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A Robust Extrapolation Method for Curtailed
Aperture Reconstruction in Acoustic Imaging
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Abstract—Acoustic Imaging based sound localization using mi-
crophone array is a challenging task in digital-signal processing.
Discrete Fourier transform (DFT) based near-field acoustical holog-
raphy (NAH) is an important acoustical technique for sound source
localization and provide an efficient solution to the ill-posed problem.
However, in practice, due to the usage of small curtailed aperture
and its consequence of significant spectral leakage, the DFT could
not reconstruct the active-region-of-sound (AROS) effectively, espe-
cially near the edges of aperture. In this paper, we emphasize the
fundamental problems of DFT-based NAH, provide a solution to
spectral leakage effect by the extrapolation based on linear predictive
coding and 2D Tukey windowing. This approach has been tested to
localize the single and multi-point sound sources. We observe that
incorporating extrapolation technique increases the spatial resolution,
localization accuracy and reduces spectral leakage when small curtail
aperture with a lower number of sensors accounts.

Keywords—Acoustic Imaging, Discrete Fourier Transform (DFT),
k-space wavenumber, Near-Field Acoustical Holography (NAH),
Source Localization, Spectral Leakage.

I. INTRODUCTION

NEAR-FIELD acoustical holography (NAH) is an es-
sential method for acoustic radiation visualization and

localization using discrete Fourier transform (DFT). How-
ever, due to small curtail aperture in conventional DFT-based
NAH, there are several obstacles when reconstructing acousti-
cal imaging is alarmed such as spectral leakage effect [1],
acoustical deformation, poor regularization on wavenumber
space (k-space) before inverse propagating and other artifacts.
Our focus of this paper mainly belongs to reconstruct the
acoustic sources with minimum spectral leakage effect when
a small grid of sensors is utilized. William and Maynard
[2] [3] introduced near-field acoustical holography for inverse
determination of waveform patterns by means of holography.
Arbitrary form of source areas such as cylindrical, spherical
and other sources is reconstructed by applying DFT-based
NAH, a complete reference in described by E.G. Williams
[4].

Two-dimensional (2-D) DFT and its inverse transform are
employed with Green’s function propagating factor to re-
construct the measured acoustic source. Normally, in order
to avoid reconstruction problems, DFT-based NAH requires
a ratio of 4:1 between measurement and source apertures.
But, in practical implementation, it is more expensive of a
large grid of sensors [5]. Alternatively, when we employ a
small curtailed aperture with less number of microphones
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that increases reconstruction errors, particularly in the edge
of measurement aperture, due to spectral leakage effect of
DFT. In order to avoid the problem of DFT-based NAH and
extend reconstruction to arbitrary surfaces, produce a quite
number of research works using alternative solutions such as
statistically optimized NAH (SONAH) [6], boundary element
method NAH (BEM-NAH) [7] and Helmholtz equation least-
squares (HELS) [8] methods. Currently there are many other
acoustic holography methods suggested for localizing point
and planar sources in [9] [10]. A method proposed by Steiner
et al. removed entirely the usage of k-space and DFT [11].
An iteratively based extrapolation for virtually enlarging the
measurement plane was proposed by E.G.Williams [9]. In
this method k-space regularization and zero-padding were
collectively used to suppress high wavenumber leakage, it-
eration process was repeated until a specified threshold is
not expected. It provided good results for well-known sources
and pre-defined environments whereas active-region-of-sound
(AROS) are unknown with sufficient amount of noise or other
deformation such as an industrial situation, it could fail to
perform well. SONAH is another substitution to the DFT-
based NAH by using spatial convolution to calculate back-
propagation between measurement and assumed virtual source
apertures. However, SONAH requires a long-term computation
due to its spatial domain convolution process to determine
the inverse solution for the acoustical source reconstruction.
In this paper, we propose a simple and an efficient DFT-
based NAH using least-square predictive coding (LSPC). The
proposed method makes DFT-based NAH as a powerful tool
even for a small curtail aperture and reduce the localization
error particularly near the boundary edges. Main idea behind in
this method is to virtually enlarge the measured curtail aperture
before DFT is applied. It ensures that minimal distortions
occur in close to proximity of edges and reduce the high
spectral leakage in k-space. This method triggers to pad
the acoustic data from the known data of the measurement
aperture to the unknown outward curtailed aperture based on
linear prediction, while existing measured curtail aperture is
remained unchanged.

The remainder of this report is organized as follows. Section
II summarizes the basics of acoustical holography and its
related problems. Proposed methodology of extrapolation is
emphasized in Section III. The experiments and simulation
results are shown in Section IV. Section V describes the
concluding remarks and future research directions.

II. BASICS OF FOURIER ACOUSTICS AND ITS PROBLEMS

In planar acoustical holography, a 2-D grid of sen-
sor/micrphones are used for measuring sound source and the
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Fig. 1. Illustration of basics of acoustic holography.

measured sound is back propagated to the assumed source
aperture for reconstruction. A measurement aperture is also
referred as a hologram aperture that has all necessary in-
formation to estimate the unmeasured acoustic values such
as pressure, velocity, intensity, potential and kinetic energy.
Figure 1 shows the basics of acoustical holography, where−→
S0 denotes a boundary of the sound within this region active
sound radiates. zs and zh represent source and measure-
ment/hologram aperture, respectively. When sound is prop-
agated in air then an infinite sphere is formed. As such fixing
a boundary condition is an essential to estimate the sound
source based on Green’s function G(‖s−m‖, f). This is used
to solve boundary conditions either in the form of Dirichlet or
Neumann that expresses how sound radiates from a point of
source to destination. This is described as

s = [sx sy sz]
T ,

m = [mx my mz]
T ,

G(‖s−m‖, f) =
1

4π‖s−m‖e
(ik‖s−m‖), (1)

where f , s , m , and k denote respectively, frequency of the
sound, the source location, microphone/sensor position, and
wavenumber k = 2πf

c , while c represents sound propagation
speed.

Figure 2 illustrates a typical coordinate system of NAH with
radiation planar source, assumed source zs and measurement
apertures zh. Measured sound source is inversely back propa-
gated to the assumed source aperture located at zs with stand-
off distance zd in order to reconstruct the true sound source.

A. Basics of radiation sound source
Rayleigh integral is an essential method to estimate the

sound pressure of the source İt is employed by treating the
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Fig. 2. A coordinate system of NAH, distance from an origin and source
aperture zs, from source aperture to measurement aperture zh and stand-off
distance zd.

source as an infinite number of radiating points. A point source
can be envisioned as a minute sphere vibrating with angular
frequency ω = 2πf , which can be calculated by multiples of
wave frequency f . The spherical pressure around the source
is specified by

p =
A

r
ej(ωt−kr), (2)

where p is the radiated sound pressure which is going to
be estimated, A is the amplitude of the vibration on the
surface, r = ‖s − m‖ is the distance between the source
and measurement aperture, k is the wave number, j is the
unit complex number in the space and t denotes the time.
Certain assumptions are required for implementing Rayleigh
integral in the source prediction. The assumptions are such
as source must be planar and is surrounded by rigid infinite
confound [12] [4]. First assumption is required for integrating
Rayleigh integral to the source aperture. The second one is
necessary that back propagation is executed on the front side
of the plane in order to estimate the sound pressure on one
side of the source, i.e., other side of the aperture and noise
sources are not considered. Based on these assumptions the
Rayleigh integral has been depicted in Fig. 3 and predict the
pressure by

p(x, y, z) =
−iρock

2π

∫ ∫
s

ẇ(x
′
, y

′
, z

′
)
eik|r−r

′ |

|r − r′ | dx
′
dy

′
, (3)

where s is the overall area of the measurement, ẇ(x
′
, y

′
, z

′
is

a velocity of the source and ρo is a density of the material. The
variables x

′
, y

′
, z

′
and |r−r′| denote respectively, axes of the

measurement aperture x , y, z and the distance between the
source and measurement apertures. The speed of the sound
is calculated by c =

√
C/ρ, where ρ represents density of

the particle and C is a co-efficient of stiffness of the material.
Therefore, the sound speed is directly related with the stiffness
of the density. The summation of each differential area dx′, dy′

is used to compute the pressure at each point of the source
[4] [13]. Sampling distance mainly depends on the distance
between the source and measurement |r − r′| apertures. A
smaller distance determines less discrete spatial errors. In
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Fig. 3. Typical illustration of a geometry of Rayleigh integral [4].

order to avoid these errors, sensor spacing in the measurement
aperture should be smaller than the distance between source
and measurement plane [14].

B. Wave propagation

The basic idea of acoustic holography is based on propaga-
tion of waves. It is mainly dependent on the sound pressure
p(x, y, z; t) in different materials that satisfy the homogenous
acoustic wave equation as

∇2p− 1

c2
∂2p

∂t2
= 0, (4)

where ∇2 is the Laplace operator, p represents pressure on
the acoustic plane. The variables c and t denote respectively,
the speed of sound in the material and time-of-propagation.
Cartesian coordinates of the Laplace operator is defined as

∇2 =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
. (5)

Eq.5 is often employed in the study of physical problems
involving the partial differential in both space and time. In
fluid dynamic, Euler’s equation (6) governs flow of the fluid
and assumed to be no stickiness, it represents the dependence
of velocity on pressure of the material as [4]

ρ0
∂�v

∂t
= −�∇p, (6)

where p , �v, ρ0 and �∇ denote respectively, the pressure,
velocity vector, fluid density and divergence operator in the
vector field. A velocity vector consists of three components,
i.e., ẋa+ẏb+żc, where (a, b, c) , ẋ, ẏ, ż represent respectively,
unit vectors and forces at x, y and z directions. This is mainly
based on Newton’s law of motion, Force = acceleration
× mass , mass = ρ0ΔxΔyΔz and fluid density produces,
ρ0

∂ẋ
∂t = − ∂p

∂x , this yields the same for other directions y and
z as well. In the harmonic analysis, i.e., from the time to
frequency domain, p(r; t) = p(r; f)e−i2πft , we can write the
Helmholtz equation as

∇2p(r; f) + k2p(r; f) = 0. (7)

The solution to (7) is Kirchhoff-Helmholtz integral [15]. The
sound pressure and velocity are determined in all points on its
surface �S0 described as

p(r; f) = − 1

4π

∫
�S0[
G(r, r

′
; f)

∂p(r
′
; f)

∂n
− p(r

′
; f)

∂G(r, r
′
; f)

∂n

]
,

(8)

where p(r; f) , p(r
′
; f) and n represent respectively, pressure

to be predicted, pressure on source boundary �S0 and the
normal direction of the boundary surface. G(r, r

′
; f) denotes

Green’s function of Dirichlet boundary condition that the
partial differential conditions produce the value of the function
T = D(r

′
; t) on surface �S0. In order to predict either p or

∂p/∂n in the planar acoustic holography, we can assume that
r
′

and r turn out to be x0, y0, z0 and x, y, z, where x0, y0, z0
and x, y, z signify respectively, the origin of the source and
any points on the hologram plane. If G is selected such that
G = 0 on the source boundary S0, then (8) can be rewritten
as

p(x, y, z; f) =
1

4π

∫ ∞

−∞

∫ ∞

−∞
p(x0, y0, z0; f)

∂G(x− x0, y − y0, z − zs; f)

∂n
dx0dy0.

(9)

Based on Fourier acoustic, NAH method is to be implemented.
The problems associated with the acoustic inverse problems
are necessary because they are important to understand the
process of back propagation in the vibrating surface. Acoustic
vibrations in solid structures essentially involve the propa-
gation of wave motion through the material. Wavelength of
harmonic wave is described as λ. This is called as the spatial
period of a wave shown in Fig. 4. The phase change per unit
distance is expressed as the spatial variation and this is referred
as the wavenumber k = 2π

λ and λ = c/f . The wavenumber
k has the magnitude of wavenumber vector (kx, ky, kz) and
indicates the phase variation speed of the propagation. Any
spatial variation can be analyzed by wavenumber spectrum.
Likewise, we can compute spectrum of temporal variations
ω = 2π/T and T = 1/f .

C. Fourier Acoustic based Wavenumber

In DFT-based NAH, Fourier transform is an essential
method for computing acoustic wave propagation between
measurement and source apertures. DFT decomposes the sig-
nals into plane waves. The continuous Fourier transform is
given as

F (k) =

∫ +∞

−∞
f(x) [cos(kx)− j sin(kx)] dx. (10)

where F (k), k, x and f(x) represent respectively, Fourier co-
efficients, variable in Fourier space, original input variable and
measured signal. Instead of using sinusoids, a common way



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:8, 2012

979

1 1.001 1.002 1.003 1.004 1.005 1.006 1.007 1.008 1.009 1.01
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
A 200 Hz Sinusoid

Time/space

A
m

pl
itu

de

Wavenumber (k) = 2  / 
 = c/f

Temporal Frequency( )= 2  / T
T=1/f

Peak-to-Peak

Temporal period (T) / Spatial period ( )

Fig. 4. Representation of temporal and spatial periods.

of representing the continuous form by the Euler’s formula
(e(−jx) = cosx− j sinx) of (10) is as follows

F (k) =

∫ +∞

−∞
f(x)e−jkxdx. (11)

where k = 2π/λ is the wavenumber, then (11) becomes
wavenumber based Fourier transform and its inverse form is,

f(x) =
1

2π

∫ +∞

−∞
F (k)ejkxdk. (12)

As per our previous discussion, in the vibrating surface
Rayleigh waves are dominant therefore we assume that surface
is flat and infinite stiff confound. Rayleigh integral can evalu-
ate the sound power radiated by a vibrating surface. Generally,
a convolution problem may appear in the Rayleigh integral
for the acoustic wave propagation. It may be resolved by
Fourier transform. That is, convolution integral in the space
domain is equal to the multiplication in wavenumber domain.
In wavenumber propagation, extend Eqs. (12) and (11) to 2-D
discrete forms with N ×M frequency rectangle as

F (kx, ky, z; f)

=
N−1∑
n=0

M−1∑
m=0

p(x, y, z; f)e−j(kxn/N+kym/M),

(13)

p(x, y, z; f)

=

(∑N−1
n=0

∑M−1
m=0 F (kx, ky, z; f)e

−j(kxn/N+kym/M)
)

NM
.

(14)

D. Plane and Evanescent Waves

Measured acoustical signal consists of plane and evanescent
waves. Evanescent wave is a heterogenous short-lived wave
whose amplitude decays exponentially from the source to
measurement aperture and renders NAH in an ill-posed prob-
lem [4]. In addition, evanescent influences more control over
the propagating wavenumber spectrum as shown in Fig. 5a.
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Whereas plane wave has no change in the amplitude as
shown in Fig. 5b, the same case happen in the far-field
acoustical holography also. We assume that a curtail set of
sensors of the measurement aperture receive the approximately
equivalent amplitude as the true sound source radiates from the
source. However, in the NAH, due to evanescent waves not
all sensors in the measurement aperture receive the acoustic
signals as exact as the true source radiates. The deformation
of receiving signals is illustrated in Fig. 5c. Therefore, when
these waves are back propagated to the source, they should
be amplified exponentially. Sensors of measurement aperture
are received both plane and evanescent waves simultaneously
from the acoustical source by satisfying Eq. (7). Assume that
maximum wavenumber of the domain is kmax = π

Δ , where
Δ denotes sensor spacing and k = 2π

λ . The plane waves turn
into evanescent waves when kx or ky is greater than kmax,
otherwise plane wave is related. The wavenumbers relationship
and its errors will be discussed in the following section.

E. Wavenumber and Its Errors

As we discussed previously, Helmholtz Eq. (7) plays an
important role in reconstructing the source. Wavenumber do-
main is essentially involved to meet the boundary conditions.
We can define plane wave as

p(ω) = A(ω)ei(kxx+kyy+kzz), (15)

where kx, ky and kz denote respectively, the directional
wavenumbers in x, y and z directions. Acoustic wavenumber
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k is defined as

k2 = k2x + k2y + k2z ,

k =
√
k2x + k2y + k2z . (16)

By using z-direction as the dependent, we can rewrite (16) viz

kz = ±
√
k2 − k2x − k2y. (17)

Directional wavenumbers kx, ky and kz in (15) satisfy (17),
when wavenumbers of x or y directions greater than k then
the plane wave turn into the evanescent wave. The followings
are the conditions of plane and evanescent waves

Condition 1: If k2 ≥ k2x + k2y then kz =
√

k2 − (k2x + k2y)

and k-space points are within the radiation circle as shown in
Fig. 6. It represents the plane wave with directional wavenum-
bers kx, ky, and kz , with kz real. In this criterion, wavenumber
domain is not involved for considering short-lived evanescent
waves.

Condition 2: Else if k2 < k2x + k2y then kz =

i
√
(k2x + k2y)− k2 , k-space points are outside the radiation

circle and plane waves are treated as evanescent waves. kz
is an imaginary number. This decisive factor is employed
for localizing radiation sources with the minimum distance
variations. In this criterion, we specify the minus sign to
represent the back propagation of plane waves towards the
source in order to localize an AROS.

Condition 3: If k2x + k2y = k2 then k-space points coincide
exactly on radiation circle, the plane waves are propagating
in z-direction and DFT could fail to do prediction. It may
be k = 2π/η minimum failure, where η is one wavelength
across the aperture, if λ = η [16]. Resolution of source
reconstruction using NAH mainly depends on the wavenumber
resolution. It is determined by the size of the aperture in the
measurement. In order to localize entire source, inclusive of
the aperture edges and its derivatives, a method based on zero-
padding based on windowing was suggested before DFT is
applied [7]. An application of large-scale reconstruction is
a challenging process when measurement aperture is smaller
than the source. It is assumed that, in NAH signal processing,

acoustic signals are measured using limitless size of sensors
in order to reconstruct entire radiated sound source. However,
in practice, usage of large-size of sensor is an expensive
one and produces more computational complexity in the
reconstruction. This restriction causes wraparound error and
curtail aperture. Wraparound errors are mainly due to spectral
leakage effect of curtail aperture by applying DFT and its
frequency bins limitations. Generally, padding zeros outside
the measured aperture reduce the spectral leakage by assuming
that radiating source sound outside measurement aperture is
negligible.

F. Finite Aperture Problem

In NAH, a finite number of sensors is utilized to reconstruct
acoustic sources. Due to the discrete Fourier transform over
the finite measurement points, the prediction of sources have
the wraparound errors. However, these errors can reduce by
sufficiently enlarge the aperture by applying zero signals other
than measured part of the signals. A discontinuity of signal
variation between the actual measured acoustic and the padded
zero signals, this discontinuity intensifies at the aperture edges
in the back-propagation [17]. As a result of reconstruction,
discontinuity of measurement aperture is deformed especially
over the edges. In order to reduce this deformation, windowing
is applied appropriately to the synthesized zero-padded aper-
ture. Due to tapering value and multiplication of windowing,
the measured signal of measurement aperture is changed
significantly. The application of window produces more errors
on the measurement aperture. Conservatively, in order to
reduce the reconstruction error as per signal processing, the
measurement aperture should be infinitely larger than the
radiating surface. For practical applications, however, this is
often prohibitive due to constraints pertaining to the size of
aperture as well as computational complexity. In addition,
a finite measurement is processed by a rectangular window
function. They are mainly employed to determine the quality
of data acquisition during the measurement. We can define a
spatial rectangular function in x and y directions as,

Rx(x) =

⎧⎪⎨
⎪⎩
0, if |x| > Wx/2,

1/2, if |x| = Wx/2,

1, if |x| < Wx/2,

(18)

Ry(y) =

⎧⎪⎨
⎪⎩
0, if |y| > Wy/2,

1/2, if |y| = Wy/2,

1, if |y| < Wy/2,

(19)

where Rx, Ry , Wx and Wy denote respectively, spatial rectan-
gular function in x,y directions, spatial interval width in x and
y directions. In addition to the time discretization sampling,
an acoustic imaging of the discrete system requires spatial
sampling to the finite number of sensor positions with the finite
spatial intervals. The impulse train function used to represent
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spatial sampling in the acoustic imaging is

I(x) =
∞∑

n=−∞
δ(x− xn),

I(y) =

∞∑
m=−∞

δ(y − ym), (20)

where δ(), I(x), I(y), xn and ym represent respectively, Dirac
delta function, impulse train functions in x and y directions,
spatial discrete coordinates in x and y directions. Using (18),
(19) and (20), we can describe the pressure as

p(xn, ym) = p(x, y)Rs(x)Rs(y)I(x)I(y). (21)

Finite boundary of the measurement aperture in k-space can
be computed based on the angular spectrum as

p(kx, ky, zh)

=
N−1∑
n=0

M−1∑
m=0

p(xn, ym)e−j2π(kxn/N+kym/M).

(22)

Discrete solution to the wave equation in k-space can be
written as

p(kxn, kym, z) = p(kxn, kym, zh)e
jkz(z−zh). (23)

As per our previous discussion, In k-space, kz is determined by
(17), It can provide a solution for plane waves, k2x+k2y = 0 and
k2x + k2y ≤ k2 denote respectively, plane waves in z-direction
and kzis real. Evanescent waves components are represented
by k2x + k2y > k2 and kz is imaginary.

If propagation constraints apply to the discrete wave
Eq. (23) then it reveals the phase shift as a result whereas
in k-space, evanescent waves are amplified through multipli-
cation with an exponentially increasing power of kz . For this
reason, before performing DFT and wavenumber operations
over the measured hologram data, we possibly do the spatial
preprocessing. There is no direct sampled data of the sound
field outside the measurement aperture as illustrated in Fig. 7.
Consequently, the k-space is also resolved from the ill-posed,
spatially sampled and finite aperture problems. The choice of
a windowing function is scrutinized as a procedure to diminish
the order of the discontinuity at the edge of the intermittent
extension of the aperture. The edges over the hologram plane
can be estimated either by smoothly attenuating the data
near the edges to zero or extrapolating sampled data on the
partially sampled regions. Furthermore, we have to estimate
the unknown acoustic signal outside of the hologram aperture.
If the wavenumber of N basis set of intervals is defined then
there exists a signal in the defined set with a wavenumber
not exactly fitting on one of the basis [1]. The windowing
function transforms this signal to the basis wavenumber closest
to the original wavenumber of the signal, therefore, k-space
spectrum resolution is low. The discontinuous edge between
aperture and measured area indicates the presence of non-
appropriate intermittent signals. It causes leakage of wavenum-
ber spectrum. This means that only ill-posed aperture data
are available and an important process should be involved to

Hologram plane  with
finite measurement points

and finite aperture

 Partially sampled data in due to
finite aperture

Fig. 7. Finite aperture and partially measured data at hologram plane.

determine the suitable k-space with as much conserved spatial
data as possible. In addition to that, it implies a relationship
between the amount of k-space leakage and loss of acoustic
pressures, principally in close proximity to the edges. If a large
aperture size with more sensors in involved, then less amount
of localization errors will occur. Whereas we utilize a small
aperture with less number of sensors, it causes larger errors
with respect to wavenumber leakage, inaccurate localization
and other deformations, specifically around edge area. A
method is required to pad the acoustic data in the borders of
the hologram plane outward, while the true acoustic measured
data is remain unchanged. It tends to localize the source with
minimum number of leakage at the k-space domain.

G. Zero-padding Problem

In order to interpolate among the basis of wavenumbers,
we can possibly utilize zero-padding on the edges. The edges
and all of its derivatives in the neighborhood is set to zero.
So that, we can apply DFT on the zero-padded spatially
sampled data to get the k-space spectrum. It causes free of
periodic image at the wavenumber spectrum. Nevertheless,
due to the finite number of sampling points, we can make
discrete wavenumber bins available to map the data on the
measurement aperture. The discrete k-space is a conspiring of
the continuous spectrum on the set of available basis of k-
bins in the wavenumber domain. It has the remaining set of
unknown spatial data in k-space to exactly match the discrete
of the wavenumbers due to its periods. An imperfect resolution
occurred in k-space is mainly due to finite length of the
spatial aperture. We extrapolate the new samples with zero
value then it increases the spatial aperture and computing
complexity of the DFT. For example, if every single portion
increases higher than the actual aperture size then it reflects
the numbers of bins b in k-space as k = 2π/(N+b). A greater
number of wavenumbers are distinguished from the spectrum.
Even though the zero-padding may not increase the spectral
resolution in k-space, it can increase the spatial resolution
over the measurement plane alone. On the other hand, by
expanding the N samples by n samples, it demands O(N +
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n logN+n) computational complexity. Moreover, it is notable
that assumption of padding zeros on unmeasured acoustic field
does not increase spectral resolution on wavenumber domain.
A one-dimensional linear prediction algorithm proposed to
estimate acoustic signal outside the measurement aperture [1].
However, in order to increase spectral resolution, we require
an efficient method to estimate the unmeasured acoustic signal
outside the measurement aperture.

H. Aliasing in Estimating Pressure

Aliasing refers to the effect which causes different signals
to be indistinguishable i.e., aliases of one another, when
sampled. It is also referred as the distortion happened when
consequences of the reconstructed signals are different than the
discrete samples and the original continuous signals. The effect
of anti-aliasing makes the signals to be more distinguishable.
In order to avoid aliasing during the measurements, we have
to properly place the sensor with a suitable distance between
them. For that, the Nyquist sampling rate is considered, which
is a minimum sampling rate needed to avoid the aliasing [14].
This rate is normally the double of the highest frequency hf

of non-zero sound pressure contained in the measured signal,
i.e., Nr = 2hf . In general, sampling can be temporal sampling
(time domain) or spatial sampling (space domain). In the
former, sampling is in time Δt and the Nyquist frequency
is computed as Nf = 1/2Δt. Whereas in the latter, sensor
separation distance is Δ and Nyquist wavenumber becomes
Nk = 1

2
2π
Δ = π

Δ . If measured signal frequencies are higher
than the Nyquist frequency then it will fold back to the
lower frequency. In order to distinguish spatial signals properly
among the sensors, we have to avoid the spatial aliasing among
the wavenumbers, which means that constraint Nk > k should
be satisfied thus the minimum sensor space as Δ = λ/2, where
λ denotes the wave length of a propagating wave.

In NAH, signal measurements are based on the discrete
sampling system and is also affected by the errors due to
discrete measurements. In order to avoid aliasing between the
sensors at hologram plane, we are in need of utilizing the
Nyquist wavenumber constraint. Furthermore, sensor separa-
tion distance Δ should also be less than the distance between
measurement and source md, aperture as Δ < md. For exam-
ple, if a wave length of the sampling space is λ = 0.1 then
sensor spacing becomes Δ = 0.1/2 = 0.05 m. We assume that
a hologram is required with signal-to-noise ratio of 60dB and
the spatial resolution as 0.05 m, then measurement distance is
computed as md < (0.05 ∗ 60)/27.2875271(20 ∗ pi ∗ log(e))
= 0.1099 ≈ 0.1 and sensor spacing should have a constrain
of 0.05 m < 0.1 m.

III. EXTRAPOLATION OF CURTAILED APERTURE

Structural vibration and sound radiation have related in
prediction process of acoustic holography. Vibration passes
on solids as a basis whereas sound radiation is created as a
consequence. If basis is characterized, then the consequence is
going to be predicted based on the vibration structural model.
This is known as forward prediction. However, in the inverse
prediction, the consequence is recorded and basis is going to

be computed, that is, measuring the sound and predicting the
source. This is referred to as inverse prediction. Due to the
inadequate and incompleteness, the latter becomes ill-posed
problem which is more complicated than the former. Based on
these phenomena, our approach is employed for reconstructing
vibrating sound sources. The challenge of this method is to
localize sound source exactly at edges of aperture. Based on
our previous discussion, a significant part of the edges in
measurement aperture is affected by windowing. In order to
reduce the large error, it is necessary to virtually enlarge the
measurement aperture and avoid discontinuity of signals at
the edge of measurement aperture. This further ensures the
smooth transition of data between synthesized aperture and
measured aperture without altering data true measured acoustic
signals. An approach of spatial preprocessing is incorporated
with the existing method of traditional NAH. The measured
true 2-D acoustic signals p(x, y, zh; f) in the spatial domain
are transformed into wavenumber domain by means of angular
spectrum as p(kx, ky, zh; f). Before transforming a spatial
preprocessing is performed as shown in Fig. 8. This spatial
preprocessing is mainly used to enhancing the measurement
aperture and makes it suitable for 2-D Fourier transform in or-
der to reduce the spectral leakage. In addition, a regularization
is required on k-space data as a post-processing to exerting
influence the inversely propagated wavenumbers in order to
achieve better inverse Fourier coefficients. Subsequently, it
intends to increase accuracy of reconstruction. In order to
reconstruct the source field at zs = zh, wavenumber pressure is
multiplied by inverse propagator factor, e−jkzzd . Wavenumber
coefficients are inverse transformed as p(x, x, zs; f).

In our approach, we have used zero signals to fill the non-
sampled area which occur in the neighborhood of the edges
and derivatives.

A. Choosing Coordinate and Hologram Grid
In planar geometry, rectangle coordinate system is mostly

preferred. Once it is chosen, we can make hologram grid
surface. The span of the hologram plane is defined as hn

and hm, the size of the sensor grid denoted as SN and SM

and then the sampling interval can be calculated. In order
to prevent aliasing problem, the sensor spacing should be
less than the half of the wave length and the measurement
distance between the hologram and prediction planes. This
is because large sensor spacing will cause the insufficient
spatial sampling and introduce aliasing in the prediction. Once
the sensor spacing and measurement size are specified, the
total measurement points can be determined. Furthermore, in
planar NAH, the size of the aperture should be a power-
of-two, normally, 22 times as size as the source surface so
that adequate signals can be received to localize entire active
sources. For example, a spatial resolution is calculated based
on the wavelength of the vibrating structure, if the spatial
resolution τ is 0.06 m, then minimum wavelength λ of the
vibrating surface is τ = λ/2, 2∗0.06 = 0.12 m. Since acoustic
spatial discretization are determined we require a minimum
number of nodes per wavelength. This is the case consider
in the experiment. In the next section, we discuss the setting
signal parameters and extracting single frequency.
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B. Setting Signal Parameters and Extracting Frequency

Setting up the signal parameters is an essential task for
free-field environment. The procedures are as follows, define
the reverberation time Rt = cv/ssac, where c, v, ss and ac
denote respectively, speed of the sound in the environment,
the volume of the room, total surface area of a room, and the
average absorption coefficient of room surfaces. Signal speed
is defined based on the type of vibrating structure which we are
using for the application. Furthermore, it can also be defined
based on modulus of elasticity, Poisson’s ratio, density kg/m3

and coefficient of absorption. After that sampling frequency fs
has been specified.

If a source is radiate a single time frequency pressure field
then all the sensors in the measurement plane will capture a
signal having this time frequency. So that, in order to extract
the single frequency, the time series recorded by each sensor
are transformed into Fourier coefficients. Then we find the
index of maximum coefficient of the fourier spectrum of each
sensor, and fetch the median number of these indexes to be
the frequency that we want to extract. Then, coefficients are
directly chosen according to this index,and then multiplied
with the corresponding exponential term. Generally, consider-
ing the Nyquist theorem, the sampling frequency should be
twice the frequency of the signal. For this reason, we will
only consider the the frequency-span in the first half of the
transformed spectrum.

This method could fail due to the dependence of peak
amplitude of Fourier spectrum and finite aperture problems.
furthermore, extraction of median frequency is not always the
case in the practical implementation among the entire sensors
of the measurement plane. It has the computational complexity
of o(n2 × Nlog(N)), where n and N denote respectively
number of sensors and length of data recorded by each sensor
in the measurement plane.

That’s why, we propose single frequency extraction ap-
proach based on the configuration of measurement plane. Here,
in accordance to the touch acoustic wave and measurement
plane’s wavenumbers, single frequency has been extracted. In
this method, we find the best frequency that is suitable for a
measurement plane, with a specific aperture size and sampling
space to capture. For example, we have an aperture size Am

and Ns sensors have been utilized for measurements then we

assume that the largest wavenumber of the pressure field can
be represented without aliasing is as

kmax = π/Δ, (24)

where Δ is sensor spacing. We assume that a suitable
wavenumber contains same amount of evanescent wave and
propagating wave. That is, the acoustic wavenumber should
be

k =
kmax

2
= π/2Δ. (25)

And the acoustic wavenumber can also be calculated by

k = 2πf/c, (26)

which means that

2πf/c = π/2Δ. (27)

Thus we can find that the suitable frequency should be

f = (πc/2Δ)/2π = c/4Δ. (28)

Thus we can extract the suitable frequency. And o(1) is
the computational complexity alone. In practice, after this
frequency, which we will later used for back propagation,
is extracted, we can then determine the suitable sampling
frequency of each sensors. which can be set as thrice as
3f = 3(c/4Δ).

C. Localization of Touch Impact

Touch impact Localizing is a process to exactly locate
the AROI among other coarse of the poses. Normally, the
NAH computes intensity field of radiated sources. As per our
work is concerned, we aim to develop a system to localize
the finger impacts as an AROI. The intensities of impact
are measured to locate the peak amplitude of the touch
source. However, a main challenge of NAH is that it treats
the source of sound as stationary and localize the sources
entirely dependents on the size of the aperture. We numerically
simulate the touch impact source. Fig. 9 shows its impulse
responses. Once an environment is formed, the finger taps
amplitudes have to be filtered according to impulse response
of the environment. This is shown in Fig. 10. It reveals that
impact of the finger may have different size and amplitudes.
The amplitudes variations depend on the force of the finger
tapping on the surface and also distorted by different kinds of
external artifacts such as room temperature, noises, reflection
media and other factors. Due to these factors, sensors in the
measurement plane may receive distorted signals. From these
amplitude variations of signals, exactly locating an impact
is a difficult task. Especially, in the application of human-
computer interaction, most of the factors would produce the
inaccurate localization in the finger touch or drag. Due to
various artifacts, predicted source in the back propagation may
not be the same as true finger impact position. In this work,
localization has been performed over the finger impact and
predict the true source using complex k-space. In that, DFT
has been performed on measured signals with wavenumber
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filter and obtained coefficients of regularized hologram plane.
These coefficients are back propagated to the prediction plane.
It is based on the inverse DFT with wavenumber filter. Once
finding the peak among the inverse coefficients, we can treat
that peak inverse coefficient as an active region touch impact
on the surface.

D. Increase the Spatial Resolution using Zero-padding

In connection with our previous works [18] [19], in this
is research paper, we enhance the spatial resolution of the
curtail aperture. Normally, due to the finite length of the
spatial aperture, a fixed amount of resolution is appeared in
the k-space. In order to increase the k-space resolution in
both spatial and spectral, zero-padding is mainly performed
for extrapolating a new pieces of samples with zero values.
In addition, the prediction wraparound errors which occur in
the inverse Fourier transform are also minimized by padding
the zero samples hence the size of the hologram plane hm,hn

becomes twice as the size as the hologram plane.
The partially sampled signals are synthesized by the zero

samples in close to the edge positions by enlarging the
hologram data virtually. Sampled data of the measurement
plane is synthesized as (29), (30), (31) and (32) represent z1,
z2, z3 and z4 regions of zero-crossing in the counterclockwise
direction, respectively,

z(zm, zn)(zm/2)···hm,(zn/2)···hn
={

p(hm, hn), if hm > (hm/2) and hn > (hn/2),

0, otherwise
(29)

z(zm, zn)(zm/2)···1,(zn/2)···hn
={

p(hm, hn), if (hm/2) > 1 and hn > (hn/2),

0, otherwise
(30)

z(zm, zn)(zm/2)···1,(zn/2)···1 ={
p(hm, hn), if (hm/2) > 1 and (hn/2) > 1,

0, otherwise
(31)

z(zm, zn)(zm/2)···hm,(zn/2)···1 ={
p(hm, hn), if hm > (hm/2) and (hn/2) > 1,

0, otherwise
(32)

where z(zm, zn) and p(hm, hn) denote respectively, synthe-
sized plane and measurement plane. In real practice, while
localizing AROI at the edges, it is an essential to expand the
measured aperture and ensure that AROI is not positioned in
close proximity to the perimeter of the edges. However, our
approach is able to localize sources near to the perimeter of the
measurement plane and makes the smooth transitions without
misplacing the original measured signals. This synthesizing
method mainly deals with appending the samples with zeros
but not predicted signals are padded in the derivative regions.
For that, we require a method which predicts the pressure
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Fig. 9. Impulse response of the source with multi channel single response
filter.

at non-sampled regions instead of simply padding with zeros.
Nevertheless, this method enhances the resolution on hologram
plane especially at discontinuity of non-sampled boundaries.

E. Wavenumber Transforming

In this section, complex wavenumber is utilized for lo-
cating AROIs using [18]. The synthesized plane is used
for transforming measured pressure into Fourier coefficients.
The size of the wavenumber is determined based on the
synthesized plane as, kn, km and generate linearly spaced
vectors for structural wavenumbers viz Δkx = π

zmΔ and
kx = (− zm

2 ,− zm
2 + 1, ..., zm

2 − 1) × Δkx, and Δky, ky is
the same.

Perform FFT over synthesized zero-padded data and com-
pute Δdx and Δdy for wavenumber spacing between x and y
directions respectively as

Δdx = (2π/Δx)/zm, (33)
Δdy = (2π/Δy)/zn, (34)

where Δx and Δy represent sensor spacing in x and y
directions of the synthesized plane respectively. In order to
do the wavenumber transforming and inverse propagation, the
following operations are performed as follows

kpro = k2, (35)
kx = Δdx(kxi − 1), (36)
ky = Δdy(kyi − 1), (37)

kxy = k2x + k2y, (38)
(39)

p(kx, ky) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
kz =

√
kpro − kxy,

z(zn, zm)e(ikzzd), if (kpro >= kxy),

kz =
√

kxy − kpro,

z(zn, zm)e(kzzd), otherwise

(40)

where p(kx, ky) and zd = zh − zs denote wavenumber coeffi-
cients, the distance between hologram and source, respectively.
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After wavenumber transforming, backward propagation and
inverse FFT are carried out to localize the AROIs.

Naturally, a kind of jagged truncation is produced by the
finite aperture. It causes impractical wavenumber artifacts. The
high wavenumber artifacts have minimized by applying 2D-
windowing with zero-padding. This process minimizes the
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discontinuity of non-periodic signals and high wavenumber
artifacts. It ensures the smooth transition of data between
measured data and padded zeros. Furthermore, we can extend
this process in the inverse prediction to avoid the magnifica-
tion of errors occurred in the evanescent components due to
exponentially decaying in the localization.

Because of spatial preprocessing, the resolution of source
localization will be improved and source near the edge of
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measurement plane can be predicted rather accurately as
well. Here, The whole wavenumber space, propagating or
evanescent is employed for localizing impact point source.
The spatial FFT is used for the prediction process, in that,
transformed pressure coefficients are computed by exponential
of kz and zd. This has been carried out, if k-space points are
within or on the radiation circle. If k-space points are outside
the radiation circle then pressures coefficients are calculated
by exponential of inverse complex-space, kz and zd. Fig. 11
shows the zero-padded and wavenumber transformation using
FFT. After transforming the zero-frequency components are
collected to the center of the plane to evaluate the frequency
variation among the measured pressure. The wavenumber
response of the pressure coefficients are computed and their
absolute deviations are studied. This is depicted in Fig. 12. It
shows that transforming coefficients in complex space domains
(evanescent) is essentially involved in predicting the sources
of the entire surfaces regions.

Inverse transformation is carried out for back propagating
the measured signals. After inverse transforming, a recovering
zero-padding module has been invoked to get back the true
pressure in order to retrieve the unmeasured data from the
measured data set. During the experiments, the average peak-
signal-to-noise ratio was around 15dB. To do the retrieving
phenomenon, we could do the computation on wavenumber
domain before performing the inverse transform. In the inverse
problem, the propagator amplifies the high spatial frequency
evanescent waves as the sound field which is to be propagated
back towards the source. Due to spatial noise, wavenumber has
a peak content but it not related with the spatial data. Further-
more, during the measurement, true pressure may convolve by
spatial noise due to the factor of evanescent wave as a source in
propagation plane. The sources of noise may include position
of microphone, calibration, mismatches and other random
sources. In order to tackle the evanescent wave, complex k-
space would have been comprised in localizing source point.
If the real k-space is single-handedly incorporated then the
wavenumber domain has considered for the propagating wave
alone so that wavenumber in the imaginary part abandoned
from the predication plane. Therefore, it produces less accu-
racy in the source localization of radiation points. This will
be discussed in the result analysis.

F. Error Divergence

The maximum reconstructed data has been treated as pre-
dicted touch source. Divergence between actual source and
predicted source are computed as

{pmax, px, py} = max(|Re[bk(i, j)]|), (41)

pd =
√

(tx − px)2 + (ty − py)2, (42)

where pmax , px , py , tx and ty denote respectively, the
maximum of reconstructed data, maximum peak at x , y
directions and ground sources. Re[bk(i, j)] is a real part of
back propagated data. By using pmax, a maximum peak in
reconstruction has been calculated for localizing the predicted
source(pd).

IV. RESULT ANALYSIS

As per our previous discussion, the measurement position
was set by the computing as (43)

Ns = (Ss ∗Am)/Δ2, (43)

where Ss is the total square meter of vibrating source, Am is
the maximum aperture size that we require for the hologram
plane, Δ is the sensor spacing and Ns represents number of
measurement positions.

In our experiment, source size (Ss) was 0.36 m2, mea-
surement spacing was 0.02 m and maximum aperture size
was the same as the source,i.e., Am = 1. As far as hologram
intensity is concerned the minimum wave length may be as
twice as spatial resolution, i.e., λmin = 2 ∗ τ . In addition,
measured acoustic data set was obtained by the spatial discrete
dimension so that we required minimum number of nodes per
λmin. This may be around 2π/θ (θ = 60o) , i.e., it is a factor
to ensure the satisfactory level of spatial resolution in the
prediction. Thus, we utilized 900 (0.36/0.022) measurement
positions in the hologram plane. By using these computations,
a experimentation set up was simulated for the result analysis.
Fig.13 shows the result of prediction source and distance
measures. It reveals that incorporation of complex k-space
provided mean distance of ±0.1802 cm in the prediction
whereas the real k-space distance mean was ±0.6766 cm. A
larger distance of source prediction may cause the false alarm
in the localization. Therefore, complex k-space caused better
accuracy than real plane in the prediction.

A. Prediction of Unmeasured Data

As we retrieved unmeasured data from measured signals the
estimated prediction data set was evaluated to determine its
efficacy in back propagation. It was carried out by evaluating
peak-signal to noise ratio (PSNR) between the measured and
back propagated data sets. Fig. 14 shows various occurrence
of prediction of unmeasured or reconstructed data and its
MAC and PSNRs. Fig. 15 shows reconstruction errors and
its residuals. In our experiment, an average of 12.5dB PSNR
was obtained in the entire prediction process. It revealed that
this approach afford well reconstruction than the real k-space
method.

B. Changing Source Directions

We conducted four phases of experiments on unmeasured
data to estimate the localization sources. During the first
phase, we made x direction sources as fixed and altered in
z sources sequentially by 0.15 cm. It produced mean distance
of 0.1802 cm for the complex k-space and 0.6766 cm for
the real k-space. The experiment result is depicted in Fig. 18.
In second phase of experiment, z direction coordinates were
fixed and x directions were changed, it provided that no mean
distance change was in complex space but real space mean
distance was 0.6115 cm. This is illustrated in Fig. 19.

Both x and z directions were altered in the third phase of ex-
periment. Localizing mean distance of complex wavenumber
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Fig. 14. Reconstructed pressure zd = 0.2m, f = 400Hz.
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Fig. 15. Reconstruction error and its residuals on edges of the measurement plane.
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Fig. 16. Linear predictive based extrapolation and its reconstructed pressure zd = 0.2m, f = 400Hz.
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Fig. 17. Linear predictive based extrapolation reconstruction error and its residuals on edges of the measurement plane.
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Fig. 18. Localizing distance in Prediction with fixed in x and variable in z.

was 0.1364 cm and real space was 0.5631 cm. Fig. 20 depicts
the localization distance in prediction source by varying both
directions. As compare to previous two phases, this phase pro-
vided improved localization mean distance. It was 0.1364 cm
localizing distance. In the next phase of experiment, we pre-
pared an experiment setup by randomly altering measurement
spacing. The localizing mean distance was 0.1350 cm and
0.6170 cm in complex and real spaces, respectively. This is
shown in Fig. 21. Table I tabulates the localization distances of
four phases of experiments. Collectively, an average distance
of 0.6168 cm in the real k-space and 0.1579 cm in the
complex k-space were reported by our approach. From these
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Fig. 19. Localizing distance in Prediction with fixed in z and variable in x.

experiments, we observed that incorporation of complex k-
space in the wavenumber domain was found to be produced
efficient localization in predicting the sources.

C. Discussion on Localization

Localization of active sources is an important work in this
paper. Here, we have made a practice environment to simulate
predicted distance by measuring single active frequency with
zero-padding. During the transformation and back propagation
the measured data were enveloped with complex k-space
domain. As a result, considering complex plane produced an
improved unmeasured data set as well as localization distance
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was also efficiently minimized as compare to the real space.
Spatial resolution is a core problem in the near acoustic holog-
raphy, we utilized quite number of measurement positions
according to the minimum wavelength and resolution. It is
mainly due to evanescent waves that decay exponentially in
diverge distance. In order to improve the spatial resolution
in the hologram plane within the acoustic wavelength, it is
essential to obtain measurements in the near field. So that
we include evanescent waves in the back propagation process
to achieve enhanced localization distance. In the case of
evanescent wave, if real k-space was alone included in the
back propagation then the wavenumber domain enveloped only
for the propagating waves so that wavenumber propagation in
the complex plane was abandoned from the predication plane,
as a result, it produced less accurateness.

D. Further Research

This paper discloses more research options in the area of
acoustic holography. Even though, we improved the disconti-
nuity of signals and enhance the smooth transition of data from
the source to hologram plane, a further research is required
for improving the spectral resolution on wavenumbers before
transforming into Fourier space. A problem of finite aperture
can be minimized by increasing the spatial resolution based
on predicting impulse responses from the known the response
instead of synthesizing by zero impulses. Furthermore, an
extrapolation algorithm is required to incorporate predicting
impulses from its neighborhood pressure with 2D windowing.
Here, we have employed 2D Tukey windowing with zero
impulses extrapolation method. Main objective behind our
method is to enhance the spatial resolution which intends
to improve the accuracy of localization between true and
predicted sources. However, due to high wavenumber arti-
facts, zero-padding may not enhance the spectral resolution
in k-space. But expanding the N samples by n resulting
O(N + n logN + n) computational complexity. Thus, we
require a method to reduce the computational complexity and
improve spectral resolution in k-space that is to be opted for
reducing spectral leakage with less order of computation. On
the other hand, instead of extrapolating the finite aperture
edges and its derivatives, we can also interpolate or fill-up
the breaches in the hologram aperture. This allows the use
of several patches along the active-region-of-interest without
equally distant rectangular measurement grids. Furthermore
we require a spatial post processing on the predicted plane.
It enhances the resolution after inverse propagation by means
of applying filter over the prediction plane. This process could
further improve the localization accuracy.

V. CONCLUSION

In this paper, a method of source localization based on
complex k-space wavenumber was proposed. We simulated
a empirical environment to predict the touch impacts. An
incorporated complex k-space wavenumber was employed for
the prediction process with zero-padding and 2D windowing.
It is observed that complex k-space provided an improved
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Fig. 20. Localizing distance in Prediction with variable in x and variable in
z.
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Fig. 21. Localizing distance in Prediction with random in x and z.

accuracy in terms of predicting the sources rather than invok-
ing only on real k-space. Furthermore, the reconstruction of
prediction plane was also done to retrieve an enhanced version
of the measured pressure. It assisted us to reinstate sufficient
unmeasured data from the ill-posed data set. We studied that
the problem of predicting unmeasured data has been resolved
by the wavenumber complex plane and provided an average of
0.1579 cm localization distance between the true and predicted

TABLE I
LOCALIZATION ACCURACY IN DISTANCE

Phases of Experiments Localization Distance(cm)

Real k-space Complex k-space

Fix. x Var. z 0.6766 0.1802
Var. x Fix. z 0.6115 0.1802
Var. x Fix. z 0.5621 0.1364

Rad. x Rad. z 0.6170 0.1350

Mean distance 0.6168 0.1579
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sources. Here, we resolved the finite aperture problem by zero-
padding and windowing. However, an efficient exploration and
interpolation approach will be required to enhance the removal
of truncation effects transpiring on the finite aperture. This will
prevent the requirement of huge measurements in the hologram
plane therefore back propagation can be done with a smaller
measurement data.
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