
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:7, 2007

2063

Abstract—In comparison to the original SVM, which involves a

quadratic programming task; LS–SVM simplifies the required
computation, but unfortunately the sparseness of standard SVM is
lost. Another problem is that LS-SVM is only optimal if the training
samples are corrupted by Gaussian noise. In Least Squares SVM
(LS–SVM), the nonlinear solution is obtained, by first mapping the
input vector to a high dimensional kernel space in a nonlinear
fashion, where the solution is calculated from a linear equation set. In
this paper a geometric view of the kernel space is introduced, which
enables us to develop a new formulation to achieve a sparse and
robust estimate.

Keywords—Support Vector Machines, Least Squares Support
Vector Machines, Regression, Sparse approximation.

I. INTRODUCTION
HIS paper focuses on the least squares version of SVM
[1], the LS–SVM [2], whose main advantage is that it is

computationally more efficient than the standard SVM
method. In this case training requires the solution of a linear
equation set instead of the long and computationally hard
quadratic programming problem involved by the standard
SVM.

The method effectively reduces the algorithmic complexity,
however for really large problems, comprising a very large
number of training samples, even this least-squares solution
can become highly memory and time consuming.

Whereas the least squares version incorporates all training
data in the network to produce the result, the traditional SVM
selects some of them (the support vectors) that are important
in the regression. The sparseness of traditional SVM can also
be reached with LS–SVM by applying a pruning method
[3][4]. Unfortunately if the traditional LS–SVM pruning
method is applied, the performance declines proportionally to
the eliminated training samples, since the information (input-
output relation) they described is lost. Another problem is that
this iterative method multiplies the algorithmic complexity.

The training data is often corrupted by noise, which –if not
handled properly– misleads the training. Another modification
of the method, called weighted LS–SVM [1][5], is aimed at
reducing the effects of non-Gaussian noise (e.g. outliers).

The biggest problem is that pruning and weighting –

This work was partly sponsored by National Fund for Scientific Research
(OTKA) under contract T 046771.

J. Valyon is with Budapest University of Technology and Economics-
Department of Measurement and Information Systems, Budapest, Hungary, H-
1521, pf. 91. (phone +36 1 463-2057; fax +36 1 463-4112; e-mail: valyon@
mit.bme.hu).

 G. Horváth (e-mail: horvath@mit.bme.hu).

although their goals do not rule out each other– cannot be
used at the same time, because they work in opposition. The
generalized approach presented in this paper enables us to
accomplish both goals by allowing a more universal
construction and solution of the LS–SVM equation set.

This paper proposes a geometric view of the kernel space
and the linear solution that is based on the mapped training
samples.

In the LS-SVM solution, the training samples are mapped
to a kernel space, where a hyperplane is fitted on these points.
In this case all the training samples are used to achieve a
result, which consequently isn’t sparse. To trade off between
training error and a smooth solution a regularization parameter
is used, which is the same for all samples, and can be
considered as a predefined, intentional error term in the kernel
space fitting.

Our proposition is to use a kernel space of smaller
dimensionality, which means that by mapping all training
samples, the hyperplane can be fitted many ways, since there
are more equations than unknown. This means that the
position of the hyperplane and consequently the training
errors –the distances from this plane– can be automatically
determined according to the distribution of many mapped
points.

The LS–SVM method is capable of solving both
classification and regression problems. The classification
approach is easier to understand and more historic. The
present study concerns regression, but it must be emphasized
that all presented methods can be applied to classification as
well.

This paper is organized as follows. Before going into the
details LS–SVM, and its extensions of pruning and weighting
are summarized in Section II. Section III provides a geometric
interpretation of the kernel space and summarizes the main
idea behind the propositions. Section IV contains the details of
the solution: It shows how partial reduction is used to achieve
an overdetermined equation set, and proposes robust solutions
for this.

Section V. contains some experimental results, while in
section VI. the conclusions are drawn.

II. A BRIEF INTRODUCTION TO THE LS-SVM METHOD

Given the { }N
iii ,d 1=x training data set, where p

i ℜ∈x

represents a p–dimensional input vector and iii zyd += ,
ℜ∈id is a scalar measured output, which represents the iy

system output corrupted by some iz noise. Our goal is to

József Valyon, and Gábor Horváth

A Robust LS-SVM Regression

T

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:7, 2007

2064

construct an ()xfy = function, which represents the
dependence of the output iy on the input ix . Let’s define the
form of this function as formulated below:

bbwy T
i

h

i
i +=+= ∑

=
)()(

1
xwx ϕϕ , (1)

[]Thwww ,...,, 21=w , []Thϕϕϕ ,...,, 21=ϕ .

The hp ℜ→ℜ:(.)ϕ is a mostly non-linear function, which
maps the data into a higher –possibly infinite– dimensional
feature space. The main difference from the standard SVM is
that LS-SVM involves equality constraints instead of
inequality ones and works with a least squares cost function
[1]. The optimization problem and the inequality constraints
are defined by the following equations (Ni ,...,1=):

∑+=
=

N

i
i

T
peb

eCeJ
1

2
,, 2

1
2
1),(min www

w
 (2)

with constraints: () ii
T

i ebd ++= xw ϕ .

The +ℜ∈C is the trade–off parameter between a smoother
solution, and training errors. From this, a Lagrangian is
formed

(){ }∑ −++−=
=

N

i
iii

T
kp debewJebwL

1
),();,,(xw ϕαα . (3)

The solution concludes in a constrained optimization, where
the conditions for optimality lead to the following overall
solution:

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

+ − dαIΩ1
1T 00

1

b
C

r

r

 ,

[]Ndddd ,...,, 21= ., []Nααα ,..,, 21=α , (5)

[]1,...,1=1
r

 ,)()(),(, ji
T

jiji K xxxx ϕϕ==Ω ,

where ()jiK xx , is the kernel function, and Ω is the kernel

matrix. The result is:
()∑ += =

N
i ii bKαy 1 , xx (6)

A detailed description of LS-SVM can be found in refs. [2]-
[5].
LS-SVM pruning - One of the main drawbacks of the least–
squares solution is that, it is not sparse, because –unlike the
original SVM– it incorporates all training vectors in the result.
In order to get a sparse solution, a pruning method must be
used. Since the iα support values are proportional to the
errors at data points:

ii Ce=α , (7)
the irrelevant points are left out, by iteratively leaving out the
least significant vectors. These are the ones corresponding to
the smallest iα values.

In the case of the classical SVM sparseness is achieved by
the use of such loss functions, where errors smaller than ε are
ignored (e.g. ε-insensitive loss function). This method reduces
the difference between SVM and LS–SVM, because the
omission of some data points implicitly corresponds to
creating an ε-insensitive zone [1].

The described method leads to a sparse model, but some
questions arise: How many neurons are needed in the final
model? How many iterations it should take to reach the final
model?

Another problem is that a usually large linear system must
be solved in each iteration. Pruning is especially important if
the number of training vectors is large. In this case however,
the iterative method is not very effective.
Weighted LS-SVM - This method addresses the problem of
noisy data –like outliers in a dataset–, by using a weighting
factor in the calculation based on the error variables
determined from a previous –first an unweighted– solution.
The method uses a bottom-up approach by starting from a
standard solution, and calculating one or more weighted LS–
SVM based on the previous result. The weighted LS–SVM is
formed as:

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

+ dαVΩ1
1T 00 b

C
r

r

 (8)

where

⎭
⎬
⎫

⎩
⎨
⎧=

N
C CvCvdiag 1,...,1

1
V . (9)

The iv weighting is designed such, that the results improve in
view of robust statistics. Large ie -s mean a small weight and
vice versa.

A common property of the described methods is that they
are all iterative, where every step is based on the result of an
LS-SVM learning. This means, that the entire large problem
must be solved at least once, and a relatively large one in
every further iteration step. Another drawback is that pruning
and weighting cannot be easily combined, because the
methods favor contradictory types of points. While pruning
drops the training points belonging to small iα -s, the
weighted LS–SVM increases the effects of these points.

III. THE MAIN IDEA
When an LS-SVM is constructed from N training samples:

1. The samples are mapped to an N+1 dimensional kernel
space, where N dimensions are defined by the kernel
functions and one is the desired output.

2. A hyperplane is fitted on these mapped samples. The
hyperplane is determined by N mapped points, and one

additional constraint (∑ =
=

N

i
i

1
0α).

The approximated answer for a new sample results from
mapping it into N dimensions, and calculating the
corresponding point on the fitted hyperplane (dimension
N+1). Therefore in case of this solution, we expect that when
a new sample is transformed to this kernel space, the desired
output will be close to this hyperplane. For the sake of
generalization and to avoid overfitting the accuracy of the fit
can be adjusted through regularization (the C
hyperparameter).

Some questions still need answers: How many –and which–

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:7, 2007

2065

dimensions are needed in the kernel space? How good is my
approximation, for a specific mapping? What is a good value
of C, or more generally, how should the hyperplane be placed
in the kernel space?

Our proposition is to take control of the problem in the
kernel space by:
♦ controlling the dimensionality of this space (see IV. A.),
♦ finding a better linear hyperplane in the kernel space (see

IV. B.),
♦ choosing an appropriate kernel space (IV. C.).

Having fewer dimensions in the kernel space, results in a
sparse solution, while at the same time it increases the number
of mapped points that can be used to determine the linear fit.
Having more points than dimensions in the kernel space
allows us to optimize the linear fit. The dimensionality of the
kernel space high is enough, if samples (not used in
determining this space) fall close to this plane after mapping
(see Fig. 1.).
a.)

0 2 4 6 8 10
0

2

4

6

8

10

b.)

0 2 4 6 8 10 0

2

4

6

8

2

4

6

8

10

Fig. 1 The image of training samples in a kernel space of different
dimensions. Using all three samples as support vectors (kernel

centers), a three dimensional kernel can space guarantee exact fit for
the samples. The dashed lines represent a zone in which errors can be

accepted (corresponding to the ε-insensitivity of SVM)

IV. THE PROPOSED METHODS
This section proposes some modifications and extensions to

the standard LS–SVM. Their purpose is to gain control over
network size, to reduce complexity and to improve the quality
of the results.

A. Using an Overdetermined Equation Set
If the training set consists of N samples, then our original

linear equation set (see eq. 5) will have)1(+N unknowns,

the iα -s and b,)1(+N equations and 2)1(+N multipliers.
These factors are mainly the values of the ()jiK xx , kernel

function calculated for every combination of the training input
pairs. The cardinality of the training set therefore determines
the size of the kernel matrix, which plays a major part in the
solution, as algorithmic complexity; the complexity of the
result etc. depends on this.

To reduce the equation set, columns and/or rows may be
omitted.
♦ If the k-th column is left out, then the corresponding kα

is also deleted, therefore the resulting model will be

smaller. The 0
1

=∑
=

N

i
iα condition automatically adapts,

since the remaining α -s will still add up to zero.
♦ If the j-th row is deleted, then the condition defined by

the ()jj d,x training sample is lost, because the j-th
equation is removed.

The most important component of the main matrix is the Ω
kernel matrix; its elements are the results of the kernel
function for pairs of training inputs:

()jiji K xx ,, =Ω (10)

To reduce the size of Ω some training samples should be
omitted. Each column of the kernel matrix represents an
additive term in the final solution, with a kernel function
centered on the corresponding ix input. The rows however,
represent the input–output relations, described by the training
points. It can be seen that in order to reach sparseness the
number of columns must be reduced. The following reduction
techniques can be used on the kernel matrix (the names of
these techniques are introduced here for easier discussion):

Traditional full reduction
A training sample ()kk d,x is fully omitted, therefore both

the column and the row corresponding to this sample are
eliminated. In this case however reduction also means that the
knowledge represented by the numerous other samples are
lost. This is exactly the case in traditional LS–SVM pruning
since pruning iteratively omits some training points. The
information embodied in these points is entirely lost.

To avoid this information loss, one may use the technique
referred here as partial reduction.

The proposed partial reduction
In partial reduction, the omission of a training

sample ()kk d,x means that only the corresponding column is
eliminated, while the row –which defines an input-output
relation– is kept. Eliminating the k-th column reduces the
model complexity, while keeping the k-th row means that the
weighted sum of that row should still meat the kd regression
goal (as closely as possible).

By selecting some (e.g. M , NM <) vectors as “support

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:7, 2007

2066

vectors”, the number of iα variables are also reduced,
resulting in more equations than unknowns. The effect of
partial reduction is shown on the next equation, where the
removed elements are colored grey.

 (11)
This proposition resembles to the basis of the Reduced

Support Vector Machines (RSVM) introduced for standard
SVM classification in [6].

For further discussions, let’s simplify the notations of our
main equation as follows:

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

+
= − IΩ1

1A
T

1
0

C
r

r

, ⎥
⎦

⎤
⎢
⎣

⎡
=

α
u

b
, ⎥

⎦

⎤
⎢
⎣

⎡
=

d
v

0
. (12)

The omission of columns with keeping the rows means that
the network size is reduced; still all the known constraints are
taken into consideration. This is the key concept of keeping
the quality, while the equation set is simplified.

It is important to mention that the hyperparameter C is not
necessarily needed in case of partial reduction. As it will be
seen later, the overdermined system means that errors are
inherently expected at the samples. C is used to show how our
proposition reduces the original formulation, but it can be left
out from the formulas entirely.

The dimensionality of the ix input vectors only affects the
calculation of ()jiK xx , , but nothing in the rest of the method,

therefore the described process works irrespectively of the
input dimensionality. It is also independent from the kernel
function, since after calculating the kernel matrix, the
proposed methods can be applied without any change.

The deleted columns can be selected many ways e.g.
randomly, or by using the method proposed in the sequel.

B. Solving the Overdetermined System
It is easy to see that partial reduction leads to a sparse

solution, but having an overdetermined equation set has
several other advantages. By having more equations than
unknowns we have means to analyze this information set. The
solution of this equation set corresponds to a linear fitting
problem, where we have to fit an M+1-dimensional
hyperplane on the points defined by the N rows of the matrix.
Since N>>M+1, this can be done several ways.

The residual for the i-th data point corresponds to the

ie error, which is defined as the difference between the
observed desired response value id and the fitted response
value iy .

iii yde −= (13)

The solutions differ in the way they calculate the
accumulated error (residuals), which is then minimized. The
optimal solution depends on the statistical properties of the
dataset. (The term statistical here does not necessarily mean a
large number of samples, but it means “more than one” which
is the case in the original formulations.) Some possible
solutions:
♦ Linear least squares (for Gaussian noise LS2–SVM)
♦ Weighted linear least squares

• Custom weighting
• Robust bisquare weights method

It is important to emphasize, that the proposed partial
reduction is essential, since it allows us to have more samples
than dimensions in the kernel space, which allows optimizing
further in this space.
1) Linear least squares

Usually there are two important assumptions that are made
about the noise (z):
♦ The error exists only on the output.
♦ The errors are random and follow a normal (Gaussian)

distribution with zero mean and constant variance 2σ .
In this case we minimize the summed square of the residuals:

∑ −=∑=
==

N

i
ii

N

i
i ydeS

1

2

1

2)((14)

The solution of equation (12) can be formulated as
vAAuA TT = . (15)

The modified matrix A has)1(+N rows and)1(+M
columns. After the matrix multiplications the results are
obtained from a reduced equation set, incorporating AAT ,
which is of size)1()1(+×+ MM only. Our proposition, to
use partial reduction along with the linear least squares
solution have already been presented in [7] and [8], where we
named this method LS2–SVM, since it gives the least squares
solution of a least squares SVM method.
2) Weighted methods
If the assumption that the random errors have constant
variance does not hold, weighted least squares regression may
be used. Instead of leveling the errors statistically, it is
assumed that the weights used in the fitting represent the
differing quality of data samples. The error term is:

∑ −=∑=
==

N

i
iii

N

i
ii ydwewS

1

2

1

2)((16)

The weighted solution can be formulated as:
WvAWAuA TT = . (17)

where the W weight matrix is:
{ }Nwwdiag ,...,1=W . (18)

The weights are used to adjust the amount of influence each
data point has on the estimated linear fit to an appropriate
level. This formulation is exactly the same that was reached
by Suykens in the Weighted LS–SVM [1] but the way it is
derived differs greatly. Suykens introduces different
regularization parameters (Cvi-s) for the samples, while in the
proposed method the weights are introduced in the linear
fitting method. The most important difference, however is that
the use of partial reduction leads to an overdetermined system,

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:7, 2007

2067

so the weights can be calculated from the statistical properties
of the points (distribution of many points) in the kernel space.
Another important difference is that the proposed weighted
solution is also sparse.
♦ CUSTOM WEIGHTING - this method can be used if one had

a priori knowledge about the quality of the samples. If so,
weights can be defined to determine how much each
learning sample influences the fit. Samples known to
have less noise are expected to fit more, than low-quality
ones.
The weights should transform the response variances to a
constant value. If the variances of the data are known, the
weights are given by:

21 iiw σ= . (19)
♦ BISQUARE WEIGHTS – a method that minimizes a weighted

sum of squares, where the weight of each data point
depends on its distance from the fitted line. The farther
away is the point, the less weight it gets. This method fits
the hyperplane to the bulk of the data with the least
squares approach, while it minimizes the effect of outliers
(Fig. 2.). More details on robust regression can be found
in [9][10].

0 2 4 6 8 10
-10

-5

0

5

10
data samples
least squares fit
roboust fit

Fig. 2 The least squares and the roboust (bisquare) fitting in two

dimensions

C. Selecting Support Vectors
Standard SVM automatically selects the support vectors. To

achieve sparseness by partial reduction, the linear equation set
has to be reduced in such a way, that the solution of this
reduced (overdetermined) problem is the closest to what the
original solution would be.

As the matrix is formed from columns we can select a
linearly independent subset of column vectors and omit all
others, which can be formed as linear combinations of the
selected ones. This can be done by finding a “basis” (the quote
indicates, that this basis is only true under certain conditions
defined later) of the coefficient matrix, because the basis is by
definition the smallest set of vectors that can solve the
problem. The linear dependence discussed here, does not

mean exact linear dependence, because the method uses an
adjustable tolerance value when determining the
“resemblance” (parallelism) of the column vectors. The use of
this tolerance value is essential, because none of the columns
of the coefficient matrix will likely be exactly dependent
(parallel). The reduction is achieved as a part of transforming
the TA matrix into reduced row echelon form, using a slight
modification of Gauss-Jordan elimination with partial pivoting
[11]. This method returns a list of the column vectors which
are linearly independent form the others considering a
tolerance ε’.

The tolerance (ε’) can be related to the ε parameter of the
standard SVM, because it has similar effects. The larger the
tolerance, the fewer vectors the algorithm will select. If the
tolerance is chosen too small, than a lot of vectors will seem to
be independent, resulting in a larger network. As stated earlier
the standard SVM’s sparseness is due to the ε-insensitive
zone, which allows the samples falling inside this boundary to
be neglected. According to this, it may not be very surprising
to find that an additional parameter is needed to achieve
sparseness in LS–SVM, and this parameter corresponds to the
one, which was originally left when changing from the SVM
to the standard least squares solution.

The basic idea of doing a feature selection in the kernel
space is not new. The nonlinear principal component analysis
technique, the Kernel PCA uses a similar idea [12]. A basis
selection from the kernel matrix has been shown in [13].

V. EXPERIMENTS
The next figures show the results for a simple illustrative

experiment, the sinc(x) regression. The training set contains
50 data samples corrupted with Gaussian noise.

Fig. 3 shows the results of custom weighting. We have 60
samples with additive Gaussian noise, where the σ of the
noise is known for all samples. It can be seen, that the effect
of noise is reduced. The original LS–SVM is plotted, because
the Weighted LS–SVM would give almost the same results as
the partially reduced solution, but in this case we have a
sparse solution.

-10 -8 -6 -4 -2 0 2 4 6 8 10
-1

-0.5

0

0.5

1

1.5
input data points
support vectors
partial reduction
LS-SVM
SINC

Fig. 3 Custom weighting is applied with partial reduction (The

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:7, 2007

2068

LS–SVM is not weighted.)

The following experiment (Fig. 4) shows the same problem
as Fig. 3, but in this case a few data points are corrupted to
provide outliers.

-10 -8 -6 -4 -2 0 2 4 6 8 10
-1.5

-1

-0.5

0

0.5

1

1.5

2

input data points
support vectors
roboust partial reduction
LS-SVM

Fig. 4 The continuous black line plots the result for a partially

reduced LS-SVM solved by the bisquare weights method. The
dashed line is the original LS–SVM

It can be seen that by using a robust bisquare fitting, the

effect of the outliers was successfully reduced.
It is important to mention that the result of the LS2–SVM is

sparse, consisting of only 12 support vectors. If the number of
training samples is very high for the problem complexity, than
the gain in the network size can be rather large.

VI. CONCLUSION
In this paper a geometric view and a generalized

formulation of the least squares support vector machine was
presented. The basic idea is that by reducing the
dimensionality of the kernel space, the hyperplane fitted to the
mapped training samples can be optimized according to their
distribution. This is especially important, to deal with non
Gaussian noise.

The described solution achieves two important results
simultaneously:
♦ a sparse LS–SVM solution,
♦ the effect of noise is reduced.

REFERENCES
[1] V. Vapnik, "The Nature of Statistical Learning Theory", New–York:

Springer–Verlag., 1995
[2] J. A. K. Suykens, V. T. Gestel, J. De Brabanter, B. De Moor, J.

Vandewalle, “Least Squares Support Vector Machines”, World
Scientific, 2002

[3] J. A. K. Suykens, L. Lukas, and J. Vandewalle, “Sparse approximation
using least squares support vector machines”, IEEE International
Symposium on Circuits and Systems ISCAS'2000, 2000

[4] J. A. K. Suykens, L. Lukas, and J. Vandewalle, “Sparse least squares
support vector machine classifiers”, ESANN'2000 European Symposium
on Artificial Neural Networks, 2000, pp. 37–42.

[5] J.A.K. Suykens, J. De Brabanter, L. Lukas, and J. Vandewalle,
“Weighted least squares support vector machines: robustness and sparse
approximation”, Neurocomputing, 2002. pp. 85-105

[6] Yuh–Jye Lee and O. L. Mangasarian, “RSVM: Reduced Support Vector
Machines”, Proceedings of the First SIAM International Conference on
Data Mining, Chicago, 2001. April 5–7.

[7] J. Valyon and G. Horváth, „A generalized LS–SVM”, SYSID'2003
Rotterdam, 2003, pp. 827-832.

[8] J. Valyon and G. Horváth, „A Sparse Least Squares Support Vector
Machine Classifier”, Proceedings of the International Joint Conference
on Neural Networks IJCNN 2004, 2004, pp. 543-548.

[9] Holland, P. W., and R. E. Welsch, "Robust Regression Using Iteratively
Reweighted Least-Squares," Communications in Statistics: Theory and
Methods, A6, 1977, pp. 813-827.

[10] Huber, P. J., Robust Statistics, Wiley, 1981.
[11] W. H. Press, S. A. Teukolsky, W. T. Wetterling and B. P. Flannery ,

“Numerical Recipes in C”, Cambridge University Press, Books On-Line,
Available: www.nr.com, 2002

[12] B. Schölkopf, S. Mika, C.J.C. Burges, P. Knirsch, K.-R. Müller, G.
Rätsch, and A. Smola, „Input space vs. feature space in kernel-based
methods”. IEEE Transactions on Neural Networks, 1999, 10(5), pp.
1000–1017.

[13] G. Baudat and F. Anouar, “Kernel-based methods and function
approximation”. In International Joint Conference on Neural Networks,
pages 1244–1249, Washington DC, 2001. July 15–19.

[14] H. Golub and Charles F. Van Loan, Matrix Computations”, Gene Johns
Hopkins University Press, 1989.

