
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:3, 2008

804

Abstract—The requirement to improve software productivity has

promoted the research on software metric technology. There are
metrics for identifying the quality of reusable components but the
function that makes use of these metrics to find reusability of
software components is still not clear. These metrics if identified in
the design phase or even in the coding phase can help us to reduce the
rework by improving quality of reuse of the component and hence
improve the productivity due to probabilistic increase in the reuse
level. CK metric suit is most widely used metrics for the object-
oriented (OO) software; we critically analyzed the CK metrics, tried
to remove the inconsistencies and devised the framework of metrics
to obtain the structural analysis of OO-based software components.
Neural network can learn new relationships with new input data and
can be used to refine fuzzy rules to create fuzzy adaptive system.
Hence, Neuro-fuzzy inference engine can be used to evaluate the
reusability of OO-based component using its structural attributes as
inputs. In this paper, an algorithm has been proposed in which the
inputs can be given to Neuro-fuzzy system in form of tuned WMC,
DIT, NOC, CBO , LCOM values of the OO software component and
output can be obtained in terms of reusability. The developed
reusability model has produced high precision results as expected by
the human experts.

Keywords—CK-Metric, ID3, Neuro-fuzzy, Reusability.

I. INTRODUCTION

HE aim of Object Oriented (OO) Metrics is to predict the
quality of the object oriented software products. Various

attributes, which determine the quality of the software, include
maintainability, defect density, fault proneness, normalized
rework, understandability, reusability etc. The requirement
nowadays is to explore the relation of the reusability attributes
with the metrics and to find how these metrics collectively
determine the reusability of the software component. To
achieve both the quality and productivity objectives, it is
always recommended to go for the software reuse that not
only saves the time taken to develop the product from scratch
but also delivers the almost error free code, as the code is
already tested many times during its earlier reuse.

The manuscript was submitted for review on June 2, 2006.
Parvinder S. Sandhu is Assistant Professor with Computer Science &

Engineering Department, Guru Nanak Dev Engineering College,
Ludhiana(Punjab)-141006 India (phone: +91-98555-32004; Fax: +91161-
2490339; Email: parvinder.sandhu@gmail.com, parvsandhu@yahoo.co.in)

Hardeep Singh is Professor and Head with Computer Science &
Engineering Department, Guru Nanak Dev University, Amritsar (Punjab)
India.

A great deal of research over the past several years has been
devoted to the development of methodologies to create
reusable software components and component libraries, where
there is an additional cost involved to create a reusable
component from scratch. That additional cost could be
avoided by identifying and extracting reusable components
from the already developed large inventory of existing
systems. But the issue of how to identify good reusable
components from existing systems has remained relatively
unexplored. Our approach, for identification and evaluation of
reusable software, is based on software models and metrics.
As the exact relationship between the attributes of the
reusability is difficult to establish, a Neural Network approach
could serve as an economical, automatic tool to generate
reusability ranking of software [1] [2] by formulating the
relationship based on its training. When one designs with
Neural Networks alone, the network is a black box that needs
to be defined; this is a highly compute-intensive process. One
must develop a good sense, after extensive experimentation
and practice, of the complexity of the network and the learning
algorithm to be used. Neural nets and fuzzy systems, although
very different, have close relationship: they work with
impression in a space that is not defined by crisp, deterministic
boundaries [3]. Neural network can be used to define fuzzy
rules for the fuzzy inference system. A neural network is good
at discovering relationships and pattern in the data, so neural
network can be used to preprocess data in the fuzzy system.
Furthermore, neural network that can learn new relationships
with new input data can be used to refine fuzzy rules to create
fuzzy adaptive system. With the objective of taking advantage
of the features of the both [4], we used Neuro-Fuzzy approach
to economically determine reusability of OO-based software
components in existing systems as well as the reusable
components that are in the design phase. Inputs to Neuro-
fuzzy system, are provided in form of tuned WMC, DIT,
NOC, CBO , LCOM values of the OO-based software
component and output is be obtained in terms of reusability.

II. BACKGROUND

It was Selby [5], who tried to identify a number of
characteristics of those components, from existing systems,
that are been reused at NASA laboratory and reported that the
developers there has achieved a 32 percent reusability index.
Dunn and Knight in 1991[6] also experimented and reported
the usefulness of reusable code scavenging. Chen, Nishimoto
and Ramamoorty briefly discuss the idea of subsystem
extraction by using code information stored in a relational

A Reusability Evaluation Model for OO-Based
Software Components

Parvinder S. Sandhu, and Hardeep Singh

T

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:3, 2008

805

database [7]. They also describe a tool called the C
Information Abstraction System to support this process.
Esteva and Reynolds [8] describe the use of Inductive
Learning techniques based on software metrics used to
identify reusable modules. Their system was able to learn to
recognize reusable components. Caldiera and Basili [9]
describe a tool, called Care, that helps identify reusable
components according to a set of “reusability attributes” based
on software metrics. These attributes include measurement of
how useful the component is in the problem domain, how
much it would cost to reuse it, and its quality. The idea behind
Care is that it will do the initial identification of the
components that have strong reusability characteristics, and
then a domain expert will do a further examination of these
components to determine their appropriateness to the domain,
and package them to reuse. Mayobre [10] describes how these
techniques can be extended and used to help in identifying
data communication components at Hewlett-Packard.

Arnold [11][12] mentions a number of heuristics that can
used be for locating reusable components in the Ada source
code. The heuristics count the number of references to a
particular procedure, identifying the loosely coupled modules
and identifying modules that carry high cohesion.

Selby’s recent experimental study [13] has identified two
categories of factors that characterize successful reuse-based
software development of large-scale systems: module design
factors and module implementation factors. The module
design factors that characterize module reuse without revision
were: few calls to other system modules (i.e. low coupling),
many calls to utility functions (i.e. high cohesion), few input-
output parameters, few reads and writes, and many comments.
The module implementation factors that characterize module
reuse without revision were small size in source lines and have
many assignment statements (i.e. low Cyclometric
complexity). The modules reused without revision had the
fewest faults per source line, and lowest fault correction effort.
The modules reused with major revision had the highest fault
correction effort and highest fault isolation effort as well as
the most changes per source line and highest change
correction effort.

III. OO-BASED REUSABILITY MODEL
Reusability evaluation Model for OO-Based Software

Components can be framed using following steps:
• Selection and refinement of metrics targeting the quality of
OO-based software system and perform parsing of the
software system to generate the Meta information related to
that Software.
• Neuro-Fuzzy system, which is already initialized and
trained using the training data, will get the meta information
from the earlier stage and determines the reusability value of
the software components. Considering the reusability value,
the component can be extracted and put into the Reusable
Software Reservoir for future reuse.

A. OO-Based Metric Framework
 As CK metric suit is able to target all the essential attributes
of OO-based software, as mentioned by Selby [13] in his latest
findings, so we analyzed, refined and used following metrics
of CK metric suit to explore different structural dimensions of
a class.

1) Weighted methods per class (WMC): According to this
metric if a Class C, has n methods and c1, c2 …cn be the
complexity of the methods, then WMC(C)= c1 + c2 +… + cn.
Mc Cabe’s complexity metric is chosen for calculating the
complexity values of the methods of a class. The value is
normalized so that nominal complexity for a method takes on
a value of 1.0. If all method complexities are considered to be
unity, then WMC = n i.e. the number of methods existing in
that class [14][15].

We have used “tuned WMC” (TWMC) measure as input to
the neuro-fuzzy inference engine by restricting the WMC
value in between 0 and 1 with help of sigmoidal function as
shown in (1).

e cxa
caxf

)(1
1),,(

−−+
= (1)

Where a=10 and c=0.5.

2) Depth of inheritance tree (DIT): According to this
metric, Depth of inheritance of a class is “the maximum length
from the node to the root of the tree". More is the depth of the
inheritance tree greater the reusability of the class
corresponding to the root of that tree as the class properties
are shared by more derived classes under that class. So there
too much depth dilutes the abstraction. So there is a need to set
the minimum & maximum DIT value for a class as an
contribution towards the reusability [14][15].

The definition of DIT is ambiguous when multiple
inheritance and multiple roots are present as the alternative
length of the path is not being considered in case of multiple
inheritance. If we add all the ancestor classes coming in
common path to the ancestor classes coming in alternative
paths then that will be the true representation of the theoretical
basis of the DIT metric [16].

We have used “lack of tuned degree of inheritance”
(LTDIT) measure as input to the Neuro-fuzzy inference
system, in order to restrict the input value between 0 and 1.

3) Number of Children (NOC): According to this metric
Number of children (NOC) of a class is the number of
immediate sub-classes subordinated to a class in the class
hierarchy. So greater is the value of NOC greater will be the
reusability of the parent class. Hence there should be some
minimum value of NOC for a parent class for its reusability
[14][15].

Theoretical basis of NOC metric relates to the notion of
scope of properties. It is a measure of how many sub-classes
are going to inherit the methods of the parent class [14]. The

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:3, 2008

806

definition of NOC metric gives the distorted view of the
system as it counts only the immediate sub-classes instead of
all the descendants of the class. So according to [16] the NOC
value of a class, say class i, should reflect all the subclasses
that share the properties of that class as shown in (2).

∑+=
sesAllSubclas

i
iNOCNiNOC)()((2)

Where N is the total number of immediate subclasses of
class i. In order to restrict the input value between 0 and 1, we
have used “lack of tuned Number of Children” (LTNOC)
measure as input to the Neuro-fuzzy inference system.

4) Coupling Between Object Classes (CBO): According to
this metric “Coupling Between Object Classes” (CBO) for a
class is a count of the number of other classes to which it is
coupled. Theoretical basis of CBO relates to the notion that an
object is coupled to another object if one of them acts on the
other, i.e. methods of one object use methods or instance
variables of another. Here we are restricting the unidirectional
use of methods or instance variables of another object by the
object of the class whose reusability is to be measured. As
Coupling between Object classes increases, reusability
decreases and it becomes harder to modify and test the
software system. So there is the need to set some maximum
value of coupling level for its reusability. If the value of CBO
for a class is beyond that maximum value then the class is said
to be non-reusable[14][15].

In order to restrict the input value between 0 and 1, we have
used “lack of CBO” (LCBO) measure as input to the Neuro-
fuzzy inference system.

5) Lack of Cohesion in Methods (LCOM): Consider a
Class C1 with n methods M1 , M2 ..., Mn . Let {Ij } be set of
instance variables used by method Mi .There are n such sets
{I1},{I2}... {In}. Let P = { (Ii ,Ij) | Ii ∩ Ij = ∅ } and Q = { (Ii

,Ij) | Ii ∩ Ij ≠ ∅ }. If all n sets {I1},{I2}... {In}. are ∅ then let P
= ∅ [4]. Lack of Cohesion in Methods (LCOM) of a class can
be defined as

LCOM = |P| - |Q|, if |P| > |Q|
 LCOM = 0 otherwise

The high value of LCOM indicates that the methods in the
class are not really related to each other and vice versa means
less reusability otherwise low value of LCOM depicts high
internal strength of the class which results into high
reusability. So there should be some maximum value of
LCOM after which class becomes non-reusable [14][15].

We have used “tuned LCOM” (TLCOM) measure as input
to the neuro-fuzzy inference engine by restricting the LCOM
value in between 0 and 1 with help of sigmoidal function as
shown in (3).

e cxa
caxf

)(1
1),,(

−−+
= (3)

Where a=4 and c=1.5.

B. Neuro-Fuzzy System’s Architecture
The fuzzy logic approach is beneficial for measuring the

reusability of a software component as the conventional model
based approaches are difficult to be implemented.
Unfortunately, with the increase in the complexity of the
problem being modeled and unavailability of the precise
relationship among various constituents for measuring the
reusability, has led to rely on another approach which is
mostly known as neuro-fuzzy or fuzzy-neuro approach. It has
the benefits of both neural networks and fuzzy logic. The
neuro-fuzzy hybrid system combines the advantages of fuzzy
logic system, which deal with explicit knowledge that can be
explained and understood, and neural networks, which deal
with implicit knowledge, which can be acquired by learning.
 A fuzzy system can be considered to be a parameterized
nonlinear map, called f, which can be expressed as in (4).

()

()∑ ⎟
⎠
⎞

⎜
⎝
⎛

∏

∑ ⎟
⎠
⎞

⎜
⎝
⎛

∏
=

= =

= =
m

l
i

n

i

m

l
i

n

i

l

x

xy
xf

A

A

l
i

l
i

1 1

1 1)(
μ

μ
 (4)

Where yl is a place of output singleton if Mamdani
reasoning is applied or a constant if Sugeno reasoning is
applied. The membership function µAi

l(xi) corresponds to the
input x=[x1, x2, x3,… xm] of the rule l . The “and” connective
in the premise is carried out by a product and defuzzification
by the center-of-gravity method [4]. Consider a Sugeno type
of fuzzy system having the rule base

Rule1: If x is A1 and y is B1, then f1= p1x + q1y + r1
Rule2: If x is A2 and y is B2, then f2= p2x+ q2y + r2
Let the membership functions of fuzzy sets Ai, Bi, i=1,2,

be , µAi , µBi .
1) Evaluating the rule premises results values as shown in

(5).

wi = µAi(x) * µBi (y)
(5)

where i = 1,2 for the rule rules stated above.

2) Evaluating the implication and the rule consequences

gives values as shown in (6)-(9).

() () () ()
() ()yxyx

yxyxyxyx
yxf

ww
fwfw

,,
,,,,

),(
21

2211

+

+
= (6)

Or

ww
fwfwf

21

2211

+
+

= (7)

Let

ww
w

w
i

i
21 +

= (8)

then f can be written as

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:3, 2008

807

fwfwf 2211 +=

(9)

These all computations can be presented in a diagram
form [4] as shown in the fig. 1(a) and 1(b).

Fig. 1(a) A two-Input First-Order Sugeno Fuzzy Model with to rules

(b). Equivalent Neuro-Fuzzy System

In the neuro-fuzzy inference system using a given
input/output data set, we have constructed a fuzzy inference
system (FIS) whose membership function parameters are
tuned (adjusted) using a hybrid method consisting of back-
propagation form of the steepest descent method for the
parameters associated with the input membership functions,
and least squares estimation for the parameters associated with
the output membership functions. As a result, the training
error decreases, at least locally, throughout the learning
process. Therefore, the more the initial membership functions
resemble the optimal ones, the easier it will be for the model
parameter training to converge.

Fig. 2 Fuzzy Inference System with 5 inputs & 1 output

Before training, the initial rule section is done using ID3
decision tree generation algorithm. This allows fuzzy systems
to learn from the data they are modeling in less number of
iterations and with less training error. We are using the
Sugeno type Fuzzy Inference System with five metric value
Inputs and one output as shown in Fig. 2.

IV. IMPLEMENTATION

In the fuzzy Inference system Linguistic variables are then
assigned to the input parameters based on their values. The
assignment of the linguistic variables depends on the range of
the input measurement.

Values to the linguistic variables of TWMC are assigned in
terms of complexity of the software component. TWMC is
assigned three linguistic variables LOW, MEDIUM and HIGH
in the range of 0 to 1.

Values to the linguistic variables of LTDIT (Lack of tuned
degree of Inheritance) are assigned in terms of level of
inheritance for the software component under consideration.
LTDIT is assigned three linguistic variables LOW, HIGH and
MEDIUM in the range of 0 to 1.

Values to the linguistic variables of LTNOC (Lack of tuned
Number of Children) are assigned in terms of number of
children of the software class in the inheritance tree. Quality
attribute LTNOC is assigned three linguistic variables LOW,
MEDIUM and HIGH in the range of 0 to 1.

Values to the linguistic variables of LCBO (Lack of
Coupling between Objects) are assigned in terms of coupling
between objects of the software. LCBO is assigned three
linguistic variables LOW, MEDIUM and HIGH in the range of
0 to 1.

Values to the linguistic variables of TLCOM (tuned Lack of
Cohesion) are assigned in terms of Cohesion in methods of the
class of object-oriented software TLCOM is assigned three
linguistic variables LOW, MEDIUM and HIGH in the range of
0 to 1.

Values to the linguistic variables of Reusability are assigned
in terms of “how reusable the software component is?” The
output membership functions are only linear or constant for
Sugeno-type fuzzy inference. Reusability is assigned six
linguistic variables PERFECT, HIGH, MEDIUM, LOW,
VERY-LOW and NIL as constants in the range of 0-1.

A network-type structure similar to that of a neural network,
which maps inputs through input membership functions and
associated parameters, and then through output membership
functions and associated parameters to outputs, can be used to
interpret the input/output map is shown in the fig. 3. The
parameters associated with the membership functions will
change through the learning process. The computation of these
parameters (or their adjustment) is facilitated by a gradient
vector, which provides a measure of how well the fuzzy
inference system is modeling the input/output data for a given
set of parameters. Once the gradient vector is obtained, any of
several optimization routines could be applied in order to adjust
the parameters so as to reduce some error measure. The Error
Tolerance is used to create a training stopping criterion, which
is related to the error size. The training will stop after the
training data error remains within this tolerance. This is set to 0
as we don’t know how training error is going to behave.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:3, 2008

808

Fig. 3 Neural Network incorporating the Fuzzy inference system

The Training of the neuro-fuzzy system is performed using

Training Data, as mentioned in appendix-I, for 1000 iterations
and the training error reduces after each iteration as shown by
the fig. 4 and stabilities at the error value of 0.041969, so at
this point the network is said to be converged.

Fig. 4 Plot of Training error V/s Epochs.

V. CONCLUSION

During the testing phase, when the developed system is
tested against the testing data, as mentioned in appendix-II,
Average Testing error 0.039364 is obtained. The plot between
the actual output and the expected output is shown in fig. 5.
As the actual output produced by the “Reusability Evaluation
Model” is close to the expected output, so the system can be
recommended for Automatic identification potential reusable
object oriented software components from the legacy systems
and evaluating the quality of developed or developing reusable
components for better productivity and quality.

Fig. 5 Plot between the actual output and expected output

APPENDIX-I
Training data for Neuro-Fuzzy System is shown in Table I.

TABLE I
TRAINING DATA FOR NEURO- FUZZY SYSTEM

TWMC LTDIT LTNOC LCBO TLCOM REUSAB-
-ILITY

0.27 0.12 0.15 0.81 0.24 0.93
0.36 0.29 0.31 0.81 0.14 0.72
0.45 0.53 0.38 0.51 0.63 0.59
0.96 0.82 0.79 0.53 0.48 0.37
0.18 0.83 0.78 0.35 0.93 0.15
0.83 0.91 0.79 0.73 0.21 0.07
0.35 0.23 0.18 0.78 0.13 0.87
0.58 0.36 0.24 0.84 0.17 0.68
0.63 0.46 0.29 0.37 0.58 0.54
0.85 0.79 0.85 0.62 0.39 0.34
0.13 0.74 0.87 0.41 0.84 0.11
0.88 0.79 0.92 0.22 0.14 0.05
0.42 0.17 0.23 0.84 0.21 0.82
0.67 0.43 0.36 0.79 0.20 0.65
0.32 0.35 0.43 0.52 0.49 0.47
0.77 0.83 0.93 0.72 0.68 0.28
0.23 0.94 0.79 0.38 0.91 0.17
0.77 0.83 0.79 0.18 0.23 0.06
0.48 0.20 0.19 0.75 0.18 0.80
0.43 0.56 0.44 0.68 0.23 0.62
0.57 0.42 0.28 0.61 0.33 0.38
0.88 0.79 0.82 0.39 0.45 0.32
0.19 0.81 0.93 0.67 0.77 0.19
0.92 0.94 0.86 0.12 0.11 0.03
0.57 0.14 0.20 0.81 0.12 0.85
0.38 0.39 0.28 0.81 0.19 0.70
0.49 0.63 0.68 0.47 0.58 0.45
0.79 0.85 0.78 0.48 0.53 0.36
0.0 0.78 0.89 0.49 0.84 0.13
0.86 0.79 0.93 0.20 0.19 0.01
0.68 0.23 0.13 0.93 0.24 0.93
0.69 0.45 0.67 0.64 0.20 0.68
0.68 0.51 0.36 0.32 0.43 0.48
0.91 0.93 0.80 0.62 0.37 0.25
0.12 0.90 0.81 0.73 0.80 0.24
0.94 0.88 0.84 0.13 0.20 0.08
0.72 0.19 0.22 0.89 0.16 0.84
0.72 0.64 0.59 0.93 0.16 0.62
0.71 0.39 0.52 0.57 0.68 0.40
0.83 0.81 0.92 0.28 0.41 0.36
0.0 0.83 0.91 0.39 0.93 0.14
0.78 0.80 0.77 0.19 0.15 0.02
0.74 0.24 0.23 0.92 0.21 0.81
0.74 0.58 0.42 0.86 0.23 0.60
0.43 0.42 0.39 0.46 0.71 0.57
0.78 0.90 0.83 0.54 0.63 0.28
0.21 0.95 0.78 0.45 0.82 0.18
0.81 0.76 0.89 0.21 0.17 0.04

APPENDIX-II

Testing data for Neuro-Fuzzy System is shown in TABLE
II.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:3, 2008

809

TABLE II
TESTING DATA FOR NEURO- FUZZY SYSTEM

TWMC LTDIT LTNOC LCBO TLCOM
REUSAB-

-ILITY

0.83 0.97 0.79 0.63 0.21 0.07
0.32 0.29 0.18 0.78 0.13 0.87
0.13 0.80 0.87 0.43 0.84 0.11
0.85 0.79 0.92 0.22 0.14 0.05
0.45 0.20 0.19 0.75 0.12 0.80
0.40 0.56 0.44 0.68 0.23 0.62
0.62 0.23 0.13 0.93 0.24 0.93
0.66 0.45 0.67 0.64 0.20 0.68
0.91 0.88 0.88 0.13 0.20 0.08
0.69 0.64 0.59 0.93 0.19 0.62
0.0 0.83 0.89 0.39 0.93 0.14
0.71 0.80 0.77 0.19 0.14 0.02
0.41 0.42 0.40 0.46 0.71 0.57
0.87 0.76 0.89 0.21 0.23 0.04

ACKNOWLEDGMENT

The authors like to express their gratitude towards Dr. S. B.
Singh (Principal, G.N.D.E.C., Ludhiana) and Dr. H. K.
Grewal, HOD (CSE & IT), G.N.D.E.C, Ludhiana for
provision of laboratory facilities.

REFERENCES
[1] G. Boetticher and D. Eichmann, “A Neural Network Paradigm for

Characterizing Reusable Software”, Proc. of the Australian Conference
on Software Metrics, 18-19 November 1993.

[2] G. Boetticher, K. Srinivas, and D. Eichmann, “A Neural Net-based
Approach to Software Metrics”, Proc. of the 5th International
Conference on Software Engineering and Knowledge Engineering, San
Francisco, CA, 14-18 June 1993, pp 271-274.

[3] S. V. Kartalopoulos, Understanding Neural Networks and Fuzzy Logic-
Basic Concepts and Applications, IEEE Press, 1996, pp. 153-160.

[4] J-S. R. Jang and C.T. Sun, “Neuro-fuzzy Modeling and Control,” Proc.
of IEEE, March 1995.

[5] R. W. Selby, Empirically Analyzing Software Reuse in a Production
Environment, Software Reuse: Emerging Technology, W. Tracz, ed,
IEEE Computer Society Press, 1988.

[6] M. F. Dunn and J. C. Knight, “Software reuse in Industrial setting : A
Case Study,” Proc. of the 13th International Conference on Software
Engineering, Baltimore, MA, 1993.

[7] Y. F. Chen, M. Y. Nishimoto and C. V. Ramamoorty, “The C
Information Abstraction System,” IEEE Trans. on Software
Engineering, Vol. 16, No. 3, March 1990.

[8] J. C. Esteva and R. G. Reynolds, “Identifying Reusable Components
using Induction,” International Journal of Software Engineering and
Knowledge Engineering, Vol. 1, No. 3 (1991) 271-292.

[9] G. Caldiera and V. R. Basili, “Identifying and Qualifying Reusable
Software Components,” IEEE Computer, February 1991.

[10] G. Mayobre, “Using Code Reusability Analysis to Identify Reusable
Components from Software Related to an Application Domain,” Proc. of
the Fourth Workshop on Software Reuse, Reston. VA, November, 1991.

[11] R.S. Arnold, Heuristics for Salvaging Reusable Parts From Ada Code,
SPC Technical Report, ADA_REUSE_HEURISTICS-90011-N, March
1990.

[12] R.S. Arnold, Salvaging Reusable Parts From Ada Code: A Progress
Report, SPC Technical Report, SALVAGE_ADA_PARTS_PR-90048-
N, September 1990.

[13] Richard W. Selby, "Enabling Reuse-Based Software Development of
Large-Scale Systems", IEEE Trans. on Software Engineering, Vol. 31,
No. 6, June 2005 pp. 495-510.

[14] S.R. Chidamber and C.F. Kemerer, “A Metric Suite for Object Oriented
Design”, IEEE Trans. on Software Engineering , Vol. 20, pp. 476-
493,1994.

[15] S.R. Chidamber and C.F. Kemerer, “Towards a Metrics Suite for Object
Oriented Design,” Proc. Conf. Object Oriented Programming Systems,
Languages, and Applications (OOPSLA’91), vol. 26, no. 11, pp. 197-
211, 1991.

[16] Parvinder Singh and Hardeep Singh, “Critical Suggestive Evaluation of
CK METRIC”, Proc. of 9th Pacific Asia Conference on Information
Technology (PACIS-2005),Bangkok, Thailand, July 7 – 10, 2005.
(Paper is available online at http://www.pacis-net.org/)

