on an image quality index
proposed by Wang and Bovik [10].

II. DEFINITION OF THE UNIVERSAL IMAGE QUALITY

INDEX

The measure that was used as the basis for our objective
performance evaluation of image fusion is the Universal Image
Quality Index (UIQI) [10]. The authors compared the proposed
quality index to the standard MSE objective quality measure
and the main conclusion was that their new index outperforms
the MSE, due to the UIQI’s ability in measuring structural
distortions [10].

Let X = xi|i = 1, 2, ..., N and Y = yi|i = 1, 2, ..., N
be the original and the test image signals, respectively. The
proposed quality index is defined as [10]:

Q =
4σxyxy

(σ2
x + σ2

y) · [(x)2 + (x)2]
(1)
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1
N
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The dynamic range of Q is [−1, 1]. The best value 1 is
achieved if and only if yi = xi for all i = 1, 2, ..., N .
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The lowest value of -1 occurs when yi = 2x − xi for all
i = 1, 2, ..., N . This quality index models image distortions
as a combination of three different factors: loss of correlation,
luminance distortion and contrast distortion. In order to make
this more understandable, the definition of Q can be rewritten
as a product of three components:

Q =
σxy

σxσy

2xy

(x)2 + (y)2
2σxσy

σ2
x + σ2

y

(5)

The first component is the correlation coefficient between X
and Y and its dynamic range is [−1, 1]. The best value 1 is
obtained when yi = axi + b for all i = 1, 2, ..., N , where a
and b are constants and a > 0. Even if X and Y are linearly
related, there still might be relative distortions between them
and these are evaluated in the second and third component.
The second component with a value range of [0, 1] measures
how close the mean luminance is between X and Y . It equals
1 if and only if x = y. σxand σy can be viewed as an estimate
of the contrast of X and Y , so the third component measures
how similar the contrasts of the images are. The range of
values for the third component is also [0,1], where the best
value 1 is achieved if and only if σx = σy .

Since images are generally non-stationary signals, it is ap-
propriate to measure Q0 over local regions and then combine
the different results into a single measure Q. In [10] the
authors propose to use a sliding window: starting from the
top-left corner of the two images X , Y , a sliding window of
a fixed size block by block over the entire image until the
bottom-right corner is reached. For each window w the local
quality index Q0(X,Y |w) is computed for the pixels within
the sliding window w. Finally, the overall image quality index
Q is computed by averaging all local quality indices:

Q(x, y) =
1

|W |
∑

w∈W

Q0(a, b|w) (6)

where W is the family of all windows and |W | is the cardinal-
ity of W . Wang and Bovik [10] have compared (under several
types of distortions) their quality index with existing image
measures such as MSE as well as with subjective evaluations.
The tested images were distorted by: additive white Gaussian
noise, blurring, contrast stretching, JPEG compression, salt
and pepper noise, mean shift and multiplicative noise. The
main conclusion was that UIQI outperforms the MSE, which
due to the index’s ability of measuring structural distortions,
in contrast to the MSE which is highly sensitive to the energy
of errors.

In order to apply the UIQI for image fusion evaluation,
Piella and Heijmans [11] introduce salient information to the
metric:

Qp(X, Y, F ) =
∑

w∈W

c(w)[λQ(X, F |w) + (1 − λ)Q(Y, F |w)]

(7)
where X and Y are the input images, F is the fused image,
c(w) is the overall saliency of a window and λ is defined as:

λ =
s(X|w)

s(X|w) + s(Y |w)
(8)

should reflect the relative importance of image X compared
to image Y within the window w. s(X|w) denotes saliency
of image X in window w. It should reflect the local relevance
of image X within the window w, and it may depend on e.g.
contrast, sharpness, or entropy. As with the previous metrics,
this metric does not require a ground-truth or reference image.
Finally, to take into account some aspect of the human visual
system (HVS) which is the relevance of edge information, the
same measure is computed with the ”edge images” (X ′, Y ′

and F ′) instead of the grey-scale images X , Y and F .

QE(X,Y, F ) = Qp(X,Y, F )1−αQp(X ′, Y ′, F ′)α (9)

III. PROPOSED IMAGE FUSION PERFORMANCE METRICS

In the computation of Piella’s metric parameter λ in equa-
tion (2.6) is computed with s(X|w) and s(Y |w) being the
variance (or the average in the edge images) of images X and
Y within window w, respectively. Therefore, there is no clear
measure of how similar each input image is to the final fused
image. Each time the metric is calculated, an ”edge image” has
to be derived from the input images, which adds significantly
to the computational complexity of the metric. In addition,
the metrics calculated and presented in [11] are only for one
window size (8x8). The window size has a significant influence
on this fusion performance measure, as the main weighting
factor is the ratio of the variances of the input images which
tend to vary significantly with the window size.

We propose a novel fusion performance measure that takes
into account the similarity between the input image block and
the fused image block within the same spatial position. It is
defined as:

Qb =
∑
w∈W

sim(X, Y, F |w)Q(X, F |w)+(1−sim(X, Y, F |w))Q(Y, F |w)

(10)

=
∑

w∈W

sim(X, Y, F |w)(Q(X,F |w)−Q(Y, F |w))+Q(Y, F |w)

(11)
where X and Y are the input images, F is the fused image,
w is the analysis window and W is the family of all windows.
We define sim(X, Y, F |w) as:

sim(X, Y, F |w) =

⎧⎪⎨
⎪⎩

0 if σxf

σxf+σyz
< 0

σxf

σxf+σyz
if 0 ≤ σxf

σxf+σyz
≤ 1

1 if σxf

σxf+σyz
> 1

(12)
where

σuv =
1

N − 1

N∑
i=1

(ui − u)(vi − v) (13)

Each analysis window is weighted by the sim(X, Y, F |w)
that is dependent on the similarity in spatial domain between
the input image and the fused image. The image block from
two of the input images that is more similar to the fused
image block is assigned a larger weighting factor used for
calculation of the fusion performance metric. The impact
of the less similar block is accordingly decreased. In this
sense, we are able to measure more accurately the fusion
performance, especially in an experimental setup where the
input images are distorted versions of the ground-truth data;
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obtained by e.g. blurring, JPEG compression, noise addition,
mean shift, etc. The sim(X, Y, F |w) function is designed
to have the upper limit at one, so that impact of the less
significant block is completely eliminated when the other
input block similarity measure equals one. Calculation of the
sim(X,Y, F |w) function is computationally significantly less
demanding, compared to the metrics proposed in [8] and [11].

IV. EXPERIMENTAL RESULTS

In this section we test the proposed fusion quality measure
in (3.1) to evaluate several multiresolution (MR) image fusion
algorithms and compare it to standard objective image metrics.
The MR-based image fusion approach consists of performing
an MR transform on each input image and, following specific
rules, combining them into a composite MR representation.
The composite image is obtained by applying the inverse
transform on this composite MR representation [2].

During the tests we use the simple averaging method, the
ratio pyramid, Principal Component Analysis (PCA) method
and the discrete wavelet transform (DWT), and in all MR cases
we perform 5-level decomposition. We perform the fusion of
the coefficients of the MR decomposition of each input image
by selecting at each position the coefficient with a maximum
absolute value, except for the coefficients from the lowest
resolution where the fused coefficient equals to the mean value
of the coefficients in that subband.

The first pair of test images used is the complementary pair
shown in the top row of Fig. 1. The test images have been
created artificially by blurring the original ”Goldhill” image
of size 512x512, using Gaussian blurring with a radius of 10
pixels. The images are complementary in the sense that the
blurring takes place at the complimentary horizontal strips in
the first and the second image, respectively. The fused images
obtained by the average method, the ratio pyramid, the PCA
method and DWT domain fusion are depicted in the first
and the second row, from left to right. Table I compares the
quality of these composite images using our proposed quality
measures. The first three rows correspond to the proposed
fusion quality measure, as defined in (3.1). The proposed
metrics are calculated for three window sizes: 4x4, 8x8 and
16x16 pixels, in order to examine the dependence of the
metric’s output values versus the analysis window size.

For comparison, we also compute the PSNR between the
original ’Goldhill’ image and each of the generated fused
images. In ’real life’ image fusion scenarios we do not have
access to the original image, so the PSNR value is provided
just as a reference. In addition, we have provided as references
the fusion performance metric developed by Petrovic and
Xydeas [8] (given in the fourth row of the Table I-III) and
the metric based on mutual information [9] (the fifth row of
the Table I-III).

The fusion metric proposed Petrovic and Xydeas [8], is
obtained by evaluating the relative amount of edge information
transferred from the input images to the output image. It also
takes into account the relative perceptual importance of the
visual information found in the input images, by assigning
perceptual importance weights to more salient edges. It uses

a Sobel edge operator to calculate the strength g(n,m) and
orientation α(n,m) information of each pixel in the input and
output images. The relative strength and orientation ”change”
values, GAF (n,m) and AAF (n,m), respectively, of an input
image A with respect to the fused one F are defined as:

GAF (n,m) =

{
gF (n,m)
gA(n,m) if gA(n,m) > gF (n,m)
gA(n,m)
gF (n,m) otherwise

(14)

AAF (n,m) =
||αA(n,m) − αF (n, m)| − π/2|

π/2
(15)

These measures are then used to estimate the edge strength and
orientation preservation values, QAF

g (n,m) and QAF
α (n, m):

QAF
g (n,m) =

Γg

1 + ekg(GAF (n,m)−σg)
(16)

QAF
α (n,m) =

Γα

1 + ekα(AAF (n,m)−σα)
(17)

where the constants Γg , kg , σg and Γα, kα, σα determine the
exact shape of the sigmoid nonlinearities used to form the
edge strength and orientation. The overall edge information
preservation values are then defined as:

QAF (n,m) = QAF
g (n,m) · QAF

α (n,m), 0 ≤ QAF (n,m) ≤ 1
(18)

Having QAF (n, m) and QBF (n,m) a normalised weighted
performance metric of a given process p that fuses A and B
into F is given as:

Qp =

∑N

n=1

∑M

m=1
QAF (n, m)wA(n, m) + QBF (n, m)wB(n, m)∑N

n=1

∑M

m=1
wA(n, m) + wB(n, m)

(19)
The edge preservation values QAF (n,m) and QBF (n,m)
are weighted by coefficients wa(n,m) and wb(n, m), which
reflect the perceptual importance of the corresponding edge
elements within the input images. Note that in this method,
the visual information is associated with the edge information
while the region information is ignored. This metric will be
referred to as ”Petrovic” metric in the rest of the paper.

Mutual information has emerged as an alternative to PSNR.
It measures the degree of dependence of the two random
variables A and B. It is defined by Kullback-Leibler measure:

IAB(a, b) =
∑
x,y

pAB(a, b) · log
pAB(a, b)

pA(a) · pB(b)
(20)

where pAB(a, b) is the joint distribution and pA(a) · pB(b) is
the distribution associated with the case of complete indepen-
dence. Considering two input images A, B and a new fused
image F , the amount of information that F contains about A
and B can be calculated as:

IFA(f, a) =
∑
x,y

pFA(f, a) · log
pFA(f, a)

pF (f) · pA(a)
(21)

IFB(f, b) =
∑
x,y

pFB(f, b) · log
pFB(f, b)

pF (f) · pB(b)
(22)

and the image fusion performance measure can be defined as:

MAB
F = IFA(f, a) + IFB(f, b) (23)
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TABLE I

COMPARISON OF DIFFERENT OBJECTIVE QUALITY MEASURES FOR THE

COMPOSITE IMAGES IN FIG. 1

Metric-Method average ratio PCA DWT
Qb (4x4) 0.7802 0.7232 0.7805 0.8770
Qb (8x8) 0.7899 0.7485 0.7902 0.8770

Qb (16x16) 0.8121 0.7762 0.8121 0.8725
Petrovic 0.3445 0.4189 0.3544 0.6598

MI 0.3158 0.3312 0.3173 0.2846
PSNR(dB) 28.27 23.92 28.23 32.34

TABLE II

COMPARISON OF DIFFERENT OBJECTIVE QUALITY MEASURES FOR THE

COMPOSITE IMAGES IN FIG. 2

Metric-Method average ratio PCA DWT
Qb (4x4) 0.9321 0.8942 0.9327 0.9924
Qb (8x8) 0.9328 0.8967 0.9333 0.9895

Qb (16x16) 0.9337 0.8958 0.9342 0.9808
Petrovic 0.8619 0.8601 0.8626 0.9745

MI 0.6643 0.6054 0.6644 0.5338
PSNR(dB) 17.09 17.09 15.89 16.10

TABLE III

COMPARISON OF DIFFERENT OBJECTIVE QUALITY MEASURES FOR THE

COMPOSITE IMAGES IN FIG. 3

Metric-Method average ratio PCA DWT
Qb (4x4) 0.8969 0.8385 0.8974 0.9679
Qb (8x8) 0.8990 0.8601 0.8997 0.9814

Qb (16x16) 0.9016 0.8665 0.9021 0.9705
Petrovic 0.7734 0.7889 0.7745 0.9498

MI 0.5366 0.4658 0.5369 0.4131
PSNR(dB) 19.71 17.99 19.71 18.38

The following two pairs of input images are contaminated
by or Gaussian additive noise (Fig. 2) and Salt and Pepper
(SP) noise (Fig. 3). Although the additive noise can be tackled
by performing hard thresholding of the parameters in the
transform domain and SP noise by median filtering we did
not perform denoising in order to get more balanced data
for the proposed metric. The results for the noisy input
images are given in the Table II and Table III for the image
distorted by Gaussian additive noise and SP noise, respectively.

Test results show that the DWT domain fusion visually
outperform the other three schemes. It is most noticeable
as, for instance, the blurring (e.g., edges in the background
and small details) and the loss of texture in the fused image
obtained by the ratio pyramid and averaging. Furthermore,
in the ratio-pyramid method fused image, some details of
the images and background have been completely lost, and
in the average composite image, the loss of contrast is very
evident. These subjective visual comparisons agree with by
the results obtained by the proposed metric, presented in Table

Fig. 1. Fusion results, the original image blurred in stripes. Top row:
input image X (one half of stripes in the original image blurred, left),
input image Y (other half of stripes in the original image blurred, right).
Second row: fused image F using averaging (left), fused image F using ratio
pyramid decomposition (right). Bottom row: fused image F using the PCA
decomposition (left), fused image F using DWT domain fusion (right)

I-III. Note that the proposed metric has very similar quality
measures as the Petrovic’s metric and that these two metrics
considerably outperform the MI measure and PSNR. It is
clear from the experiments that MI metric and PSNR often
assign the highest value of the fusion performance measure
to the algorithm that does not perform well in the subjective
terms. The values obtained from the proposed metrics correlate
well to the subjective quality of the fused images, which
was not achievable by the standard MI fusion performance
measure and PSNR. In addition, the proposed metrics is not
significantly dependent on the size of the analysis window
as the difference in fusion performance does not change
extensively with the variation of window size.

V. CONCLUSIONS

We present a novel objective non-reference performance
assessment algorithm for image fusion. It takes into account
local measurements to estimate how well the important in-
formation in the source images is represented by the fused
image. Experimental results confirm that the values of the
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Fig. 2. Fusion results, the original image randomly blurred, with Gaussian
noise added. Top row: input image X (left), input image Y (right). Second
row: fused image F using averaging (left), fused image F using ratio
pyramid decomposition (right). Bottom row: fused image F using the PCA
decomposition (left), fused image F using DWT domain fusion (right)

proposed metrics correlate well with the subjective quality
of the fused images, giving a significant improvement over
standard measures based on mean squared error and mutual
information. Compared to already presented fusion perfor-
mance measures [8], [11], it obtains comparable results with
considerably decreased computational complexity.

Further research will focus on how to select the salient
points in order to optimize the fusion performance. Another
extension of the work will be performance measure based on
regions of the image, obtained by segmentation of the input
images, rather than calculating the measure in square windows.
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