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A Sequential Approach to Random-Effects
Meta-Analysis

Samson Henry Dogo, Allan Clark, Elena Kulinskaya

Abstract- The objective of meta-analysis is to combine results
from several independent studies in order to create generalization
and provide evidence base for decision making. But recent studies
show that the magnitude of effect size estimates reported in many
areas of research significantly changed over time and this can
impair the results and conclusions of meta-analysis. A number of
sequential methods have been proposed for monitoring the effect
size estimates in meta-analysis. However they are based on statistical
theory applicable only to fixed effect model (FEM) of meta-analysis.
For random-effects model (REM), the analysis incorporates the
heterogeneity variance, τ2 and its estimation create complications.
In this paper we study the use of a truncated CUSUM-type test with
asymptotically valid critical values for sequential monitoring in REM.
Simulation results show that the test does not control the Type I error
well, and is not recommended. Further work required to derive an
appropriate test in this important area of applications.

I. INTRODUCTION

META-ANALYSIS is a statistical technique used to combine
results from related but independent studies in order to

estimate an overall treatment effect. It is used in numerous
applications to synthesize and strengthen evidence about the treatment
efficacy and provide evidence for decision making. Meta-analysis
helps to decide when evidence of benefit or harm of a new
intervention is statistically significant and scientifically convincing to
adopt or reject the investigated treatment [4], [18], [21], [24]. It may
also be used to decide whether enough evidence has been gathered
so that further trials are unnecessary. By combining information
from several studies meta-analysis allows the sample size to increase
and achieve a higher statistical power for the outcome of interest
compared to the less precise measures derived from single individual
studies.

However recent findings have shown that effect size estimates
used in combining results in meta-analysis may change significantly
with the year of publication in many areas of research. For example,
Hodgson, Parkinson and Karpf [12] found a significant decline in the
sensitivity of chest X-rays in detecting hypersensitivity pneumonitis
of about 1.4 % per annum, which they attributed to secular trends
in knowledge and earlier diagnosis or changes in the disease itself.
Nieuwkarm et al. [22] found a decrease in case fatality of aneurysmal
sub-arachnoid haemorrhage during the period 1960-1995, which they
attributed to improvement in early diagnostic and treatment strategies.

Similar temporal changes have also been reported in education [14],
medicine [6], psychology [2], [9], [25] to mention but a few. These
changes in the trends can be dramatic and often lead to the loss or
gain of the statistical significance [16]. Therefore if meta-analysis
is conducted by ignoring temporal trends when trends are actually
present, its results and conclusions can be impaired and any statistical
inference about the treatment effect will be misleading. In order to
address this problem, it is important to find appropriate statistical
techniques that are able to detect any possible trends in the effect
size estimates so that results and conclusions of meta-analysis can be
interpreted based on the time it was conducted.

A number of sequential methods have been proposed for
monitoring the trends in effect size estimates in meta-analysis,
see [1], [11], [16], [19]–[21], [24], [27], [29]. The methods allow
to gauge sufficiency of evidence [20], [24], [27] and can be used
for monitoring the trends in effect size estimates [15], [16], [21].
However these methods of monitoring effect size estimates are based
on the solid statistical theory only in the fixed effect model (FEM)
of meta-analysis. For random-effects-model (REM), the analysis
incorporates the heterogeneity variance, τ2 and its estimation creates
complications.

In this paper we review the standard sequential methods for
meta-analysis and propose the use of Gombay [7] truncated
CUSUM-type test in which the heterogeneity parameter, τ2 is treated
as a nuisance parameter- a parameter that is not of immediate interest
but must be accounted for in the course of the analysis. The proposed
method has solid statistical foundations and may therefore constitute
a better and more efficient sequential approach to monitoring effect
size estimates in random-effects meta-analysis. The rest of the paper
is organised as follows. In section II, we review the existing sequential
methods for meta-analysis. In section III, we formulate the Gombay
test statistic for random effects model. In section IV, we report on
a simulation study to evaluate the performance of the new method.
Section V is the summary and conclusions.

Before reviewing the existing standard sequential methods for
meta-analysis used in monitoring temporal changes in effect sizes we
present the models used in combining the results from studies.

A. Fixed-Effect and Random-Effects Models
Consideration for a meta-analytic model is the choice between

fixed- and random-effects models. Fixed effect model (FEM) in
meta-analysis assumes that all the included studies investigate the
same population and therefore share a single common parameter.
Assume that y1, y2, ..., yK are the estimates of treatment effects
derived from studies. The fixed effect model is given by

yi = θ + ei, (1)

where θ is the common parameter, ei ∼ N(0, v2i ) is the sampling
error and v2i is the variance. Estimates of v2i values are easily
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calculated for all effect sizes used in meta-analysis and are treated
as known constants [26]. In FEM, each study is assigned a weight
proportional to the inverse of its variance which we denote by
wi = 1/v2i . The combined effect is estimated as a weighted mean of
the individual effect estimates, θ̂FEM =

∑
i

yiwi/
∑
i

wi. Standard

inference about the combined effect is based on normality of its

distribution, θ̂FEM ∼ N

(
θ, (

∑
i

wi)
−1

)
. To test the hypothesis for

the presence of a treatment effect, the Wald’s statistic is compared
with the critical values for the standard normal distribution.

Random-effects model (REM) assumes that each effect size
estimate yi estimate a different effect size parameter, θi with error ei,
and that the parameter, θi is sampled from a population of parameters
with mean θ. The random-effects model is a two level model given
by

yi = θi + ei; ei ∼ N(0, v2i )

θi = θ + εi; εi ∼ N(0, τ2),
(2)

where v2i and τ2 are the within- and between-study variances,
respectively. Combining the two equations in (2), the random effects
model is defined by

yi = θ + ξi; ξi ∼ N(0, τ2 + v2i ). (3)

The between-study variance, τ2 describes the degree of inconsistency
among the effect estimates. The special case τ2 = 0 implies that
the effect size estimates (y1, y2, ....) are homogeneous [26], and
the resulting model reduces to FEM in (1). The weights assigned
to studies in REM are calculated using a variance component
that incorporates the between study variance in addition to the
within-study variance used in fixed-effect model. We denote the
weights in REM by w∗

i = (τ2 + v2i )
−1. The combined effect

is estimated as weighted mean of the individual effect estimates,
θ̂REM =

∑
i

w∗
i yi/

∑
i

w∗
i . As in FEM, standard inference about

the combined effect is based on the normality of its distribution,

θ̂REM ∼ N

(
θ, (

∑
i

w∗
i )

−1

)
. To test the hypothesis for the presence

of a treatment effect, the Wald’s statistic is compared with the
critical values for the standard normal distribution.

Estimation of the between-study variance is crucial in
random-effects meta-analysis. Consequently a number of methods
have been proposed to estimate τ2, see [3], [5], [10]. The most
commonly used methods include DerSimonian and Laird [4]; Mandel
and Paule [23] and the restricted maximum likelihood (REML)
methods which are described below along with the method by
Higgins, Whitehead and Simmonds [11] proposed specifically for
sequential testing in meta-analysis.

1) DerSimonian and Laird [4] Method: The DerSimonian and
Laird [4] estimator is given by

τ̂2DL =
Q− (K − 1)

C
, (4)

where Q =
K∑
i=1

wi(yi − θ̂)2 and C =
K∑
i=1

wi −
K∑

i=1
w2

i

K∑

i=1
wi

.

2) Higgins, Whitehead and Simmonds [11] Method: The
Higgins, Whitehead and Simmonds [11] estimator is a modification
of the DerSimonian and Laird [4] method using semi-Bayes approach.
It is defined by

τ̂2H =
2λ+Kτ̂2DL

2η +K − 2
, (5)

where λ and η are parameters of a prior inverse gamma distribution
for τ2.

3) Mandel and Paule [23] Method: The Mandel and
Paule [23] estimator of τ2 is calculated from the solution of the
estimating equation for the expected value of the Q statistic under
H0 given by

Q(τ̂2MP ) =

K∑
i=1

w∗
i (τ̂

2
MP )

(
yi − θ̂(τ̂2MP )

)2

− (K − 1) = 0, (6)

where θ̂(τ̂2MP ) and w∗
i (τ̂

2
MP ) are functions of τ̂2MP .

4) Restricted maximum likelihood Method: The restricted
maximum likelihood (REML) estimator of τ2 is given by

τ̂2REML =

K∑
i=1

w∗2
i

[
(yi − θ̂)2 − v2i

]
K∑
i=1

w∗2
i

+
1

K∑
i=1

w∗
i

. (7)

Each of these methods differs in terms of precision and bias in
estimating τ2, and thus can have a different effect on the sequential
testing. We examine this using Monte Carlo simulations in Section IV.

B. Standard Methods for Monitoring Temporal Trends in
Meta-analysis

Several sequential methods for meta-analysis have been proposed
for monitoring temporal changes in magnitude of effect sizes. The
first is cumulative meta-analysis (CMA) which can be described
as an open sequential test. It was initially proposed by Lau et
al. [20] as a method to identify when a treatment effect in a clinical
trial is statistically significant as early as possible. It is routinely
used for monitoring temporal changes in effect sizes [15], [20],
[21]. The technique involves pooling of effect size estimates in a
cumulative manner as new trial results are published. When results
from studies are arranged in a chronological sequence according to
year of publication, the plotted values of the combined effects, θ̂k
and confidence intervals calculated consecutively for k=1, 2, ..., K
can reveal patterns, uneven irregular and non-linear shifts in opposite
direction [16]. However the technique by definition involves multiple
looks on the accumulating evidence and the continuing addition of
new studies and multiple testing leads to the inflation of the overall
Type I error in the analysis.

The second group of methods is the sequential meta-analysis
(SMA). These methods use formal group-sequential boundaries to
monitor cumulative meta-analysis. The method proposed by Pogue
and Yusuf [24] is aimed to address the issue of inflated Type I
error in CMA. The SMA approach involves calculating an optimum
information size (OIS) and then determines the monitoring boundaries
using alpha spending function and stochastic curtailment. But the
calculation of the OIS is based on fixed effect model and thus
the method cannot be used for REM. Wetterslev, Thorlund, Brok
and Gluud [27] used a heterogeneity inflated OIS to account for
heterogeneity in treatment effects, but this method is problematic [17].
Whitehead [28] describes the use of the standard stopping boundaries
for random-effects meta-analysis. Bollen, Uiterwaal, Vught and Van
der Tweel [1] used the double triangular test in a retrospective
meta-analysis. Higgins, Whitehead and Simmonds [11] proposed
a sequential method for random-effects meta-analysis that uses
a semi-Bayes procedure to update evidence on the among-study
variance, starting with an informative prior distribution that may
be based on findings from a previous meta-analysis. Monitoring
boundaries of formal group sequential methods are generally defined
based on fixed effect approach and do not incorporate the presence
of heterogeneity in treatment effects. Simulations on these methods
have shown a considerable inflation of the Type I error when the
values of τ2 are large, see [11], [27]. Therefore using such methods
for random-effects model can lead to spurious statistical inference.
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A method recently introduced by Kulinskaya and Koricheva [16]
is based on the use of quality control charts for detection of
outliers and temporal trends in meta-analysis. The use of QC charts
in meta-analysis is straightforward once the distribution of the
effect estimates can be approximated by the normal distribution.
However the method has so far been used in fixed effect model, for
random-effects model the estimation of τ2 can introduce dependency
between the variance estimates and the sequential estimates of the
effects [16], which is not consistent with the standard assumptions of
the QC charts.

Another interesting approach is the ‘penalized Z test’ introduced
by Lan, Hu and Cappelleri [19] as an alternative way to address
the issue of inflated Type I error in cumulative meta-analysis. The
method is using the law of iterated logarithm to ‘penalize’ for the
multiple testing in CMA. The usual Z-statistic is adjusted and at the
kth interim analysis is defined by

Z∗(k)
S(k)√

λΓk log log(Γk)
, (8)

where λ is the adjustment factor determined using simulation, S(k)
is the sum of the estimates of treatment effects up to the kth interim
analysis and Γk is the sum of weights assigned to studies. The
‘penalized Z test’ exhibits a good control of the Type I error in CMA
both in FEM and REM when a reasonable value of λ is used. For
example the value of λ = 1.5 is found to control the Type I error in
FEM while the value of λ = 2 is found to control the Type I error in
REM when relative risks, odds ratio and risks difference effect sizes
are used to combine results of up to 25 studies [13]. The constant
λ is an important factor in controlling the Type I error, however its
value varies according to the type of effect size, number of studies,
average studies size and amount of heterogeneity in the treatment
effects. Therefore the determination of the ‘reasonable value of λ’
can be difficult in practice .

In this section we briefly describe the Gombay method and
formulate the Gombay test statistic for random-effects meta-analysis
on which the sequential methods are based.

A. Gombay Method

The Gombay method described in [7], [8] is a truncated
CUSUM-type test used for sequential change detection in parametric
models involving a nuisance parameter. For simplicity we shall refer
to this method as the Gombay test. Consider the sequence of variables
X1, X2, .... ∼ fθi,ηi , where f is a probability density function, θ is
a parameter of interest and η is a nuisance parameter. The Gombay
test is a test for the composite hypothesis
H0: θi = θ, ηi = η; i = 1, 2, ....

H1:

{
θi = θ0, ηi = η; i = 1, 2, ...r

θi = θ1, ηi = η; i ≥ r + 1
;

where r is an unknown time of change, and the values of θ1 and η are
also unknown. In order to define a test statistic for the hypotheses, a
Fisher information matrix, I is partitioned as

I =

(
Iθθ Iθη
Iηθ Iηη

)
,

where

I11 =
(
−E ∂2

∂θ2
log fθη

)
, I22 =

(
−E ∂2

∂η2 log fθη
)

and

I12 = It21 =
(
−E ∂2

∂θ∂η
log fθη

)
.

Denote ψ = (θ, η). The efficient score vector for θ and η at the kth

interim analysis is defined by

Vk(θ, η) =

k∑
i=1

∂

∂ψ
log fθiηi (9)

Replacing the nuisance parameter, η with its restricted maximum
likelihood estimate, η̂k obtained from the solution of

k∑
i=1

∂

∂η
log f(Xi : θ0, η) = 0. (10)

The efficient score vector, Vk is given by

Vk(θ, η̂k) =

k∑
i=1

∂

∂θ
log fθiη̂k . (11)

Under some regularity conditions in H0, Gombay and Serbian [8]
showed that as k → ∞, the efficient score vector

Vk(θ, η̂k) =

k∑
i=1

∂

∂θ
log fθη̂k

=

k∑
i=1

{
∂

∂θ
log fθ0η

}

−
k∑

i=1

{
∂

∂η
log fθ0ηI

−1
22 (θ0, η)I21(θ0, η)

}

+O(log log k)

=
k∑

i=1

Zi +O(log log k),

(12)

where Zi are i.i.d.r.v’s with expected value E[Zi] = 0 and cov(Zi) =
Γk(θ0, η) for Γk(θ0, η) = I11−I12I−1

22 I21. It follows that the statistic

Tk =

∑k
i=1

∂
∂θ

log fθ0,η̂k√
Γk(θ0, η)

(13)

is asymptotically (k → ∞) the sum of independent random variables
with mean 0 and variance equal to 1, and thus can be approximated by
a standard Wiener’s process. In order to use the statistic Tk for testing
hypotheses the covariance Γk(θ0, η) is replaced with its estimate
Γk(θ0, η̂k). Gombay [7] introduced a sequential change detection test
defined using statistic Tk in (13) as follows. For k = 2, 3, · · · ,K,
where K is a truncation point, reject H0 if

G(K) =max
1<k≤K

1√
k
Tk ≥ C(α) (14)

and if no such k, k ≤ K, exists do not reject H0. The critical values
of the 1-sided test are given by

C(α) =(2 log logK)−
1
2 (− log(− log(1− α)) + 2 log logK

+
1

2
log logK − 1

2
log π).

(15)

For a two-sided test based on |Tk|, the critical values are given by

C∗(α) =(2 log logK)−
1
2 (− log(−1

2
log(1− α)) + 2 log logK

+
1

2
log logK − 1

2
log π).

(16)

See [7], [8] for a detailed derivation and discussion on the Gombay
method.

III. FORMULATION OF THE GOMBAY TEST
STATISTIC
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B. Application of the Gombay Method to Random Effects
Model

To apply the Gombay method in random effects model of
meta-analysis, consider a sequence of independent studies conducted
over time. Each study estimates a treatment effect, yi for i=1, 2, ....
with variance v2i . We assume that there is no correlation between the
effect size estimates and the variances. Under the null hypothesis,
H0, each effect estimate is normally distributed with the same mean,
yi ∼ N

(
θ, (ŵ∗

i )
−1

)
, where ŵ∗

i = (τ2 + v2i )
−1 is the estimate of

the weight in random effects model. The mean parameter, θ is the
population treatment effect and it is estimated as weighted mean of
the individual effect estimates, θ̂k =

∑k
i=1 ŵ

∗
i yi/

∑k
i=1 ŵ

∗
i , k=1, 2,

..... Let θ = θ0 be the target value of the effect parameter. As more
studies are conducted and results are continually combined, the goal
is to determine when the combined effect, θ̂k changes significantly
from the target value, θ0 and stop further studies.

The log likelihood function of yi required to define the Gombay
test statistic is given by

L
(
yi : θ, τ

2) =
1

2

{
log ŵ∗

i − ŵ∗
i (yi − θ0)

2 + C

}
, (17)

where C is a constant. Equation (13) results in the statistic

Tk =

k∑
i=1

ŵ∗
i (yi − θ0)√
k∑

i=1

E[ŵ∗
i ]

, (18)

which, as follows from (12) is asymptotically a sum of independent
random variables with mean 0 and variance equal to 1 and can be
approximated as a standard Wiener’s process. Because the probability
distribution of τ̂2 is unknown, the expected value of the weight
estimate, ŵ∗

i in (18) needs to be approximated. Assuming that the
expected value, E[τ̂2i ] = τ2 for i=1, 2, ..., K, the expected value
of the weight estimates can be approximated by the first term in
its Taylor series expansion, E[ŵ∗

i ] = w∗
i (τ

2). The between-study
variance component τ2 in its term is estimated using the best estimate
available from all K studies, τ̂2K . Therefore we use E[ŵ∗

i ] = w∗
i (τ̂

2
K)

in (18).
Therefore if it is desired at the beginning of the sequential

meta-analysis that a decision to accept or reject the existence of a
shift (which may be equivalent to the existence of a treatment effect)
is to be made after combining a maximum of K studies, the one-sided
Gombay test statistic from (14) is defined for random-effects
meta-analysis by
Test: For k=2, 3, ..., K, reject H0 if

Tk =

k∑
i=1

w∗
i (τ̂

2
k )(yi − θ0)√

k∑
i=1

w∗
i (τ̂

2
K)

≥
√
kC(α) (19)

and if no such k, k ≤ K, exists do not reject H0. The critical values
are given in (15) or (16) for 1-sided or 2-sided test, respectively.
The 2-sided test is based on |Tk| values. As mentioned earlier
we assess the behaviour of this test when τ2 is estimated by one
of the methods by DerSimonian and Laird [4]; Higgins, Whitehead
and Simmonds [11]; Mandel and Paule [23] and the REML. In
what follows, the Gombay tests for REM based on the four above
estimators are denoted by GDL, GH , GMP and GREML,
respectively.

Fig. 1. Overall Type I error achieved by the Gombay tests for REM based on
DerSimonian and Laird [4]; Higgins, Whitehead and Simmonds [11]; Mandel
and Paule [23] and the REML estimators of τ2 (GDL -red line, GH - green,
GMP - yellow and GREML - purple line, respectively). K is the number of
studies included in the meta-analysis; n is the average sample size of studies;
θ is the value of the effect parameter, τ2 is the value of the between-study
variance. The black straight line represents the nominal 0.05 level of the test.
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Fig. 2. Comparison of power of the Gombay tests for REM based on
DerSimonian and Laird [4]; Higgins, Whitehead and Simmonds [11]; Mandel
and Paule [23] and the REML estimators of τ2 (GDL -red line, GH - green,
GMP - yellow and GREML - purple line, respectively). K is the number of
studies included in the meta-analysis; n is the average sample size of studies;
ρ on the y-axis is the power while θ on the x-axis is the value of the effect
parameter; τ2 = 0.06 is the between-study variance.

Fig. 3. Comparison of power of the Gombay tests for REM based on
DerSimonian and Laird [4]; Higgins, Whitehead and Simmonds [11]; Mandel
and Paule [23] and the REML estimators of τ2 (GDL -red line, GH - green,
GMP - yellow and GREML - purple line, respectively). K is the number of
studies included in the meta-analysis; n is the average studies size; ρ on the
y-axis is the power while τ2 on the x-axis is the between-study variance.
θ = 0.6 is the value of the effect parameter.
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Fig. 4. Comparison of power of the Gombay tests for REM based on
DerSimonian and Laird [4]; Higgins, Whitehead and Simmonds [11], Mandel
and Paule [23] and the REML estimators of τ2 (GDL -red line, GH - green,
GMP - yellow and GREML - purple line, respectively). K is the number
of studies included in the meta-analysis; n is the average studies size; ρ on
the y-axis is the deviation in power from the average power of the four tests
while θ on the x-axis is the value of the effect parameter; τ2 = 0.06 is the
between-study variance.

The objectives of the simulation is to evaluate the overall Type
I error and power the four Gombay tests introduced in Section II
in relation to the number of studies K in the meta-analysis, average
studies sizes n, the amount of heterogeneity in the treatment effects τ2

and how the four different estimators of τ2 affect the test. To generate
K studies of average size n, the sample sizes of the studies ni (the
sample size of the study i), i = 1, · · · ,K are generated from the
normal distribution, ni ∼ N

(
n, n

4

)
rounded to the nearest integer and

truncated at 3. The estimates of sample variances, v2i are generated
from the Chi-squared distribution, v2i ∼ v2

(n−1)
χ2
n−1. The effect sizes

are generated from the normal distribution, yi ∼ N
(
θ,
√
v2i + τ2

)
.

We calculate the critical values of the test based on an alpha level
of 5 % and the null value of the effect parameter set at θ0 = 0. The
sequential testing starts with a minimum of two studies and stops as
soon as a boundary value is reached or after the Kth interim analysis.
For each combination of the following variables: v2 = 1, θ =
(0.00, 0.20, 0.40, 0.60), n = (20, 50, 100), K = (10, 30, 30, 50)
and τ2 = (0.00, 0.025, 0.075, 0.10) we conducted a total of 10,000
simulations, calculated the power of the test to reject H0 and recorded
the results.

A. Type I Error
Achieved Type I error is the most important issue in the evaluation

of any test. Fig. 1 shows the overall Type I errors achieved by the four
proposed Gombay tests for sequential random effects meta-analysis
based on DerSimonian and Laird [4]; Higgins, Whitehead and
Simmonds [11], Mandel and Paule [23] and the REML estimators
of τ2 (GDL, GH, GMP and GREML, respectively). When n=20,
the values of Type I errors achieved in the test based on all the
four estimators is below the nominal level of 0.05. The tests are
much too conservative. As n increases to 50, the GDL, GMP and
GREML tests cross the nominal 5% level for larger values of τ2.
The achieved level of the GH test is still below the nominal level for
all studied values of heterogeneity. When n=100, the Type I errors
achieved by the tests based on all the four estimators of τ2 increase
and cross the nominal level when τ2 = 0.025 for GDL, GMP and
GREML and when τ2 = 0.04 for GH. For all values on n and τ2,
GDL, GMP and GREML produce higher Type I errors compared to
GH. In general, the Type I errors increase with increase in K, n
and τ2. This is comparable to the performance of the Lan, Hu and
Cappelleri [19] method, except that it controls the Type I error in FEM
while the Type I errors achieved by the Gombay test are practically
zero when τ2 = 0. Overall, the performance of all four studied tests
is disappointing and they are not recommended for use.

B. Statistical Power
Fig. 2 shows the power of the four proposed Gombay tests based on

DerSimonian and Laird [4]; Higgins, Whitehead and Simmonds [11],
Mandel and Paule [23] and the REML estimators of τ2. As expected,
the power increases with increase in the number of studies K, average
study size n and the value of the population treatment effect θ. The
differences in the power between the four tests are very small. Fig. 3
demonstrates that the power decreases with increase in heterogeneity
τ2. This should be expected as the increase in variability makes
the detection of an effect more difficult. However, counter-intuitively
the power increases when n=20. The reason for this is the extreme
conservativeness of the Gombay test when n is relatively small, see
Fig. 1. To be able to distinguish differences in the power, Fig. 4
compares the power of the tests based on four different estimators
of τ2 when τ2 = 0.06. When n = 20 GREML is more powerful,
followed by GDL, GMP and GH is the least powerful. To some extend
this is also true for larger values of n, however as the value of θ

IV. SIMULATION STUDY
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increases, the power of GH increases and it eventually becomes more
powerful compared to the other three tests.

V. SUMMARY AND CONCLUSIONS

Meta-analysis is generally accepted as the standard statistical
technique for research synthesis that allows generalization of
individual studies results and provides evidence base for decision
making. However temporal changes reported in many areas of
research [2], [6], [12], [14], [22], [25] can be dramatic and lead
to the impairment of results and conclusions of meta-analysis.
The sequential methods previously proposed for monitoring the
trends in effect size estimates (Cumulative meta-analysis, Sequential
meta-analysis, the use of QC charts and the penalized Z-testing
of CMA) are only effective when dealing with FEM. In
sequential random-effects meta-analysis, the analysis incorporates
the heterogeneity variance, τ2 and its estimation create problems,
[17]. As an example, Hu, Cappellari and Lan [13] comment that
the sequential boundaries obtained via the usual standard Wiener’s
process approach could inflate the Type I error.

In this paper we proposed the use of [8] truncated CUSUM-type
test in which τ2 is treated as a nuisance parameter. Unfortunately, our
simulations show that the test does not control the Type I error. In
our simulation results, we have seen that the achieved level is close
to zero when the values of τ2 are extremely small, and in contrast
the larger values of τ2 lead to considerable inflation of the Type I
error. Therefore we do not recommend this test for use in practice.
Without the control of type I error, the comparison of power of the
tests based on different estimators of τ2 is not valid, though the
test based on REML estimator of τ2 appears to result in the higher
statistical power compared to the tests based on other three estimators
considered.
The lack of control of the type I error by the proposed tests
is explained by the use of asymptotic approximations based on
Wiener’s process to obtain the critical values of the tests. However
the Gombay [7] method provides a basis for sequential approach to
random-effects meta-analysis that can be improved upon. In our future
research, we intend to derive bootstrap-based critical values for use
with the Gombay tests.
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