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Abstract—In comparison to the original SVM, which involves a 

quadratic programming task; LS–SVM simplifies the required 
computation, but unfortunately the sparseness of standard SVM is 
lost. Another problem is that LS-SVM is only optimal if the training 
samples are corrupted by Gaussian noise. In Least Squares SVM 
(LS–SVM), the nonlinear solution is obtained, by first mapping the 
input vector to a high dimensional kernel space in a nonlinear 
fashion, where the solution is calculated from a linear equation set. In 
this paper a geometric view of the kernel space is introduced, which 
enables us to develop a new formulation to achieve a sparse and 
robust estimate. 
 

Keywords—Support Vector Machines, Least Squares Support 
Vector Machines, Regression, Sparse approximation.  

I. INTRODUCTION 
HIS paper focuses on the least squares version of SVM 
[1], the LS–SVM [2], whose main advantage is that it is 

computationally more efficient than the standard SVM 
method. In this case training requires the solution of a linear 
equation set instead of the long and computationally hard 
quadratic programming problem involved by the standard 
SVM.  

The method effectively reduces the algorithmic complexity, 
however for really large problems, comprising a very large 
number of training samples, even this least-squares solution 
can become highly memory and time consuming. 

Whereas the least squares version incorporates all training 
data in the network to produce the result, the traditional SVM 
selects some of them (the support vectors) that are important 
in the regression. The sparseness of traditional SVM can also 
be reached with LS–SVM by applying a pruning method 
[3][4]. Unfortunately if the traditional LS–SVM pruning 
method is applied, the performance declines proportionally to 
the eliminated training samples, since the information (input-
output relation) they described is lost. Another problem is that 
this iterative method multiplies the algorithmic complexity. 

The training data is often corrupted by noise, which –if not 
handled properly– misleads the training. Another modification 
of the method, called weighted LS–SVM [1][5], is aimed at 
reducing the effects of non-Gaussian noise (e.g. outliers).  

The biggest problem is that pruning and weighting –
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although their goals do not rule out each other– cannot be 
used at the same time, because they work in opposition. The 
generalized approach presented in this paper enables us to 
accomplish both goals by allowing a more universal 
construction and solution of the LS–SVM equation set. 

This paper proposes a geometric view of the kernel space 
and the linear solution that is based on the mapped training 
samples.  

In the LS-SVM solution, the training samples are mapped 
to a kernel space, where a hyperplane is fitted on these points. 
In this case all the training samples are used to achieve a 
result, which consequently isn’t sparse. To trade off between 
training error and a smooth solution a regularization parameter 
is used, which is the same for all samples, and can be 
considered as a predefined, intentional error term in the kernel 
space fitting. 

Our proposition is to use a kernel space of smaller 
dimensionality, which means that by mapping all training 
samples, the hyperplane can be fitted many ways, since there 
are more equations than unknown. This means that the 
position of the hyperplane and consequently the training 
errors –the distances from this plane– can be automatically 
determined according to the distribution of many mapped 
points. 

The LS–SVM method is capable of solving both 
classification and regression problems. The classification 
approach is easier to understand and more historic. The 
present study concerns regression, but it must be emphasized 
that all presented methods can be applied to classification as 
well. 

This paper is organized as follows. Before going into the 
details LS–SVM, and its extensions of pruning and weighting 
are summarized in Section II. Section III provides a geometric 
interpretation of the kernel space and summarizes the main 
idea behind the propositions. Section IV contains the details of 
the solution: It shows how partial reduction is used to achieve 
an overdetermined equation set, and proposes robust solutions 
for this. 

Section V. contains some experimental results, while in 
section VI. the conclusions are drawn.  

II. A BRIEF INTRODUCTION TO THE LS-SVM METHOD 

Given the { }N
iii ,d 1=x  training data set, where p

i ℜ∈x  

represents a p–dimensional input vector and iii zyd += , 
ℜ∈id  is a scalar measured output, which represents the iy  

system output corrupted by some iz  noise. Our goal is to 
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construct an ( )xfy =  function, which represents the 
dependence of the output iy  on the input ix . Let’s define the 
form of this function as formulated below: 
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[ ]Thwww ,...,, 21=w , [ ]Thϕϕϕ ,...,, 21=ϕ . 

The hp ℜ→ℜ:(.)ϕ  is a mostly non-linear function, which 
maps the data into a higher –possibly infinite– dimensional 
feature space. The main difference from the standard SVM is 
that LS-SVM involves equality constraints instead of 
inequality ones and works with a least squares cost function 
[1]. The optimization problem and the inequality constraints 
are defined by the following equations ( Ni ,...,1= ): 
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with constraints: ( ) ii
T

i ebd ++= xw ϕ . 

The +ℜ∈C is the trade–off parameter between a smoother 
solution, and training errors. From this, a Lagrangian is 
formed 
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The solution concludes in a constrained optimization, where 
the conditions for optimality lead to the following overall 
solution: 
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where ( )jiK xx ,  is the kernel function, and Ω  is the kernel 

matrix. The result is: 
( )∑ += =

N
i ii bKαy 1 , xx  (6) 

A detailed description of LS-SVM can be found in refs. [2]-
[5].  
LS-SVM pruning - One of the main drawbacks of the least–
squares solution is that, it is not sparse, because –unlike the 
original SVM– it incorporates all training vectors in the result. 
In order to get a sparse solution, a pruning method must be 
used. Since the iα  support values are proportional to the 
errors at data points: 

ii Ce=α , (7) 
the irrelevant points are left out, by iteratively leaving out the 
least significant vectors. These are the ones corresponding to 
the smallest iα values.  

In the case of the classical SVM sparseness is achieved by 
the use of such loss functions, where errors smaller than ε are 
ignored (e.g. ε-insensitive loss function). This method reduces 
the difference between SVM and LS–SVM, because the 
omission of some data points implicitly corresponds to 
creating an ε-insensitive zone [1]. 

The described method leads to a sparse model, but some 
questions arise: How many neurons are needed in the final 
model? How many iterations it should take to reach the final 
model?  

Another problem is that a usually large linear system must 
be solved in each iteration. Pruning is especially important if 
the number of training vectors is large. In this case however, 
the iterative method is not very effective. 
Weighted LS-SVM - This method addresses the problem of 
noisy data –like outliers in a dataset–, by using a weighting 
factor in the calculation based on the error variables 
determined from a previous –first an unweighted– solution. 
The method uses a bottom-up approach by starting from a 
standard solution, and calculating one or more weighted LS–
SVM based on the previous result. The weighted LS–SVM is 
formed as: 
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where 

⎭
⎬
⎫

⎩
⎨
⎧=

N
C CvCvdiag 1,...,1

1
V . (9) 

The iv  weighting is designed such, that the results improve in 
view of robust statistics. Large ie -s mean a small weight and 
vice versa. 
 

A common property of the described methods is that they 
are all iterative, where every step is based on the result of an 
LS-SVM learning. This means, that the entire large problem 
must be solved at least once, and a relatively large one in 
every further iteration step. Another drawback is that pruning 
and weighting cannot be easily combined, because the 
methods favor contradictory types of points. While pruning 
drops the training points belonging to small iα -s, the 
weighted LS–SVM increases the effects of these points.  

III. THE MAIN IDEA 
When an LS-SVM is constructed from N training samples:  

1. The samples are mapped to an N+1 dimensional kernel 
space, where N dimensions are defined by the kernel 
functions and one is the desired output.  

2. A hyperplane is fitted on these mapped samples. The 
hyperplane is determined by N mapped points, and one 

additional constraint ( ∑ =
=

N

i
i

1
0α ).  

The approximated answer for a new sample results from 
mapping it into N dimensions, and calculating the 
corresponding point on the fitted hyperplane (dimension 
N+1). Therefore in case of this solution, we expect that when 
a new sample is transformed to this kernel space, the desired 
output will be close to this hyperplane. For the sake of 
generalization and to avoid overfitting the accuracy of the fit 
can be adjusted through regularization (the C 
hyperparameter). 

Some questions still need answers: How many –and which– 
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dimensions are needed in the kernel space? How good is my 
approximation, for a specific mapping? What is a good value 
of C, or more generally, how should the hyperplane be placed 
in the kernel space? 

Our proposition is to take control of the problem in the 
kernel space by: 
♦ controlling the dimensionality of this space (see IV. A.), 
♦ finding a better linear hyperplane in the kernel space (see 

IV. B.), 
♦ choosing an appropriate kernel space (IV. C.). 

Having fewer dimensions in the kernel space, results in a 
sparse solution, while at the same time it increases the number 
of mapped points that can be used to determine the linear fit. 
Having more points than dimensions in the kernel space 
allows us to optimize the linear fit. The dimensionality of the 
kernel space high is enough, if samples (not used in 
determining this space) fall close to this plane after mapping 
(see Fig. 1.).  
a.) 
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Fig. 1 The image of training samples in a kernel space of different 
dimensions. Using all three samples as support vectors (kernel 

centers), a three dimensional kernel can space guarantee exact fit for 
the samples. The dashed lines represent a zone in which errors can be 

accepted (corresponding to the ε-insensitivity of SVM) 

IV. THE PROPOSED METHODS 
This section proposes some modifications and extensions to 

the standard LS–SVM. Their purpose is to gain control over 
network size, to reduce complexity and to improve the quality 
of the results. 

A. Using an Overdetermined Equation Set 
If the training set consists of N  samples, then our original 

linear equation set (see eq. 5) will have )1( +N  unknowns, 

the iα -s and b, )1( +N  equations and 2)1( +N  multipliers. 
These factors are mainly the values of the ( )jiK xx ,  kernel 

function calculated for every combination of the training input 
pairs. The cardinality of the training set therefore determines 
the size of the kernel matrix, which plays a major part in the 
solution, as algorithmic complexity; the complexity of the 
result etc. depends on this.  

To reduce the equation set, columns and/or rows may be 
omitted.  
♦ If the k-th column is left out, then the corresponding kα  

is also deleted, therefore the resulting model will be 

smaller. The 0
1

=∑
=

N

i
iα condition automatically adapts, 

since the remaining α -s will still add up to zero. 
♦ If the j-th row is deleted, then the condition defined by 

the ( )jj d,x  training sample is lost, because the j-th 
equation is removed.  

The most important component of the main matrix is the Ω  
kernel matrix; its elements are the results of the kernel 
function for pairs of training inputs: 

( )jiji K xx ,, =Ω  (10) 

To reduce the size of Ω  some training samples should be 
omitted. Each column of the kernel matrix represents an 
additive term in the final solution, with a kernel function 
centered on the corresponding ix  input. The rows however, 
represent the input–output relations, described by the training 
points. It can be seen that in order to reach sparseness the 
number of columns must be reduced. The following reduction 
techniques can be used on the kernel matrix (the names of 
these techniques are introduced here for easier discussion): 

Traditional full reduction 
A training sample ( )kk d,x  is fully omitted, therefore both 

the column and the row corresponding to this sample are 
eliminated. In this case however reduction also means that the 
knowledge represented by the numerous other samples are 
lost. This is exactly the case in traditional LS–SVM pruning 
since pruning iteratively omits some training points. The 
information embodied in these points is entirely lost. 

To avoid this information loss, one may use the technique 
referred here as partial reduction. 

The proposed partial reduction  
In partial reduction, the omission of a training 

sample ( )kk d,x  means that only the corresponding column is 
eliminated, while the row –which defines an input-output 
relation– is kept. Eliminating the k-th column reduces the 
model complexity, while keeping the k-th row means that the 
weighted sum of that row should still meat the kd  regression 
goal (as closely as possible). 

By selecting some (e.g. M , NM < ) vectors as “support 
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vectors”, the number of iα  variables are also reduced, 
resulting in more equations than unknowns. The effect of 
partial reduction is shown on the next equation, where the 
removed elements are colored grey. 

 (11) 
This proposition resembles to the basis of the Reduced 

Support Vector Machines (RSVM) introduced for standard 
SVM classification in [6]. 

For further discussions, let’s simplify the notations of our 
main equation as follows: 
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The omission of columns with keeping the rows means that 
the network size is reduced; still all the known constraints are 
taken into consideration. This is the key concept of keeping 
the quality, while the equation set is simplified. 

It is important to mention that the hyperparameter C is not 
necessarily needed in case of partial reduction. As it will be 
seen later, the overdermined system means that errors are 
inherently expected at the samples. C is used to show how our 
proposition reduces the original formulation, but it can be left 
out from the formulas entirely. 

The dimensionality of the ix  input vectors only affects the 
calculation of ( )jiK xx , , but nothing in the rest of the method, 

therefore the described process works irrespectively of the 
input dimensionality. It is also independent from the kernel 
function, since after calculating the kernel matrix, the 
proposed methods can be applied without any change. 

The deleted columns can be selected many ways e.g. 
randomly, or by using the method proposed in the sequel. 

B. Solving the Overdetermined System 
It is easy to see that partial reduction leads to a sparse 

solution, but having an overdetermined equation set has 
several other advantages. By having more equations than 
unknowns we have means to analyze this information set. The 
solution of this equation set corresponds to a linear fitting 
problem, where we have to fit an M+1-dimensional 
hyperplane on the points defined by the N rows of the matrix. 
Since N>>M+1, this can be done several ways. 

 
The residual for the i-th data point corresponds to the 

ie error, which is defined as the difference between the 
observed desired response value id  and the fitted response 
value iy . 

iii yde −=  (13) 

The solutions differ in the way they calculate the 
accumulated error (residuals), which is then minimized. The 
optimal solution depends on the statistical properties of the 
dataset. (The term statistical here does not necessarily mean a 
large number of samples, but it means “more than one” which 
is the case in the original formulations.) Some possible 
solutions: 
♦ Linear least squares (for Gaussian noise LS2–SVM) 
♦ Weighted linear least squares 

• Custom weighting 
• Robust bisquare weights method 

It is important to emphasize, that the proposed partial 
reduction is essential, since it allows us to have more samples 
than dimensions in the kernel space, which allows optimizing 
further in this space.  
1) Linear least squares 

Usually there are two important assumptions that are made 
about the noise ( z ):  
♦ The error exists only on the output.  
♦ The errors are random and follow a normal (Gaussian) 

distribution with zero mean and constant variance 2σ . 
In this case we minimize the summed square of the residuals: 

∑ −=∑=
==

N

i
ii

N

i
i ydeS

1

2

1

2 )(  (14) 

The solution of equation (12) can be formulated as 
vAAuA TT = . (15) 

The modified matrix A  has )1( +N  rows and )1( +M  
columns. After the matrix multiplications the results are 
obtained from a reduced equation set, incorporating AAT , 
which is of size )1()1( +×+ MM  only. Our proposition, to 
use partial reduction along with the linear least squares 
solution have already been presented in [7] and [8], where we 
named this method LS2–SVM, since it gives the least squares 
solution of a least squares SVM method. 
2) Weighted methods 
If the assumption that the random errors have constant 
variance does not hold, weighted least squares regression may 
be used. Instead of leveling the errors statistically, it is 
assumed that the weights used in the fitting represent the 
differing quality of data samples. The error term is: 

∑ −=∑=
==

N

i
iii

N

i
ii ydwewS

1

2

1

2 )(  (16) 

The weighted solution can be formulated as: 
WvAWAuA TT = . (17) 

where the W  weight matrix is: 
{ }Nwwdiag ,...,1=W .    (18) 

The weights are used to adjust the amount of influence each 
data point has on the estimated linear fit to an appropriate 
level. This formulation is exactly the same that was reached 
by Suykens in the Weighted LS–SVM [1] but the way it is 
derived differs greatly. Suykens introduces different 
regularization parameters (Cvi-s) for the samples, while in the 
proposed method the weights are introduced in the linear 
fitting method. The most important difference, however is that 
the use of partial reduction leads to an overdetermined system, 
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so the weights can be calculated from the statistical properties 
of the points (distribution of many points) in the kernel space. 
Another important difference is that the proposed weighted 
solution is also sparse.  
♦ CUSTOM WEIGHTING - this method can be used if one had 

a priori knowledge about the quality of the samples. If so, 
weights can be defined to determine how much each 
learning sample influences the fit. Samples known to 
have less noise are expected to fit more, than low-quality 
ones.  
The weights should transform the response variances to a 
constant value. If the variances of the data are known, the 
weights are given by:  

21 iiw σ= . (19)  
♦ BISQUARE WEIGHTS – a method that minimizes a weighted 

sum of squares, where the weight of each data point 
depends on its distance from the fitted line. The farther 
away is the point, the less weight it gets. This method fits 
the hyperplane to the bulk of the data with the least 
squares approach, while it minimizes the effect of outliers 
(Fig. 2.). More details on robust regression can be found 
in [9][10]. 
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Fig. 2 The least squares and the roboust (bisquare) fitting in two 

dimensions 

C. Selecting Support Vectors 
Standard SVM automatically selects the support vectors. To 

achieve sparseness by partial reduction, the linear equation set 
has to be reduced in such a way, that the solution of this 
reduced (overdetermined) problem is the closest to what the 
original solution would be. 

As the matrix is formed from columns we can select a 
linearly independent subset of column vectors and omit all 
others, which can be formed as linear combinations of the 
selected ones. This can be done by finding a “basis” (the quote 
indicates, that this basis is only true under certain conditions 
defined later) of the coefficient matrix, because the basis is by 
definition the smallest set of vectors that can solve the 
problem. The linear dependence discussed here, does not 

mean exact linear dependence, because the method uses an 
adjustable tolerance value when determining the 
“resemblance” (parallelism) of the column vectors. The use of 
this tolerance value is essential, because none of the columns 
of the coefficient matrix will likely be exactly dependent 
(parallel). The reduction is achieved as a part of transforming 
the TA  matrix into reduced row echelon form, using a slight 
modification of Gauss-Jordan elimination with partial pivoting 
[11]. This method returns a list of the column vectors which 
are linearly independent form the others considering a 
tolerance ε’. 

The tolerance (ε’) can be related to the ε parameter of the 
standard SVM, because it has similar effects. The larger the 
tolerance, the fewer vectors the algorithm will select. If the 
tolerance is chosen too small, than a lot of vectors will seem to 
be independent, resulting in a larger network. As stated earlier 
the standard SVM’s sparseness is due to the ε-insensitive 
zone, which allows the samples falling inside this boundary to 
be neglected. According to this, it may not be very surprising 
to find that an additional parameter is needed to achieve 
sparseness in LS–SVM, and this parameter corresponds to the 
one, which was originally left when changing from the SVM 
to the standard least squares solution.  

The basic idea of doing a feature selection in the kernel 
space is not new. The nonlinear principal component analysis 
technique, the Kernel PCA uses a similar idea [12]. A basis 
selection from the kernel matrix has been shown in [13]. 

V. EXPERIMENTS 
The next figures show the results for a simple illustrative 

experiment, the sinc(x) regression. The training set contains 
50 data samples corrupted with Gaussian noise. 

Fig. 3 shows the results of custom weighting. We have 60 
samples with additive Gaussian noise, where the σ of the 
noise is known for all samples. It can be seen, that the effect 
of noise is reduced. The original LS–SVM is plotted, because 
the Weighted LS–SVM would give almost the same results as 
the partially reduced solution, but in this case we have a 
sparse solution. 
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Fig. 3 Custom weighting is applied with partial reduction (The 
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LS–SVM is not weighted.) 
 

The following experiment (Fig. 4) shows the same problem 
as Fig. 3, but in this case a few data points are corrupted to 
provide outliers. 
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Fig. 4 The continuous black line plots the result for a partially 

reduced LS-SVM solved by the bisquare weights method. The 
dashed line is the original LS–SVM 

 
It can be seen that by using a robust bisquare fitting, the 

effect of the outliers was successfully reduced.  
It is important to mention that the result of the LS2–SVM is 

sparse, consisting of only 12 support vectors. If the number of 
training samples is very high for the problem complexity, than 
the gain in the network size can be rather large.  

VI. CONCLUSION 
In this paper a geometric view and a generalized 

formulation of the least squares support vector machine was 
presented. The basic idea is that by reducing the 
dimensionality of the kernel space, the hyperplane fitted to the 
mapped training samples can be optimized according to their 
distribution. This is especially important, to deal with non 
Gaussian noise. 

The described solution achieves two important results 
simultaneously: 
♦ a sparse LS–SVM solution,  
♦ the effect of noise is reduced.  
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