
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:4, 2015

946

 

 

 
Abstract—A Smart Building Controller (SBC) is a server 

software that offers secured access to a pool of building specific 
resources, executes monitoring tasks and performs automatic 
administration of a building, thus optimizing the exploitation cost and 
maximizing comfort. This paper brings to discussion the issues that 
arise with the secure exploitation of the SBC administered resources 
and proposes a technical solution to implement a robust secure access 
system based on roles, individual rights and privileges (special 
rights). 
 

Keywords—Access authorization, smart building controller, 
software security, access rights.  

I. INTRODUCTION 

N the Smart Building Control research and development 
field, and further in the present document, an environment is 

considered to be the entire composition of the (BACnet 
standard complying [1], and alike) building devices that are 
subscribed and registered to a central monitoring and 
administrative center called a SBC. The SBC (Smart Building 
Controller) is a server software that offers secured access to a 
pool of building operation specific resources [2], defined in 
this paper as SBC objects, i.e. hardware, software or abstract 
[3]–[5]. A hardware object is a physical device, available in 
the local SBC environment and being in direct communication 
with it, described by a set of reportable and/or configurable 
properties. HVAC specific components, sensors, security 
cameras and other monitoring devices, automatic access 
(doors) and watering systems, RFID readers, multimedia 
appliances, internet access points and communication 
infrastructure are examples of local available hardware. These 
devices, if digitally controllable using a communication 
protocol over a data transmission network are directly 
manageable by an artificial intelligent management system as 
a SBC. Other kind of resources could be found outside the 
physical SBC managed environment but added to the local 
resources through a published interface, for instance an 
automated earthquake alarm, a weather casting service or a 
mail server. The third category of SBC objects are abstract and 
directly responsible of the SBC AI (Artificial Intelligence) 
managed actions. Here we place conditions, actions, 
schedules, triggers, policies, patterns, procedures, all logical 
bits and bytes that put together build-up the SBC intelligent 
behavior that pursues the optimization of the building’s 
exploitation cost while enhancing the user’s safety and 

 
Eugen Neagoe and Victor Balanica are with the Dept. of Automatic 

Control and System Engineering, University Politehnica of Bucharest, 
Romania, e-mail: (vidda.loca@gmail.com, vicord20011@gmail.com). 

comfort. All SBC objects will be further indicated also as 
"nodes" because the convenient representation of the SBC 
environment as a graph. 

The access, administration and supervision of the SBC 
resources are performed using a standalone client or through a 
browser presented GUI (Graphical User Interface). In this 
context, a control session is the legitimate usage of the 
available SBC resources in the timeframe starting with the 
user’s secured login and ending at logout or session timeout, 
only within the user's administrative role. The authenticated 
and lawful access to environments resources is of paramount 
importance since the goal is to refine, optimize and enhance 
the building's exploitation by adding intelligent features, not to 
establish dangerous property and privacy attack vectors, [6]. 

This paper analyses the requirements of an integrated 
authority management system in the field of smart building 
control architecture [7], and secondly it describes the 
implementation of a secure robust access model with minimal 
impact on the SBC environment operational performance [8], 
[9].  

II. GENERIC REQUIREMENTS OF RESOURCES SECURE ACCESS 

MODEL 

A major challenge in SBC administration is managing the 
complex security requirements. The unauthorized access to the 
reporting capabilities of environment resources (let alone their 
control), can provide an attacker with sensitive information, 
allowing a more sophisticated attack, premises breach or 
simply compromising privacy. Most of the network 
communication will carry M2M (machine-to-machine) 
requests and messages therefore each SBC unit must detain a 
trustee database, along with each partner rights to request 
information and to order actions. 

Any security model must be robust in order to withstand 
tampering. With the increased complexity of interacting 
actors, the security layer must try to cope with the 
unpredictable environment change as much as possible [10]. 
In the scope of this paper we define robustness to be the 
model's property to avoid a single point-of-failure design by 
storing the legitimate utilization rights as close to the 
execution point as possible (redundant distributed database), 
to exhibit a gracefully operation degradation in case of node, 
actors, catastrophic failure, to seamlessly accommodate the 
addition or removal of nodes. Because each node detains in its 
trustee list only information regarding its accredited partners, a 
compromised node does not affect the whole environment. 
This characteristics support the proposed security model 
"robust" claim. 

A Robust Implementation of a Building Resources 
Access Rights Management System 

E. Neagoe, V. Balanica 

I 



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:4, 2015

947

 

 

Systems with increased complexity must be designed with 
mechanisms to handle failure and security as a core issue. We 
aim to avoid possible failures coming from complexity and 
obscurity through simplicity, without loss in capabilities. This 
approach is consistent from the implementation to 
maintenance and utilization.  

The proposed model offers both Role-Based Access Control 
(RBAC) [11]-[14], and Discretionary Access Control (DAC) 
[15], effectively addressing the role hierarchy issue, rights 
inheritance and privileged access rights outside the 
administrative chain. The accent is put on a role-based 
paradigm due to facilities offered in complex system 
administration, [16]. In order to permit a clear and rapid 
understanding of a user's access rights extent, to avoid 
misrepresentation and potential obscure implications in 
complex environments and large administrative personal, our 
model forbids a role to contain one or more other roles. 

Our solution to the relationship among administrative roles 
is by hierarchy and inheritance. Mainly, permissions are 
established for roles to which users are assigned, following the 
concept of restricted hierarchical RBAC [12], further 
constraints being possible through the node's internal logic 
(operational policies). Mandatory Access Control (MAC) [16], 
capabilities are implemented through "Special Rights". This 
feature adds non-inheritable rights that override de 
hierarchical inherited ones [17], effectively enabling security 
configuration at node feature level and mitigating fault 
hierarchies [18]. 

In the scope of this document, a node feature is considered 
any reportable or configurable node state. For instance, an air-
conditioning device can report room temperature (sensor state 
- read only) and modify it (actuator state - set desired 
temperature). 

III. SBC MANAGEMENT DESIGN REQUIREMENTS 

While developing a security framework for the SBC 
operations the following requirements have been taken into 
consideration, [19]-[21]: 
 Database. All information related to users and SBC 

resources access rights must be available through a 
configuration interface and locally stored in a compact 
data structure. The state-of-the-art solution is an 
encrypted database. 

 Encryption. Given the sensitive nature of exchanged 
information, connection-based designs and encrypted 
communications channels are preferable even inside the 
SBC network. For SBC access performed over internet, 
tunneling techniques should be implemented. 

 Check Point. A SBC management session (login) should 
be permitted only after the SBC validates the user’s 
credentials against its database. 

 Single Session. A single SBC management session should 
be permitted per user at any time, with limited lifespan. 

 Limited View. Any user should view and manage only the 
SBC objects that were made available to read, write or 
delete through some sort of permissions granting 
mechanism.  

 Roles. Role-based access rights configuration and 
administrative group structures must be available to the 
SBC manager, along with individual rights management. 

 Special Permissions. A mechanism to circumvent or 
override the automatic hierarchical inheritance of rights 
should be made available in order to permit rights and 
tasks delegation with utmost granularity. 

 Delegation. The administrative possibility to spawn or 
administer role or user rights in the range of the detained 
attributions, with multi-level grant and grant independent 
revocation, [15]. 

The description of the present integrated secure 
management model is based on various practical 
considerations [22], [23]: 
 The database operational overhead should be minimal and 

must provide secured access for any set of managed SBC 
objects or services. The implementation should be as 
simple and robust as possible, in order to avoid 
unforeseen consequences.  

 The available resources should be administered by 
managerial hierarchal roles, a manager being capable to 
delegate his rights, suspend or deny access to any lower 
rank than his.  

 No user or administrator should be able to configure his 
own rights by any means. 

 Every SBC object should require specific minimal access 
rights, being under the administration of every higher 
managerial authority and out of reach for the lesser ones.  

 There should be a possibility to grant limited and isolated 
rights in a certain environment, for instance given a 
device, a “manual only” schedule setup could be in the 
exclusive duty of a certain user, even if the user has no 
other rights in the environment. This functionality would 
render the system more flexible by adding the possibility 
of user identity well bounded scenarios. 

 Each user should be able to access only the resources that 
are made available to him by properly setting the SBC 
objects requirements, the user’s generic access rights or 
by special rights issued for designated objects.  

 Every SBC object has to have a “disabled” state for 
maintenance and testing purposes, as well as a “manual 
only” state that will disable automatic object management 
in pursue of an abstract/complex goal. In such a state the 
object will be managed by user defined actions alone.  

 The security system should be extendable even to device 
properties as in “on/off” for a light bulb. It should be 
possible for an environment to be configured in such a 
manner that ONLY a certain user (not even a higher 
authority user) may switch a device property on/off.  

 The default supreme managerial authority cannot be 
deleted or limited in any way. 

As the internet is used in SBC operational management and 
control, specific precautions measures should be taken into 
consideration. The main identifiable attack vectors are: Denial 
of Service, [24], Man in the Middle, [25]–[28], Spoofing, [29], 
Eavesdropping. Due to SBC specificity, the information 
obtained by an attacker could be used in preparation of further 



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:4, 2015

948

 

 

attacks (meshing), [6], [30]. For instance, the reported history 
of a presence sensor system could provide valuable 
information about the timeframes when the building is more 
vulnerable to theft. 

IV. THE THREE-AUTHORITY MANAGEMENT (TAM) MODEL 

Pursuing the above stated requirements, we propose the 
following dedicated SBC secure access model, named the 
Three-Authority Management (TAM). The name indicates the 
three access types this model uses to manage a SBC object: 

READ – the right or capability a user has to be aware of the 
existence of a certain SBC object and to view reports about its 
current state. 

WRITE – the user’s right or capability to change a certain 
SBC object configurable properties or parameters. In order to 
have this possibility, the READ right over that object is 
mandatory. 

DELETE – the right or capability to exclude a certain SBC 
object from the SBC administration. The deletion in effect 
determines the SBC command center to “forget” about a 
physical device by erasing its records or to effectively delete a 
local software object (script) like a schedule or policy for 
instance. READ and WRITE rights are mandatory for this 
kind of action. 

These three capabilities express the authority range that a 
specified user has over a particular SBC resource. In order to 
avoid the need of n*m distinct entries in a security table that 
describes relationships between n users and m SBC objects, 
we express the user’s rights and the object’s requirements as a 
three byte values array: 

 
USER :{[ 0 255 ],[	 0 255 ],[	 0 255 ]} 

RESOURCE:{[ 0 255 ],[	 0 255 ],[	 0 255 ]} 

 
Thus, a user’s administrative rights will be expressed as a 

three byte values string linked together with dashes: READ-
WRITE-DELETE, ex. 10-9-8. The same formula is used to 
indicate the object’s security requirements. 

The granted rights are computed by comparing the bytes 
expressing the user’s maximal access rights with the object’s 
minimal access requirements, and expressed as Boolean 
values: CanView, CanEdit, CanDelete: 

 
 = 	 ? : |  

 = 	 ? : |  
 = 	 ? : |  

 
In our approach, a user has generic access rights and an 

object (SBC resource), specific minimal rights requirements. 
Only if the user’s generic rights match or exceed the objects 
requirements the access type is granted.  

To enforce logic in the way SBC resources are managed 
and to permit complex administrative workflow scenarios, the 
following must be enforced: 

 
 

 

 
As a consequence, DELETE rights include all WRITE rights and 

WRITE rights include the READ right. 
 
The reason is that a user must have “View” access before he 

can “Edit” an object and must have “Edit” rights in order to be 
capable to “Delete”. The same is true for an object but in 
reverse as we express the object’s requirements: The “Delete” 
requirements should be greater than “Edit” or “Read” ones. 
The logic of the secured access mechanism of  
implements the principle the SBC Objects and the SBC Users 
should have a complementary functionality.  

This implementation of user rights and objects requirements 
system has the advantages of an inheritable hierarchy of 
administrative roles but lacks in establishing granular rights. 
For instance, if an object requires at least 100-100-100 
administrative rights, any user that is configured to manage 
that object will automatically inherit rights over any lesser 
rights object, for example 99-99-99. To solve this 
inconvenient we added a specific user-object administrative 
rights tracking system called SpecialRights, that overrides the 
TAM computed rights with an arbitrary configuration for a 
particular set{user_ID, object_ID}. This hybrid approach 
permits to configure administrative roles that have in effect no 
inherited rights but only a fixed, constant, granular set, 
regardless of what other resources are added later in the 
administrative process. 

 

 

Fig. 1 Administrative authority roles with default Read, Write and 
Delete values 

 
We assume that the environment complexity will not 

exceed the 256 hierarchical levels of administration / authority 
levels a byte can express. Each authority level is treated like a 
role that can be assigned to an unlimited number of 
members/users/managers. Thus, the TAM (Three Authority 
Management) security model permits enough authority levels 
for the main access types (read, write and delete) that permit 
even in very large organizations an appropriate hierarchical 
control configuration. If necessary, the model can be designed 
to permit more role levels by simply extending the integer 
range. The model is thought with a set of default roles: Super-
Admin, System, Registered-User (Tester) and Guest with 
default access rights (see Fig. 1). 

Because automatically triggered actions should be possible 
in a SBC environment, the special role SYSTEM has lesser 
administrative rights than the SUPER-ADMIN account, by 
default. This layout is necessary in order to permit the 



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:4, 2015

949

 

 

existence of at least a class of SBC objects outside the 
automatically SYSTEM’s management capabilities. In this 
paper we arbitrarily set the SYSTEM’s maximal access rights 
at 253 in order to underline the importance of this role in the 
SBC AI management. The actual value is left at the 
developer’s decision in the model implementation phase. 

 
MinRead  0  Default SBC object: 

 Configured with gradual access requirements MinWrite  1 

MinDelete  2 
 

MaxRead  0  Guest: 

 Can view the default SBC object 
 Cannot edit, nor delete the object 

MaxWrite  0 

MaxDelete  0 

 
MaxRead  1  Registered user: 

 Can view and edit the default SBC object 
 Cannot delete 

MaxWrite  1 

MaxDelete  1 
 

MaxRead  255  Super‐Admin: 

 Can  view, edit  and delete  any SBC object,  in 
this example, the default one. 

MaxWrite  255 

MaxDelete  255 

Fig. 2 Example of computed TAM rights for different default roles 
 
The SBC TAM security descriptors will be stored 

separately, in 3 Security Descriptor tables named: UserTAM, 
ObjectTAM and SpecialRights. 

The SBC access granting workflow: 
 Receives the provided user credentials and checks them 

against its database 
 If the provided credentials do check-out, the user’s 

maximal access rights are read from the UserTAM table  
 The user’s rights are used to SELECT out of the 

ObjectTAM table every object that the user has at least 
READ rights for (CanView).  

 The query result is formatted into an XML structure, 
including only the user’s access rights that are evaluated 
as TRUE: CanView, CanEdit, CanDelete. The rights 
order is progressive, as enumerated.  

 The login timestamp is recorded, an expiring session 
token is issued for that user and the previously formatted 
XML is returned to the user's administrative client 
(browser or standalone application). 

In the following, as illustrated in Fig. 2, we will refer to the 
TAM patterns as a sequence of 3 numbers linked by dashes, 
representing for a user the MaxRead-MaxWrite-MaxDelete 
rights and the MinRead-MinWrite-MinDelete access 
requirements for an object.  

In this example a registered user has no rights to create 
objects, because a SBC object creation can inherit at most the 
maximal rights of its creator, which in this case do not match 
the 0-1-2 default minimal requirements. The default object 
requirements as well as the “Guest” or “Registered user” role 
access rights can be changed according to the implemented 
scenario. 

A. The UserTAM Security Descriptor  

Each SBC user has a security clearance, expressed (as seen 
also above in the SBC object section) as a sequence of the 

three authority levels (Read-Write-Delete). 
Fig. 3 presents the database implementation of the 

UserTAM table. The MaxRead, MaxWrite, MaxDelete 
columns store the byte values of the user’s maximal access 
rights. The access rights are expressed through integers 
between 0-255 and define the maximal object level a user can 
view and modify. 

 

Index 
Object 
User ID 

Max
Read 

Max 
Write 

Max 
Delete 

Disabled  Locked 

int  bigint  byte  byte  byte  bool  bool 

Fig. 3 UserTAM table layout 
 
The enforced rule is: MaxRead ≥ MaxWrite ≥ MaxDelete. 
By default, a new added user is created with the “Registered 

user” access rights (1-1-1). The model policy is to promote 
users from the “Registered” state, not to demote them. 

B. User Flags  

Extending the UserTAM table functions (seen in Fig. 6), the 
user records present two additional columns: the “Disabled” 
and the “Locked” boolean flags. These descriptors have the 
following meaning: 
 Disabled. When this flag is set (TRUE) the user is 

prevented from any SBC usage or administration. His 
credentials will not permit the login, regardless of the 
delegated TAM role at the moment of suspension. 
However, all settings and configuration related to him and 
the existing SBC environment are preserved, awaiting 
other administrative actions. The SUPERUSER account 
cannot be disabled, even by SUPERUSER himself. 

 Locked (Read Only). While the LOCKED flag is set 
(TRUE), the user’s TAM rights are preserved in the 
system’s configuration but any TAM inherited WRITE or 
DELETE rights will be ignored by default. This flag has 
the function to permit the delegation of specific rights to a 
certain user through the SpecialRights mechanism and to 
avoid the standard TAM access levels and inheritance 
mechanism. The removal of the “Locked” flag re-enables 
the TAM hierarchical roles. 

C. The ObjectTAM security descriptor  

The ObjectTAM table implements the MinDelete, 
MinWrite, MinRead columns that express the minimal 
authority level required by an object for each of the three 
access types, as described in Fig. 4. The required access levels 
are expressed through a byte value (0-255). 

 

In‐ 
dex 

Object 
Unique 

ID 

Max 
Read 

Max 
Write 

Max 
Delete 

Dis‐ 
abled 

Locked 
Manual 
Only 

int  bigint  byte  byte  byte  bool  bool  bool 

Fig. 4 ObjectTAM table layout 
 
The enforced rule is: MinRead ≤ MinWrite ≤ MinDelete. 

D. Object Flags  

Extending the ObjectTAM table functionality, a series of 



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:4, 2015

950

 

 

boolean flags are added to the object’s security descriptor as 
detailed in Fig. 5: 

 
Disabled  Locked  Manual Only

bool  bool  bool 

Fig. 5 Object flags layout 
 
Flags description: 

 Disabled. With this flag set, the existence of an object is 
reported only by displaying a grayed out name of the 
object in the GUI, without any parameters. In this state 
the SYSTEM will not be able to access the object. Any 
readings pushed from the object will be ignored. Policies 
that strictly depend on that object will be suspended. 

 Locked (Read Only). Setting the LOCKED flag (true) 
disables the TAM inherited WRITE and DELETE rights, 
retaining the READ rights hierarchically enabled for the 
all 0-253 levels. The only roles that retain full access over 
the object remain 254 – System and 255 –Super-Admin. 
In effect the locked flag resembles an object with 0-254-
254 rights. 

The LOCKED flag is useful in order to achieve a high 
granular management configuration for some specific SBC 
objects. Setting the LOCKED flag true and configuring special 
security rights (the Special Rights table) for one or more users 
effectively delegates exclusive management rights over that 
object.  
 Manual Only (Disable SYSTEM override). While 

pursuing the configured goals, the “System” account 
(SBC server A.I.) is supposed to exercise an intelligent 
control over the available resources and in the process to 
change (edit) the object’s parameters. That is for example, 
to shut-down the TV set when nobody is watching. 
However, in order to forbid the “System” to automatically 
control some resources, this flag must be set (true), 
meaning that only the actions configured by the user will 
be executed and nothing more (the SBC A.I. generated 
behavior will ignore the object). 

E. Special Rights  

While the principal mechanism of TAM provides a 
hierarchical management mechanism, special use case 
scenarios demand a way to ignore the inheritance chain and to 
grant only limited, user-object nominal rights. This is the 
reason we introduced an additional method to achieve this 
behavior. The model is able to bypass and override the main 
rights inheritance mechanism in order to grant exceptional 
rights with the aid of so called “SpecialRights”. 

The special rights are nominal established rights for a 
specific user over a certain object. Whenever such rights are 
stated and recorded in the SpecialRights table, the basic TAM 
computed results (CanView, CanEdit, CanDelete) are 
overridden with the SpecialRights stored values. The granular 
established special rights automatically take precedence over 
the basic rights evaluation mechanism. 

 
 

In‐ 
dex 

User 
Unique 

ID 

Object 
Unique 

ID 

Can 
View 

Can 
Edit 

Can 
Delete 

Can 
Disable 

Can 
Lock 

int bigint bigint bool bool  bool  bool bool

 
Fig. 6 Special Rights table layout 

 
The mechanism of special rights is intended in case if there 

is a need to let a user manage objects above his role level, 
without raising the users rights or lower the objects 
requirements. A similar situation is if we need to forbid an 
user to access one more object that would normally have been 
in his administrative role range. The special rights are also 
non-inheritable. Here we make the observation that the TAM 
mechanism must not be obligatory suspended through object 
locking in order to make use of the SpecialRights feature. The 
SpecialRights feature is only an extension of the TAM 
functionality in order to permit special usage scenarios. 

V. CONCLUSIONS 

Fulfilling the security requirements of a Smart Building 
Controller, a secured access pattern was described in this 
paper in order to control, through an extensible hierarchy of 
256 administration authority levels, the three important 
operations on SBC resources: read, write and delete, in 
increasing order of importance. These three authority levels 
implement the TAM - Three Authority Management pattern.  

The TAM versatility comes from implementing the Special 
Rights table which maximizes the capability of granular 
administration of the SBC resources. By disabling the Three 
Authority Management strategy (through “Locking” the 
object) and enabling the Special Rights for one or more users, 
a clear specified, isolated and restricted environment 
management can be setup if required. The SpecialRights 
feature is only an extension of the TAM functionality in order 
to permit some special usage scenarios.  

The main advantages of this resources access model are: 
 Simple concept, easy to understand and use 
 High granular access, limited only by what is defined as 

an object 
 Can be added regardless of the secured resources model 
 Easy to implement with minimal overhead 
 Is thought as an additional security layer, modular 
 Permits very flexible administrative scenarios 

REFERENCES  
[1] “Basics of BACnet”, http://kargs.net, 2014.  
[2] ANSI/ASHRAE STANDARD Addendum 135-2001, “BACnet ® — A 

Data Communication Protocol for Building Automation,” 2004. 
[3] Contemporary Control Systems Inc., “BAS automation - Building on 

BACnet,” 2013. 
[4] Z. W. Z. Wang, X. L. X. Liu, and S. W. S. Wu, BACnet intelligent home 

supervisory control system based on multi-agent, vol. 2. 2005, pp. 761–
764. 

[5] W. Kastner, G. Neugschwandtner, S. Soucek, and H. M. Newman, 
“Communication Systems for Building Automation and Control,” vol. 
93, no. 6, 2005. 

[6] R. H. Weber, “Internet of Things – New security and privacy 
challenges,” Comput. Law Secur. Rev., vol. 26, no. 1, pp. 23–30, Jan. 
2010. 



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:4, 2015

951

 

 

[7] R. Ausanka-Cures, “Methods for access control: advances and 
limitations,” Harvey Mudd Coll., 2001. 

[8] E. Lee, “Cyber Physical Systems: Design Challenges,” 2008 11th IEEE 
Int. Symp. Object Component-Oriented Real-Time Distrib. Comput., pp. 
363–369, May 2008. 

[9] D. Basin, M. Clavel, J. Doser, and M. Egea, “Automated analysis of 
security-design models,” Inf. Softw. Technol., vol. 51, no. 5, pp. 815–
831, May 2009. 

[10] S. D. Gribble, “Robustness in complex systems,” Proc. Eighth Work. 
Hot Top. Oper. Syst., pp. 21–26. 

[11] D. Ferraiolo and D. Kuhn, “Role-based access controls,” Natl. Comput. 
Secur. Conf., no. 15, pp. 554–563, 1992. 

[12] R. S. Sandhu, D. Ferraiolo, and R. Kuhn, “The NIST Model for Role-
Based Access Control: Towards A Unified Standard,” in 5th ACM 
Workshop on Role Based Access Control, 2012, pp. 47–63. 

[13] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E. Youman, “Role-
Based Access Control Models,” IEEE Comput., vol. 29, no. 2, pp. 38–
47, 1996. 

[14] M. Nyanchama and S. Osborn, “Access Rights Administration in Role-
Based Security Systems,” DBSec, pp. 1–23, 1994. 

[15] S. Osborn, R. Sandhu, and Q. Munawer, “Configuring role-based access 
control to enforce mandatory and discretionary access control policies,” 
ACM Trans. Inf. Syst. Secur., vol. 3, no. 2, pp. 85–106, May 2000. 

[16] M. Nyanchama and S. Osborn, “Modeling Mandatory Access Control in 
Role-Based Security Systems,” DBSec, no. 1990, 1995. 

[17] D. R. Kuhn, E. J. Coyne, and T. R. Weil, “Adding Attributes to Role-
Based Access Control,” Computer (Long. Beach. Calif)., vol. 43, no. 6, 
pp. 79–81, Jun. 2010. 

[18] D. Kuhn, “Vulnerability hierarchies in access control configurations,” 
Safe Config, IEEE, 2011. 

[19] G. Stoneburner, C. Hayden, and A. Feringa, “Engineering Principles for 
Information Technology Security (A Baseline for Achieving Security), 
Revision A”, 2004. 

[20] K. M. Khan and J. Han, “Assessing security properties of software 
components: a software engineer’s perspective,” Aust. Softw. Eng. Conf. 
ASWEC06, p. 10 pp.–210, 2006. 

[21] H. A. Weber, “Role-Based Access Control: The NIST Solution,” InfoSec 
Read. Room, SANS Inst., 2003. 

[22] N. Kern, C. Kesavan, and A. Daswani, “Foundations of Security,” 
Foundations of Security. Apress, pp. 3–24, 2007. 

[23] A. Josang, B. AlFayyadh, T. Grandison, M. AlZomai, and J. McNamara, 
Security Usability Principles for Vulnerability Analysis and Risk 
Assessment, no. December. Ieee, 2007, pp. 269–278. 

[24] D. R. Raymond and S. F. Midkiff, Denial-of-Service in Wireless Sensor 
Networks: Attacks and Defenses, vol. 7, no. 1. IEEE, 2008, pp. 74–81. 

[25] L. Meyer and W. T. Penzhorn, Denial of service and distributed denial 
of service-today and tomorrow, vol. 2. 2004. 

[26] R. K. Guha, Z. Furqan, and S. Muhammad, Discovering Man-in-the-
Middle Attacks in Authentication Protocols. Ieee, 2007, pp. 1–7. 

[27] B. Aziz and G. Hamilton, Detecting Man-in-the-Middle Attacks by 
Precise Timing, vol. 0. Ieee, 2009, pp. 81–86. 

[28] A. M. Hagalisletto, Errors in Attacks on Authentication Protocols. 2007, 
pp. 223 –229. 

[29] P. R. Babu, D. L. Bhaskari, and C. Satyanarayana, “A Comprehensive 
Analysis of Spoofing,” Int. J. Adv. Comput. Sci. Appl., vol. 1, no. 6, pp. 
157–162, 2010. 

[30] R. Weber and R. Weber, Internet of things: legal perspectives. Springer-
Verlag Berlin Heidelberg, 2010. 


