
International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:3, No:11, 2009

1058

A Self-stabilizing Algorithm for Maximum Popular
Matching of Strictly Ordered Preference Lists

Zhengnan Shi
Dept of Mathematics and Computer Science
University of Wisconsin Whitewater

Whitewater, WI, 53190
USA

Abstract—In this paper, we consider the problem of Popular
Matching of strictly ordered preference lists. A Popular Matching
is not guaranteed to exist in any network. We propose an ID-
based, constant space, self-stabilizing algorithm that converges to
a Maximum Popular Matching—an optimum solution, if one exist.
We show that the algorithm stabilizes in moves under any
scheduler (daemon).

Keywords—self-stabilization, popular matching, algorithm, dis-
tributed computing, fault tolerance

I. INTRODUCTION AND RELATED WORK

Self-stabilization is a strong and desirable fault-tolerance
property. The self-stabilizing approach is introduced by Di-
jkstra [3]. We define a distributed network as a connected,
undirected graph with node set and edge set .
Let and . Two nodes joined by an edge
are said to be neighbors. We use to denote the set of
neighbors of node —its (open) neighborhood. The contents
of a node’s local variables are defined as its local state. The
system’s global state is the union of all local states. If you take
an arbitrary distributed algorithm and start it in a state where
its variables have been set to a random value from its domain,
the behavior is usually not predictable. However, starting from
any initial configuration and in every execution, self-stabilizing
systems are required to recover to a set of legal states.

A. Self-stabilizing Algorithms

A self-stabilizing algorithm is presented as a set of rules,
each with a boolean predicate and an action. The rules of our
algorithms are of the form , where is a Boolean
predicate, and is a move which changes local variable(s).
A node is said to be privileged if the predicate is true. If a
node becomes privileged, it may execute the corresponding
move . In the shared-variable version of this paradigm,
every node executes the same set of self-stabilizing rules, and
maintains and changes its own set of local variables based on
the current values of its variables and those of its neighbors.
We assume that there exists a daemon, an adversarial oracle
as introduced in [3], [11], which at each time-step selects one
or more of the privileged nodes to move. In the serial, also
known as the central daemonmodel, no two nodes move at the
same time. In the distributed daemon model, the daemon can

email shiz@uww.edu, telephone (262)472-5006, fax (262)472-1372.

choose any subset of privileged nodes to move simultaneously.
Self-stabilizing algorithms can be designed for networks that
are either ID-based or for the networks that are anonymous.
In an ID-based network, each node has a unique ID. In an
anonymous network, the nodes lack unique IDs, so there is
not a priori way of distinguishing them. It is known that, given
IDs, any algorithm for the central daemon can be transformed
into one for the distributed daemon (see for example [2]). For
a complete discussion of self-stabilization, see the books by
Dolev [4] or Tel [15].
When no further state change is possible, we say that the

system is in a stable configuration. A self-stabilizing algorithm
must satisfy:
1) From any initial illegitimate state it reaches a legitimate
state after a finite number of moves; and

2) For any legitimate state and for any move allowed by
that state, the next state is a legitimate state.

The complexity of a self-stabilizing algorithm is measured
by the upper bound of the number of moves and/or rounds [4],
[5]. A round is the minimum period of time where every node
that is continually privileged moves at least once.
Several graph problems arise naturally in distributed sys-

tems. For example, distributed algorithms for finding match-
ings, independent sets, dominating sets and colorings have
been studied [10]–[14]. Given the limited power of the self-
stabilizing paradigm, one usually expects to achieve optimal-
ity, and thus must settle for a good coloring, a maximal
matching or a minimal dominating set. However, the proposed
self-stabilizing algorithm is guaranteed to produce a Popular
Matching of Maximum cardinality, an optimum solution, if
one exists in the network. We show that the algorithm stabi-
lizes in moves under any scheduler (daemon).

B. the Popular Matching Problem

The concept of a Popular Matching, also known as a
Majority Assignment, was first introduced by Gardenfors [7]
in the context of the stable marriage problem [6], [8]. Popular
Matching problem models some important real-world prob-
lems.
An instance of the Popular Matching problem is defined
on a bipartite graph and a partition

of the edge set. All the edges in
are called of rank . The nodes in are called applicants,

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:3, No:11, 2009

1059

the nodes in posts. The sets of applicants and posts are
distinct, . If and with

, we say that prefers to . If , we say that is
indifferent between and . This ordering of posts adjacent
to is called ’s Preference List. Our paper considers the
cases of strictly-ordered preference lists where no applicant is
indifferent between any two posts on its preference list.
A Matching of is a set of edges no two of which

share an endpoint. A node is either unmatched
in , or matched to some node, denoted by which
means . The two end nodes are one applicant
and one post. Let be an applicant, and be
two matchings. There are two cases when we say applicant
prefers matching to matching . Case one is when is
matched in and unmatched in . Case two is when is
matched in both and , and prefers to .
We use symbol to denote the more popular than relationship
between matchings. if the number of applicants that
prefer to exceeds the number of applicants that prefer
to . The more popular than relation is not acyclic.

Therefore, a Popular Matching does not always exist in any
networks. The definition of Popular Mathcing is given in [1].

Definition. A matching is a Popular Matching if and only if
there is no matching that is more popular than .

II. A PRELUDE ALGORITHM

We first introduce a self-stabilizing algorithm which finds a
Maximum Matching in Even Cycles (). It is part of
the solution to Popular Matching. Algorithms and
Maximum Popular Matching () introduced in section
use the same mechanism in their design. Since
is significantly simpler, it leads up to . We assume
each node in the network has a unique ID. Without loss of
generality, we let the ID’s be between and (the order of
the graph). When we say node , variable holds the ID of
the node. Local variables and notations of Algorithm
are listed next.
1) Variable is an unsigned integer, .
2) Variables (next) and (root) point to neighbors.
They hold either the ID’s of nodes or . Subscription is
used to denote the ID of the hosting node of a variable.
Since an ID is at least , let
. By design, variables and jointly identify

every node matched along a path. A matched path is
a monotonic and continuous integer sequence of the
counter ’s. It starts from a node (call it) of .
Every node in the path has the same which holds the
ID of node . The counter ’s of any two adjacent nodes
differ by . We call the end of the matched path with

the lower end. The other end is the higher end.
Except for the node at the higher end, the variable
of a node holds the ID of the next node in the matched
path.

3) Algorithm runs in even cycles. Therefore, each
node has neighbors, call them and . For proposition,
let . Notation means both and . For
example, means both and .

4) Variable (matched path extension for)
denotes a unique neighbor , such that

.
If no neighbor satisfies this condition, is .
If both and satisfy this condition: (1) if there is
a neighbor such that ,
then this neighbor is ; (2) otherwise,
is the neighbor with a larger ; (3) if ,
then is .

5) For a node with , denotes the set
of neighbors

.

The rules of our self-stabilizing algorithm are represented
by a list of if-then statements. To make a rule concise, we
omit the negation of the desired state (the then statement)
from the condition. If the desired state is already achieved,
the node shall not be privileged by the rule. Assume the
algorithm runs on node .

Algorithm 1:

Start Rule
if
then

Extension Rule
if
then

Clean Rules
(1) if

then
(2) if

then

Rules of Algorithm Maximum Matching in Even Cycles

Upon stabilization, the matches are identified by looking at
each node of an even counter . If , then
there is a match between node and any node in .
The correctness of Algorithm is shown in the fol-
lowing lemma. The complexity of Algorithm when
executed with Algorithm is proved in section .
Lemma 1: Every node is matched upon stabilization of

Algorithm .
Proof:

By the Clean Rule 2, every node with has
. If we allow a single node with as a matched path,
the cycle is divided into one or more matched paths. Assume
there are more than matched paths. Let with
and with be the lower ends of two paths. Since
each node has a unique ID, we assume without loss of
generality. Let be the node at the higher end of the matched
path of . Let be ’s neighbor that is not in the matched path
of . Neither nor is privileged by the Extension Rule. We
have . By symmetry, since , node
must be the lower end of its matched path. Since the cycle is
connected, the higher end of a matched path with will
be adjacent to the matched path of . The adjacent node in the
matched path of is privileged to move by the Extension Rule,
a contradiction.
Hence, there is one matched path in the cycle. Every node

is matched in the even cycle.

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:3, No:11, 2009

1060

III. A SELF-STABILIZING ALGORITHM FOR MAXIMUM
POPULAR MATCHING

If a post is the first-ranked post on an applicant’s prefer-
ence list, it is called an f-post. For an applicant , refers
to the first-ranked post on its preference list, .

denotes the first non-f-post on ’s preference list. We call
any such post an s-post. An applicant has an edge to every
post on its preference list in graph . We define the Reduced
Graph as a subgraph of G containing at most
two edges for applicant : and . If every post
in a preference list is an f-post, then the applicant has degree
one in the reduced graph . We assume a preference list has
at least one post. Hence, there is no isolated applicant. For
conciseness, we assume the reduced graph is connected.
(Otherwise, our algorithm runs on each connected component.)
For the rest of the paper, the network refers to the reduced
graph .

A. Network Configuration

Every node has an invariant identifying whether it is an
applicant or a post. Each post keeps an invariant . If a
node is an f-post, then . Otherwise,

. The subscription identifies the residing node of
the variable. Algorithm Maximum Popular Matching ()
utilizes three local variables.
1) Variable is an unsigned integer, .
2) Variables (next) and (root) point to neighbors. They
hold either the ID’s of nodes or . Since an ID is at
least , let . We continue to use
the concept of a matched path which is a monotonic and
continuous integer sequence of the counter ’s. It starts
from a node (call it) of . Every node in the path
has the same which holds the ID of node .

To abridge the presentation of our algorithm, we use nota-
tions based on variables , and .
1) Algorithm is concerned about the reduced
graph . Let denote the set of neighbors of
in . If , refers to the unique neighbor.

2) In the Clean Rule 4, denotes a set of pointed
unmatched f-posts

.
3) Let (the proposer set) denote the set

.
a) For an applicant , if , then
(proposer) is . If is the only node
in , then is . Let
if is empty.

b) For a post , if , then is the one
node in . Let if .

4) For a node with , denotes the set of
neighbors

. represents the set
. denotes the

set . For clarification,
is different from

.

5) (initiating next match) denotes the set
.

6) Variable (matched path extension) denotes a
neighbor , such that

. If there is no such node, is .
7) In the f Rule, (the unmatched f-posts) denotes a set
of unmatched f-posts

. If node , all the neighboring applicants are
matched but not with .

8) Our function returns the largest ID (node) in .
A condition may be inserted in a pair of curly brackets
following the . For example, returns
the largest ID that is not in .

Algorithm consists of four groups of rules: the
Start Rule, the Clean Rules, the Extension Rules and the
f-Rule. The predicates of the rules are evaluated in the listed
order. We assume the rules are executed at a node of ID .

Algorithm 2:

Start Rule
if
then

Clean Rules
(1) if

then
(2) if

then
(3) if

then
(4) if

then
Extension Rules
(1) if

then
(2) if

then
(3) if

then
f Rule
if
then

Rules of Algorithm Maximum Popular Matching

Upon stabilization, the matches are identified by looking at
each node of an even counter . If , then
there is a match between node and any node in .

IV. CORRECTNESS

We prove that the algorithms and stabilize
at a Maximum Popular Matching if one exists. The following
lemma is cited from [1].
Lemma 2: is a popular matching of network if and

only if (i) every f-post is matched to an applicant in ,
and (ii) for each applicant , .
Condition (ii) of Lemma dictates that every Popular

Matching is applicant-complete in the reduced graph . The
case is trivial for a connected with less than vertices.
There is no matching if has one node. There is one
matching in a connected of a post and an applicant; hence it
is a Popular Matching. In the cases of three nodes, there is one

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:3, No:11, 2009

1061

case which admits a Popular Matching. There is a (Maximum)
Popular Matching of cardinality if the reduced graph has
one applicant and two posts and . Without special
note, we assume .
Lemma 3: Let and be two nodes in the network. Upon
stabilization, and cannot both be true.
Proof:
Assume there are two nodes and with and
. Since and are not privileged by the Clean Rule 2,

and are not empty. Since a variable
holds one ID, there are at least two nodes with and

. Since the Clean Rule 2 requires , there are two
nodes of of the same ID. This contradicts the fact that
each node has a unique ID.
Lemma 4: Upon stabilization, if a node has ,
then and there is a matched path from node to a
node of . If is odd, then . If is even, then

.
Proof:
Let be a node with . Because node is not privileged
by the Clean Rule 2, there must exist a node .
Similarly, if , there must exist a node .
Since the Clean Rule 2 requires , there is a matched path
from node to a node of , call it . By the Start Rule,

. Every node in the matched path has .
By Lemma the counter of each node is unique, there are
nodes in the matched path. Hence .
We use proof by contradiction to show if is odd.
Let and is odd. If , then by the
definition of . Since , node is privileged by the
Clean Rule 4. Hence, . If and ,
then because , a contradiction. Let
or . If or , then node
is not in the matched path of . Since the total number of
nodes is , , a contradiction. The last case is
, and . If , then node is
privileged by the Clean Rule 4. If , then is a post.
Because , node has at least neighbors. Since ,
all neighbors of node are in the matched path of . In the
reduced graph , there is at most one edge between any two
nodes. By Lemma , each counter has a unique value in the
matched path. At least one neighbor, call it , has .
Node is adjacent to and , hence . Also
because is not privileged by the Clean Rule 2,
. Hence, applicant has degree at least , a contradiction.
Lemma 5: Upon stabilization, every node with an even
counter is matched.

Proof:
Let be a node with an even counter . Node is

matched with a node in . Since is not privileged by
the Clean Rule 2, is not empty.
Lemma 6: Upon stabilization, if a post has ,
then the network does not have a Popular Matching.
Proof:
Since , at least one neighboring applicant, call
it , cannot be matched to . By the definition
of , is odd. If , then node is an unmatched
applicant. Let , and the other neighbor of be post ,

is even. By Lemma , there is a matched path from post to an
applicant of . In the matched path, every node is matched.
Each matched applicant has at most one alternative post to
match. If we force a match of and , another applicant along
the matched path becomes unmatched. An applicant-complete
matching does not exist in the network. By Lemma , there
is no Popular Matching in the network.
Lemma 7: Upon stabilization, if a node with an odd

counter is adjacent to a neighbor of , then the network
does not have a Popular Matching.
Proof:

Proof by contradiction. Let the counter of a node be
odd. Let be a node with . If , then

and by the Start Rule. Therefore .
If , because node is not privileged
by the Clean Rule 3. Hence . By Lemma ,
and . Hence . Since and is not
privileged by the Extention Rule 1, and must
be a post with . By Lemma , there is no Popular
Matching in the network, a contradiction.
Lemma 8: If a network admits a Popular Matching, every

node with an odd counter is matched upon stabilization.
Proof:
Let be a node with an odd counter . By
Lemma , and . If , then by
the definition of . Since , node is privileged
by the Clean Rule 4. Hence, .
If , then node is . If , then
node is privileged by the Extension Rule 1. If
and , node is in the same matched path. Note
that the matched path cannot continue after node , .
By definition, . By Lemma , each counter has
a unique value in the matched path, hence . Be-
cause is adjacent to and , . Since
is not privileged by the Clean Rule 2, .
Hence, applicant has degree at least , a contradiction.
Hence and . By Lemma , each
counter has a unique value in the matched path. Hence,

, is matched with . If
and , node is matched, otherwise it is privileged
by the Clean Rule 4. Finally, if and ,
by Lemma there is no Popular Matching in the network, a
contradiction.
Lemma 9: If a network admits a Popular Matching, every

node with is matched upon stabilization.
Proof:

By Lemmas and , every node with is matched
upon stabilization. Assume there is a node with . By
the Start Rule, and . If , then
is in the matched path starting at . Since is the only node
adjacent to , . Node is matched with .
Let . Since is not privileged by the Ex-

tention Rule 1 and , must be a post with
. By Lemma , there is no Popular Matching in

the network, a contradiction.
Lemma 10: Upon stabilization, if a node with
and is even has , then has degree at least ,
a post.

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:3, No:11, 2009

1062

Proof:
Let be a neighbor in . by the definition
of . By Lemma , . If , then node is
adjacent to at least nodes of . Otherwise, is privileged
by the Extension Rule 2. If , then node is adjacent
to nodes and . Since node is not privileged by the
Clean Rule 2, is not empty. Since a node of
and the node cannot be in , node has degree at
least , a post.
Lemma 11: Upon stabilization, if there is an applicant or
an f-post with and , then the network
does not have a Popular Matching.
Proof:
If is an applicant, let be a neighboring post. By Lemma ,
if is odd, the network does not have a Popular Matching.
Hence is even, and . By Lemma , there is a matched
path from to an applicant of . Every node is matched in
the matched path. Each applicant has at most one alternative
post to match. If we force a match of and , another applicant
along the matched path becomes unmatched. An applicant-
complete matching does not exist in the network. By Lemma ,
there is no Popular Matching in the network.
Let be an f-post and . By Lemma , if is odd,

the network does not admit a Popular Matching. Hence is
even. If , then . By Lemma , node is
a post, a contradiction. Hence, . Since , has at
least neighboring applicants. Let be another neighbor of ,

. Since , and cannot be in the same
matched path, . By symetry, every neighboring post
has a unique . For proposition, let have the largest . Since
nodes and are not in the matched path of , .
By definition, and . Node is privileged
to make a move by the f Rule, a contradiction.
Lemma 12: Upon stabilization, if a node with
and is even has , then the network does not
have a Popular Matching.
Proof:
By Lemma , node is a post adjacent to at least appli-
cants. Let applicant be a neighbor in . Since ,
applicant has two neighboring posts by the Start Rule. Let
be the other neighbor of . By Lemma , if a node of
is adjacent to a node of an odd counter , the network does
not have a Popular Matching. Hence is even. Let be
the maximally connected component, connected to node , on
nodes of . For proposition, let exclude . There are
two cases.
Case one, every node in has at least two neighbors in .

Hence there is at least one cycle in . Because the reduced
graph is bipartite, every cycle is even. Let be a cycle
in . The number of posts is equal to the number of applicants
in . Since an applicant has degree at most , cycle must
connect to or with the rest of via one or more post(s) of
degree at least . Since is an applicant, the total number of
posts is no more than the number of applicants in . Note
that if a node in is adjacent to a neighbor with , then
the node has degree at least , a post. If every applicant is
matched in , then node must match to node which is
not in . By Lemma , there is a matched path from post

to an applicant of . Each matched applicant has at most
one alternative post to match. If we force a match of and ,
another applicant along the matched path becomes unmatched.
An applicant-complete matching does not exist in the network.
By Lemma , there is no Popular Matching in the network.
Case two, there is at least one node in such that
has only one neighbor in . Let be the unique
neighbor in . Since , has at least two neighbors
by the Start Rule. Let with be another neighbor
of . By Lemma , is even otherwise the network does
not have a Popular Matching. By Lemma , is matched
with a node in . Since is not privileged by the
Extension Rule 3, or . Every nonzero
neighbor of has an even counter . If , then there
exists a neighbor with . For proposition, let be the
neighbor. By Lemma , is a post. Similar to node , by
Lemma , there is a matched path from post to an applicant
of . Each matched applicant has at most one alternative
post to match. Any path between applicants and has more
applicants than posts. If we force a match of and , or a match
of and , another applicant along the matched path becomes
unmatched. An applicant-complete matching does not exist in
the network. By Lemma , there is no Popular Matching in
the network, a contradiction. Hence and .
By symmetry, every neighbor with has . Since

, every neighbor is in a separate matched path with
a unique . For proposition, let have the largest . Since
nodes and are not in the matched path of , . By
definition, . Node is privileged to make a move
by the Extension Rule 3, a contradiction.
Lemma 13: If a network admits a Popular Matching, a

node with may not have exactly one neighbor of
upon stabilization.
Proof:

Proof by contraction: let be a node with . By the
Start Rule, node has degree at least . Upon stabilization,
let be the sole neighbor with . Every neighbor
of , except for , has . Let and .
Since the network admits a Popular Matching, is even by
Lemma , and by Lemma . Hence, node is in .
Since is not privileged by the Extension Rule 3, must
be . Since , every neighbor of is in a separate
matched path with a unique . For proposition, let have the
largest . Since nodes and are not in the matched path of ,

. By definition, , a contradiction.
Lemma 14: Let the network admit a Popular Matching.

Upon stabilization, if a node has and ,
then it is a non-f-post and the only node with in the
network.

Proof:
By Lemma , is a non-f-post. Let be an applicant
adjacent to . By Lemma , is even. Otherwise, the network
does not admit a Popular Matching. Since , is at
least . By Lemma , there is a matched path from to a post
of degree . Every post has an odd counter in the matched
path of . Because each applicant has degree at most in the
reduced graph , the path may only branch at one or more
posts. Let be a post in the matched path with a neighboring

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:3, No:11, 2009

1063

applicant which is not in the same matched path, .
Since is not privileged by the Clean Rule 2,
and . If , then is privileged by the
Clean Rule 3. Hence . If is odd, applicant is active
by either the Clean Rule 2 or the Clean Rule 4. Hence is
even. Every post has an odd counter in the matched path
of . This is the same situation as the matched path of . By
the same argument in any further branches, there is no node
of .
Lemma 15: Let the network admit a Popular Matching.
Upon stabilization, if there is an unmatched node with ,
then it is a non-f-post with and there is no node of
in the network.
Proof:
Let be an unmatched node with . By Lemmas
and , every node with is matched. Hence .
By the Start Rule, has degree , and
. Hence . Since node is not matched,

cannot be in the matched path of , . Therefore,
node is not an f-post. Otherwise, is privileged by the
Extension Rule 1. If , since is not privileged by
the Extention Rule 1, . Since ,
must be a post with . By Lemma , there is

no Popular Matching in the network, a contradiction. Note that
the network is connected with at least nodes, hence
. If is odd and , then .
Node is privileged by the Clean Rule 3, a contradiction.
If is odd and , then is privileged by
the Clean Rule 4, a contradiction. Hence, is even. By
Lemma , is matched with a node in . Any
node in is also in . Since ,

. If node is an applicant, then is a post
with . The network does not have a Popular
Matching, a contradiction. Hence, is a non-f-post and
is an applicant.
Since , by Lemma , there is a matched path

from to a post of degree . Every post has an odd
counter in the matched path. Because each applicant has
degree at most in the reduced graph , the path may
only branch at one or more posts. Let be a post in the
matched path with a neighboring applicant which is not in
the same matched path, . Since is not privileged by
the Clean Rule 2, and . If ,
then is privileged by the Clean Rule 3. Hence . If
is odd, applicant is active by either the Clean Rule 2 or
the Clean Rule 4. Hence is even. Every post has an odd
counter in the matched path of . This is the same situation
as the matched path of . By the same argument in any
further branches, there is no node of .
Lemma 16: Let the network admit a Popular Matching.
Upon stabilization of Algorithm , there are three pos-
sible outcomes: (1) There is no node with ; (2) There is
one non-f-post with ; (3) There are more than one node
with . Each node, call it , with has
and they form one or more disjoint even cycles.
Proof:
Upon stabilization, a network can have either (1) no node
with , or (2) and (3) some node(s) with . For (2),

by Lemma , if a node has and , then
it is a non-f-post and the only node with . For (3), by
Lemma , a node with may not have exactly one
neighbor in upon stabilization. Therefore, if there are
more than one nodes of , then every node of
have .
Since the network admits a Popular Matching, we have

by Halls Marriage Theorem [9]. By Lemma ,
if there is an unmatched node with , then there is no
node of in the network. Thus in the network with
nodes of , every nodes of is matched upon
stabilization. The numbers of matched applicants and posts
with are the same. Let and denote the posts
and applicants with . We have . The reduced
graph is bipartite. All the edges are between applicants
and posts. Let denote the number of edges between
and . Since every node of has ,
we have . However, each applicant may have at
most two edges, thus . We have or

. Therefore . Every post with
has exactly two neighboring applicants of . The graph
induced by all the nodes of is a family of disjoint even
cycles.

A. Use Algorithm with Algorithm

By Lemma , may generate one or more disjoint
even cycles of nodes with . We apply on nodes
with and . Corollary follows directly from
Lemmas and .
Corollary 1: If the network admits a Popular Matching,

every node with and is matched upon
stabilization.
Lemma 17: If a network admits a Popular Matching, the

proposed algorithms produce an applicant complete matching.
Proof:

Assume the network admits a Popular Matching. By
Lemma , every applicant with is matched. By
Lemma , every applicant with is in an even cycle
of nodes with . By Corollary , every applicant with

is matched upon stabilization.
Lemma 18: If a network admits a Popular Matching, every

f-post is matched.
Proof:

Assume the network admits a Popular Matching. By
Lemma , every f-post with is matched. By Lemma ,
every f-post with is in an even cycle of nodes with .
By Corollary , every f-post with is matched upon
stabilization.
Lemma 19: If a network admits a Popular Matching, Al-

gorithms and stabilize at one of maximum
cardinality.
Proof:

Assume a Popular Matching exists. By Lemma , every
applicant is matched. The proposed algorithms produce an
applicant-complete matching. This is the maximum cardinality
possible.

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:3, No:11, 2009

1064

Theorem 1: If a Popular Matching exists in the network,
self-stabilizing algorithms and produce a
Maximum Popular Matching in a stable configuration.
Proof:
By combining Lemmas , , and . Lemma
proves condition (ii) of Lemma . Lemma proves condition
(i) of Lemma . Hence self-stabilizing algorithms
and produce a Popular Matching if one exists.
Lemma shows that the resulting matching has maximum
cardinality.

V. COMPLEXITY ANALYSIS

In this section, we establish the complexity of our algo-
rithms. We define the concept of a Cause Node.

Definition. A node is a cause node if and only if (1) it has
moved by the Start Rule; or (2) it has never moved since the
start of the self-stabilizing algorithm.

Lemma 20: If a node moves by the Start Rule of Algorithm
, it is the only move of the node in the self-stabilizing

process.
Proof:
The predicate of the Start Rule requires a node has degree
one in the reduced graph . The rules are executed in list
order. Once the node moves by the Start Rule, its counter
. It prevents the node from moving again. To be privileged
for the Clean Rules, either the node has degree greater than
or its counter . The predicates of the Extension Rules
require or . The f Rule requires which
requires . In Algorithm , all rules require .

Lemma 21: There are no more than moves by the cause
nodes.
Proof:
After a move by a cause node of types (2), it may become
a cause node of type (1) or it may no longer be a cause node.
By Lemma , a cause node of type (1) cannot move again.

Lemma 22: Only a cause node of type (2) can be privileged
by the Clean Rule 1.
Proof:
The Start Rule is the only rule that sets . It requires

and . After a move by
the Start Rule, , and . To be privileged
by the Clean Rule 1, node must have and .
Therefore, node has never moved. It is a cause node of type
(ii), and it cannot be privileged by the Clean Rule 1 again.
Corollary 2: There are no more than moves by the
Clean Rule 1.
Lemma 23: If a node has moved and it is privileged by the
Clean Rule 3, then the node has degree at least , a post.
Proof:
By the Clean Rule 3, is odd and
. The Extension Rule 3 and the f Rule are the only rules that
set counter to an odd number. Therefore, the last move of is
by the Extension Rule 3 or the f Rule. A move by either rules
sets to a neighbor and results in

. Hence, at least one neighbor has set counter
to or before is privileged by the Clean Rule 3. Because
node is not privileged by the Clean Rule 2, .
Therefore, node has degree at least . An applicant has degree
at most in the reduced graph . Node must be a post.
Lemma 24: A node is privileged by the Clean Rule 2 only
if:
(i) node is a cause node of type (2), or
(ii) a neighbor was a cause node of type (2)
and has moved before is privileged by the Clean Rule 2,
or
(iii) node has moved by the Clean Rules 2 or 3.
Proof:

Let be the node privileged by the Clean Rule 2. Assume
node has moved, otherwise it is a cause node of type (2). By
the predicate of the Clean Rule 2, and .
Hence the last move of is not by any of the Clean Rules
and right after the move. Note that no rule can
point to a node with . Hence, at least one node
in has moved before node is privileged by the
Clean Rule 2. Let be a neighbor that later would move out
of .
Since the rules are tried in order, our proof follows the

list. If has made its first move and/or it has moved by the
Start Rule, or the Clean Rule 1, then it was a cause node of
type (2) by definition, Lemmas or . Otherwise, .
If has moved by the Clean Rules 2 or 3, the lemma stands
true. After the move of by the Extension Rules 1, 3 or the
f Rule, and . Node cannot move by the
Clean Rule 4.
Next, assume node is not privileged by any of the
Clean Rules. Because and , cannot
move by the Extension Rule 1. Because , cannot
move by the Extension Rule 2. Since , cannot move
by the Extension Rule 3 or the f Rule.
Lemma 25: A node is privileged by the Clean Rule 3 only
if:
(i) node is a cause node of type (2), or
(ii) a neighbor was a cause node of type (2) and
has moved before is privileged by the Clean Rule 3, or
(iii) a neighbor has moved by the Clean Rule 2.
Proof:

Let be the node privileged by the Clean Rule 3. Assume
node has moved, otherwise it is a cause node of type (2).
By the predicate of the Clean Rule 3, and is odd.
In Algorithm , two rules can move to an odd value
greater than . They are the Extension Rule 3 and the f Rule.
Therefore, the last move of is by one of the two rules. A move
by either rule results in . Therefore,
a neighbor has moved into or
before is privileged by the Clean Rule 3. By Lemma ,
node is a post. Hence, is an applicant.
The Start Rule is the only rule that sets counter to . The
four Clean Rules are the only rules that set . Since the
rules are tried in order, our proof follows the list. If has
made its first move and/or it has moved by the Start Rule, or
the Clean Rule 1, it was a cause node of type (2) by definition,
Lemmas or . Otherwise, has moved before it moves

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:3, No:11, 2009

1065

into or . If node moves into
by the Clean Rule 2, the lemma stands true. Applicant
cannot move by the Clean Rule 3 by Lemma . If is
privileged by the Clean Rule 4, then and is odd.
Hence and . Node could not have moved
by the Extension Rule 3 or the f Rule, a contradiction.
Lemma 26: A node is privileged by the Clean Rules 2
or 3 only if:
(i) node is a cause node of type (2), or
(ii) a cause node of type (2) has moved a finite number of
rounds before.
Proof:
By Lemma , a node is privileged by the Clean Rule 2 only
if the node is a cause node of type (2), or a moved neighbor
was a cause node of type (2), or a neighbor has moved by the
Clean Rules 2 or 3. By Lemma , a node is privileged by the
Clean Rule 3 only if the node is a cause node of type (2), or
a moved neighbor was a cause node of type (2), or a neighbor
has moved by the Clean Rule 2. There is a finite number of
moves since the start of algorithm . The first move of
any node is a move by a cause node of type (2) by definition.

Lemma 27: A move by a cause node of type (2) initiates
no more than moves of the Clean Rule 2, and no more
than moves of the Clean Rule 3.
Proof:
Let be a cause node of type (2). Let be a
neighbor of node which is in . After moves out
of , may become privileged by the Clean Rule 2.
If node moves, a neighbor with
may become privileged by the Clean Rule 2, and so on.
Since in algorithm , there are no more than
moves by the Clean Rule 2 on nodes of . Let denote
the ID sequence of all the nodes moved consecutively by the
Clean Rule 2 with . If is in , then
before the move of by the Clean Rule 2. Note that the
next ID after cannot be , because by the
definition of . Each node has up to neighbors in
sequence . If a node has neighbors in , the two
neighbors are different nodes.
Let denote a node in . By Lemma , a node

may become privileged by the Clean Rule 3 after node
moves by the Clean Rule 2. If has never moved before, we
contribute further moves to the cause node . Hence, assume
has moved. By Lemma , node is a post of degree at
least , and is an applicant. Node has degree at most
two and one of the neighbor is . By the Clean Rule 3,

and . Hence . Since
node is not privileged by the Clean Rule 2, .
There are at most two applicants in that can possibly
satisfy the requirements for : node , because can
be empty; and the node of the largest in . A node of
the largest is never in of any node in . Since
is privileged by the Clean Rule 3, and is odd.
The Extension Rule 3 and the f Rule are the only rules
in algorithm that set a counter to an odd value.
Therefore, the last move of node , before the move of by
the Clean Rule 2, is by the Extension Rule 3 or the f Rule.

Either rule sets and requires or
. By the definitions of and , is even

and . Since the move of by the Clean Rule 2
moves into , . After the move of by the
Clean Rule 2, is not privileged by the Clean Rule 2, hence

. By the definition of , after
the last move of by the Extension Rule 3 or the f Rule.
Before node moves by the Clean Rule 3, may have moved
several times by the Clean Rule 2. To establish the upper
bound of moves, we attribute the moves to the move of
by the Clean Rule 2 immediately before the move of by the
Extension Rule 3 or the f Rule. For proposition, let
when is privileged by the Clean Rule 2. Hence .
Every move by the Clean Rule 3 results in a larger . Since

in algorithm , the total number of moves of the
Clean Rule 3, caused by , is less than .
Now look at . Because is a post, there is at most

one node in that can cause a neighbor to move by the
Clean Rule 3—the node of the largest in . In between
two moves of the Clean Rule 3, there are at most moves
(one sequence) by the Clean Rule 2. Hence one cause node
initiates less than moves by the Clean Rule 2.
Lemma 28: There are moves by the Clean Rules 2
and 3.
Proof:
By Lemma , a move by the Clean Rule 2 or 3 necessitates
a move of a cause node of type (2). By Lemma , a move
of a cause node of type (2) can cause moves by the
Clean Rules 2 and 3. After one move, a node is no longer a
cause node of type (2). Hence, the total number of moves by
the Clean Rules 2 and 3 is .
Lemma 29: There are moves by the Clean Rule 4.
Proof:
Let be a node that is privileged by the Clean Rule 4.

Hence and is odd. If has never moved before, then
it is a cause node of type (2). By Lemma , the total number
of moves by cause nodes is no more than . Assume node
has moved before. In Algorithm , two rules can move
to an odd value greater than . They are the Extension Rule 3
and the f Rule. The last move of must be one of the two
rules. A move of either rule sets ,
and points to a neighbor, call it . Hence .
Case 1: the last move of is by the Extension Rule 3. Hence
is before and immediately after the move. Because

is odd, and . Hence ’s last move
which sets is by the Extension Rule 1. Since is
privileged by the Clean Rule 4, or . By
the definition of , this is possible only when is an
applicant and is . Since the last move of is by the
Extension Rule 3, . By the definition of , every
neighboring applicant of has an even counter and
after node moves by the Extension Rule 1. For to be
privileged by the Clean Rule 4 again, one of ’s neighboring
applicants must move by the Clean Rules 1 or 2. They are
not privileged by the Clean Rules 3 or 4 because their ’s are
even.
Case 2: the last move of is by the f Rule. Hence

before the move and immediately after the move.

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:3, No:11, 2009

1066

Fig. 1. State-transitions of Algorithm

Every neighboring applicant has an even counter and .
For to become privileged by the Clean Rule 4, it must move
out of . One of the neighboring applicant must move
by the Clean Rules 1 or 2. They are not privileged by the
Clean Rules 3 or 4 because their ’s are even.
For both cases 1 and 2, there are no more than moves
by the Clean Rule 1 by Corollary . There are moves
by the Clean Rule 2 by Lemma . Since each neighboring
applicant has at most two neighbors. The total number of
moves by the Clean Rule 4 is of .
Lemma 30: There are no more than moves by the
Extension Rule 3 and the f Rule.

Proof:
Figure is the diagram of the state transitions of counter .
By Lemmas and , there are moves by the
Clean Rules 2, 3 and 4. Every move by the Extension Rule 3
or the f Rule changes the state from to . Hence
the total number of moves by the Extension Rule 3 and the
f Rule is .
Theorem 2: There is a total of moves by the Algo-
rithm .
Proof:
Figure is the diagram of the state transitions of counter .
By Lemma and Corollary , there are moves between
the states of and , and between the states of
and . By Lemmas and , there are moves
between the states of and . Hence the number
of moves that change the nodes’ states is of . Next, we
bound the number of moves that do not change the state of
counter .
Let node with move by the Extension Rule 1.
Hence, is an applicant. Each such move requires either
is a cause node of type (2), or moves by the f Rule and

. By Lemma , there are moves by the cause
nodes. By Lemma , there are moves by the f Rule.
Hence, the number of moves by the Extension Rule 1 that do
not change the state of counter is .
Let node be privileged by the Extension Rule 2. Hence
is even. If has never moved before, then it is a cause
node of type (2). Assume node has moved before. In
Algorithm , only the Extension Rule 1 can move to
an even value greater than . The last move of must be by the
Extension Rule 1. After node moves by the Extension Rule 2,

. Hence, cannot move again by the Extension Rule 2

before it makes another move by the Extension Rule 1 in
a later round. Therefore, the total number of moves by the
Extension Rule 2 is no more than the total number of moves
by the Extension Rule 1, .

A. Complexity of Algorithm

Algorithm executes on nodes with
and . Let be the induced subgraph of on
these nodes. Since each node has degree , network is one
or more disjoint paths and/or even cycles. We further require
that Algorithm sets , and to when it moves
a node’s counter to .
Lemma 31: Between moves of Algorithm , there
are moves by Algorithm .
Proof:

The Start Rule is the only rule of Algorithm
that sets . If a node with moves by the
Start Rule, its and . The Clean Rules 1
and 2 are the only rules of that set . Both rules
ensure . When Algorithm moves any
node to join , its , and are set to . Hence if a node
moves by the Clean Rule 1 of , it has never moved
by or before. The total number of such cases
is . Hence, the Clean Rule 1 of makes moves
during the entire self-stabilizing process.
Next, let with move by the Clean Rule 2

of . The Extension Rule of is the only
rule that creates nodes of . If node has moved, the
last move must be the Extension Rule. Immediately after the
move, . Let node be in . Notice that
node is not privileged by the Extension Rule. Node must
move before is privileged by the Clean Rule 2. If has moved
before, can be privileged only by the Clean Rule 2. Both
nodes and were in the same matched path before they move
by the Clean Rule 2. Hence we can trace a sequence of moves
by the Clean Rule 2 in the matched path of node . Graph is
a collection of one or more disjoint paths and/or even cycles.
In the connected path or cycle, the node at the lower end
of the matched path of has (1) moved for the first time,
and/or (2) or adjacent to a node moved by Algorithm .
Between moves of Algorithm , the number of moves
by the Clean Rule 2 tracing to case (1) is of . The
number of moves by the Clean Rule 2 tracing to case (2) is
of .
If a node moves by the Start Rule a second time, either

at least one neighbor has moved by one of the Clean Rules
of , and/or is adjacent to a node moved by .
Each node incidents at most nodes in . Hence, the
Clean Rule 1 of leads to at most moves by the
Start Rule. Because the Start Rule requires , each
move by the Start Rule occurs at the higher end of its matched
path. Hence, the Clean Rule 2 tracing to case (1) leads to
moves by the Start Rule. Moves by the Clean Rule 2 tracing to
case (2) leads to a constant number of moves by the Start Rule.
Let node move by the Extension Rule. Hence
. Let node be . If has moved before, its

last move must be the Extension Rule or the Start Rule.

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:3, No:11, 2009

1067

We can trace a sequence of moves by the Extension Rule
in the matched path of node . In the connected path or cycle,
either (3) the node at the lower end of the matched path has
never moved, or (4) it is adjacent to a node moved by ,
or (5) it has moved by the Start Rule. Between moves by
Algorithm , moves by the Extension Rule tracing to
case (3) is . For case (4), there is a linear number
of moves tracing to an end of the path of . Since each
Start Rule initiates one matched path, there are moves
by the Extension Rule of case (5).
Theorem 3: Algorithms and stabilize

in moves.
Proof:
By Theorem , there is a total of moves by Al-
gorithm . By Lemma , there are moves by
Algorithm between moves of , hence the
result.

REFERENCES
[1] D. J. Abraham, R. W. Irving, T. Kavitha, and K. Mehlhorn. Popular
matchings. SIAM J. Comput., 37(4):1030–1045, 2007.

[2] J. Beauquier, A. K. Datta, M. Gradinariu, and F. Magniette. Self-
stabilizing local mutual exclusion and daemon refinement. In Inter-
national Symposium on Distributed Computing, pages 223–237, 2000.

[3] E. W. Dijkstra. Self-stabilizing systems in spite of distributed control.
Comm. ACM, 17(11):643–644, Jan. 1974.

[4] S. Dolev. Self-Stabilization. MIT Press, 2000.
[5] S. Dolev, A. Israeli, and S. Moran. Uniform dynamic self-stabilizing
leader election. IEEE Trans. on Parallel and Distributed Systems, 8(4),
1995.

[6] D. Gale and L. S. Shapley. College admissions and the stability of
marriage. American Mathematical Monthly, 69:9–15, 1962.

[7] P. Gardenfors. Match making: assignments based on bilateral prefer-
ences. Behavioral Sciences, 20:166–173, 1975.

[8] D. Gusfield and R. W. Irving. The Stable Marriage Problem: Structure
and Algorithms. MIT Press, 1989.

[9] P. Hall. On representatives of subsets. Journal of the London
Mathematical Society, 10:26–30, 1935.

[10] S. M. Hedetniemi, S. T. Hedetniemi, D. P. Jacobs, and P. K. Srimani.
Self-stabilizing algorithms for minimal dominating sets and maximal
independent sets. Comput. Math. Appl., 46(5-6):805–811, 2003.

[11] S.-C. Hsu and S.-T. Huang. A self-stabilizing algorithm for maximal
matching. Inform. Process. Lett., 43:77–81, 1992.

[12] A. Panconesi and A. Srinivasan. The local nature of -coloring and its
algorithmic applications. Combinatorica, 15:225–280, 1995.

[13] S. Rajagopalan and V. Vazirani. Primal-dual RNC approximation
algorithms for set cover and covering integer programs. SIAM J.
Comput., 28:525–540, 1998.

[14] Z. Shi, W. Goddard, and S. T. Hedetniemi. an anonymous self-
stabilizing algorithm for 1-maximal independent set in trees. Information
Processing Letters, 91(2):77–83, 2004.

[15] G. Tel. Introduction to Distributed Algorithms, Second Edition. Cam-
bridge University Press, Cambridge UK, 2000.

