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A reproduction of boundary conditions in

three-dimensional continuous casting problem
Iwona Nowak, Jacek Smolka, and Andrzej J. Nowak

Abstract—The paper discusses a 3D numerical solution of the
inverse boundary problem for a continuous casting process of alloy.
The main goal of the analysis presented within the paper was to esti-
mate heat fluxes along the external surface of the ingot. The verified
information on these fluxes was crucial for a good design of a mould,
effective cooling system and generally the whole caster. In the study
an enthalpy-porosity technique implemented in Fluent package was
used for modeling the solidification process. In this method, the phase
change interface was determined on the basis of the liquid fraction
approach. In inverse procedure the sensitivity analysis was applied
for retrieving boundary conditions. A comparison of the measured
and retrieved values showed a high accuracy of the computations.
Additionally, the influence of the accuracy of measurements on the
estimated heat fluxes was also investigated.

Keywords—boundary inverse problem, sensitivity analysis, contin-
uous casting, numerical simulation.

I. INTRODUCTION

T
He continuous casting of metals, alloys, semiconductor

crystals, etc., is nowadays a frequently utilized technol-

ogy in a contemporary industry. Taking into account quality

of the casting material, a possibility of the design as well

as a control of the casting process is very important. For

this reason, numerical models may be successfully used to

analyze some phenomena and processes in continuous casting

with relatively low costs. The quality of the casting material

is dependent on a procedure of cooling and a speed of the

casting process. Therefore, a decision was made to reconstruct

the cooling conditions in the continuous casting on the basis

of measurements at some points inside the ingot. This kind

of problems is formulated as the inverse boundary problem

and in the presented work is solved employing a sensitivity

analysis. In the paper the heat flux distribution along the

external boundary of an ingot was estimated. Similar problems

were the subjects of works dealing with both the boundary and

the geometry inverse problems to estimate the geometry of a

body [1], [2], [3], [11]. However, the majority of them were

formulated as two-dimensional problems, while in this project

the three-dimensional continuous casting problem is discussed.

In this paper the heat flux distribution along the external

boundary of 3-D model of ingot was estimated. In addition,

the continuous casting of the aluminium alloy was considered.

This resulted in modelling of mushy zones within compu-

tational domain. Moreover, a mathematical model included
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the momentum and the continuity equations apart from the

energy equation. Such approach allowed one to analyze a

natural convection in the liquid phase. In the mathematical

description a thermal resistance along crystallizer was also

taken into account. The thermal resistance between the ingot

and crystallizer wall originates from a material contraction and

is usually modelled as a constant value [10]. In this paper

the thermal resistance is modelled as spatially local value

determined on the basis of local temperatures of the ingot

and crystallizer walls.

The computational procedure of retrieving the unknown

values was carried out iteratively and required the following

main steps in each loop:

• a solution of the direct problem using a commercial Finite

Volume Method code Fluent [4]. In the first iteration the

unknown parameters were assumed and the temperature

field inside the body was determined. The study showed

that an effectiveness of the procedure developed was

independent on the initials values in a direct problem.

Moreover, a number of the parameters as the under-

relaxation factor, number of iterations in each cycle, value

of the time step were investigated to significantly decrease

the computational time of the direct case.

• a solution of the inverse problem using an in-house

code for the sensitivity analysis. Once the adequate

objective function was minimized, the obtained values

of heat fluxes were implemented into Fluent by User

Defined Function (UDF) [4]. The mathematical model

of the performed computations had to be supplemented

with appropriate temperature measurements. The thermal

inverse analysis discussed in the paper was based on the

temperature measurements collected by thermocouples

immersed in the liquid metal, carried by the cast and

finally pulled out by the solidified ingot [1], [5].

II. PROBLEM FORMULATION AND DIRECT PROBLEM

The geometrical model of the computational domain consid-

ered in the direct problem was in the shape of a brick with the

following dimensions: 1.86 m x 0.51 m x 5.00 m, see Figure

1. Due to the symmetry of the object only one-fourth of it was

analyzed. An influence of the numerical mesh generated within

the geometry on the phase-change problem was investigated.

Finally, the grid with almost 400 000 of hexahedral elements

of very high quality was used in the inverse procedure.

The enthalpy-porosity technique was used in Fluent for

modeling the phase change process [4], [6]. For this reason,

the liquid fraction was computed at each iteration utilizing the
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Fig. 1. Scheme of the 3D domain of the continuous casting system.

enthalpy balance. For the solidification problem studied, the

energy equation could be expressed as:

∇ · (k∇T ) = ∇ · ρwH +
∂

∂t
(ρH) (1)

where k denotes the thermal conductivity, T stands for the

temperature, ρ represents the density, w is the velocity vector,

H denotes the enthalpy, and t is the time.

In the energy equation (1), the enthalpy of the material H

was calculated as a sum of the sensible enthalpy and the latent

heat:

H = h + ∆H (2)

where h is the sensible enthalpy, and ∆H represents the latent

heat. The sensible enthalpy h can be determined on the basis

of the following equation:

h = href +

∫ T

Tref

cpdT (3)

where href denotes the reference enthalpy, Tref is the refer-

ence temperature, and cp stands for the specific heat at constant

pressure.

The equation for the latent heat content ∆H can be written

in terms of the latent heat of the material L:

∆H = βL (4)

where β is the liquid fraction and takes the following values:

β = 0 if T < TS

β = (T − TS)/(TL − TS) if TS < T < TL

β = 1 if T > TL

(5)

Apart from the energy equation (1), the mathematical model

in the liquid phase included the momentum and the con-

tinuity equations to simulate the convective motions. Since

the casting material was an alloy, the momentum equation

was supplemented with additional source term describing a

mushy zone region as a porous medium. To solve the set of

equations governing the casing process of alloys, appropriate

material properties for the aluminium alloy and boundary

conditions were defined. The thermophysical properties of

the considered aluminium alloy are strongly dependent on

temperature. Therefore, the density, the dynamic viscosity and

the thermal conductivity were defined using polynomial func-

tions of temperature for a liquid phase, mushy zone and solid

phase. Since the temperature dependence of the specific heat is

negligible, its value was assumed to be equal to 1170 J/(kgK).

Moreover, the latent heat was set to 395 611 J/kg, while the

solidus and liquidus temperatures were equal to 923.42 K

and 838.15 K, respectively. As described above, latent heat

content ∆H including the latent heat varied according to Eq.

(4). between the solidus and liquidus temperatures.

In the continuous casting process the liquid material flows

into a mould (crystallizer). Inside the mould, the liquid ma-

terial solidifies and is pulled out by withdrawal rolls along

x-axis, see Figure 1. For this reason, the known boundary

conditions were prescribed as in the real process [1]. Namely,

at the top surface the velocity inlet was defined with the

following values: inlet velocity was equal to the pull velocity

wx = 0.001 m/s, while the inlet temperature was equal to

the liquid metal temperature. Moreover, as already mentioned

on two side walls of the domain the symmetry planes were

prescribed.

The second group of boundary conditions consisted of the

estimated heat flux profiles defined on the other two side

surfaces of the body. The ingot is usually additionally cooled

by water sprayed over the surface outside the crystallizer. A

production technology of the continuous casting strongly de-

pends on the heat flux distribution along the cooled boundaries

of an ingot. From the previous experience and literature [1],

[5], [2], it was assumed that the heat flux varied linearly along

the mould and exponentially along the water spray. For this

reason, only three heat fluxes needed to be estimated.

In this work the heat flux distribution was defined by

functions dependent on three estimated fluxes q1, q2 and q3

and variable x (casting was carried along this direction). The

heat flux distributions were specified in the following form:
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x ∈< 0, dm > ⇒
−f1(x) =

q2 − q1

dm

· x + q1

x ∈< dm, dm + r > ⇒
−f2(x) =

q3 − q2

r
· x + q2 +

q3 − q2

r
· (dm + r)

x ≥ dm + r ⇒
−f3(x) = q3 · (0.85 · exp(60 · (1.3 − x))+

+0.621 − 0.465 · x)
(6)

where dm is the length of crystallizer, q1 and q2 are the

values of the heat flux at the top and at the end of crystallizer,

respectively. The variable q3 indicates the heat flux at point

just below the end of the mould.

At points where casting body sinks the mould, the heat flux

”jump” appears. The linear function f2 defining the heat flux

distribution was assumed on a short segment (its the length

was equal to r = 0.015m) under the end of the mould.

Additionally, the exponential distribution was assumed on the

part of the body that was cooling by sprayed water (function

f3).

In the problem presented the length of a crystallizer was 1
m which was approximately 20% of the solidified ingot length.

The similar proportion of the ingot and the crystallizer lengths

could be found in literature [1].

During the solidification, a process of contraction occurs

in both mushy zone and solid part of the ingot. A change

of volume increases rapidly with the temperature drop. This

strongly affects the cooling conditions. Therefore, to simulate

a realistic casting process the thermal contact resistance was

considered as well. This can be summarized as follows: for

each grid cell, a geometrical volumetric contraction was de-

termined using polynomial temperature dependent functions.

Then the volumetric contraction was used to calculate an air

gap between two cooled side wall of the ingot and internal

walls of the crystallizer. As a result, spatially local values of

contraction distribution were obtained. The heat is transferred

through the air gap by radiation and also natural convection.

Therefore, a final distribution of the thermal contact resistance

was computed as a sum of the inverse of the radiative

and convective heat transfer coefficients. The radiative heat

transfer coefficient was determined based on the radiative heat

exchange between two vertical walls, while the convective

heat transfer coefficient was computed using formulas for the

Nusselt equations for the closed rectangular enclosures. Both

these procedures are well known in the heat transfer literature.

It is worth mentioning that the temperatures occurring in

those algorithms were local temperatures of the boundary

cell centres and boundary cell faces. The thermal contact

resistivity distribution is presented in Fig. 2 and is defined as

thermal contact resistance multiplied by the solid fraction and

divided by the cell height of the wall-adjacent cell. All material

properties were determined using algorithms described in [12].

The computations of the solidification process using the

default parameters in Fluent turned out to be numerically

Fig. 2. The thermal contact resistivity in two cooled ingot walls.

unstable and led to disconvergence. For this reason, the direct

problem was solved under unsteady conditions that signifi-

cantly improved the stability of the iteration process. The time

step size was increased gradually during calculations and its

maximum value was equal to ∆t = 2 s. The most effective

inverse procedure was performed for the following parameters

of the direct problem calculations in the iterative loop: the

number of iterations in each time step equal to 10 and the

number of time steps equal to 15.

III. INVERSE PROCEDURE

This model serves as a basis for the inverse problem

discussed in detail in the remainder of the section.

Retrieving some unknown or lost information in the math-

ematical model of the direct heat transfer problem is the

main object of the inverse analysis. This means that the in-

complete mathematical description needs to be supplemented

by measurements. In this work the boundary conditions were

estimated by using numerically simulated temperatures mea-

sured inside the body. In practice, this kind of measurements

can be obtained by immersing a set of thermocouples into

the melt and letting them travel with the solidified material

(until they are damaged). The use of the thermocouples is

one of the most typical methods connected with temperature

measurements in heat transfer problems [7]. Typically, the

temperatures Ui are measured at some points inside the ingot

and collected in the vector U. On the other hand, it is very

important to limit the number of sensors because of commonly

known difficulties with data acquisition. Moreover, apart from

valuable information each measurement session introduces

some noise. The application of functions permits the modelling

of the heat flux distribution using a much smaller number of

design variables and in consequence the reduction in a number

of sensors.
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On the other hand the main difficulty of all inverse problems

is its ill-posed nature. Because of this the number of measure-

ments should be greater than the number of design variables

(to make the problem overdetermined). Thus, in general, the

inverse analysis leads to optimization procedures with the least

squares calculations of the objective functions ∆. However, an

additional term intended to improve stability usually needs to

be used:

∆ = (T∗ − U)
T

W
−1 (T∗ − U) +

+
(

Y − ˜Y

)T

W
−1

Y

(

Y − ˜Y

)

→ min
(7)

where vector T
∗ contains temperatures calculated at temper-

ature sensor locations, U stands for the vector of tempera-

ture measurements and superscript T denotes the transpose

matrices. The symbol W refers to the covariance matrix of

measurements. This is a diagonal matrix with values of error in

adequate location on diagonal. Thus, the contribution of more

accurately measured data is stronger than those obtained with

lower accuracy. The unknown variables are collected in vector

Y, known prior estimates in the vector ˜Y, and WY stands

for the covariance matrix of the prior estimates. It means that

on a diagonal of matrix WY there are the estimated errors of

the identified values. It was already found that the additional

term in the objective function, containing prior estimates, plays

a very important role in the inverse analysis, considerably

improving the stability and accuracy of the inverse procedure

[3].

Generally, the inverse problem is solved by building up a

series of direct solutions which gradually approach the correct

values of the design variables. This procedure can be expressed

by the following main steps:

• make the boundary problem well-posed. This means that

the mathematical description of the thermal process is

completed by assuming arbitrary but known values Y
∗

(as required by the direct problem). In the study, different

values of the starting distributions of the heat flux were

tested. Results showed that they were independent on the

initial profile of the heat flux on the boundary. For the

results reported, the starting heat flux was uniform along

the height of the domain and was equal to 250 000 W/m2.

• solve the direct problem obtained above and calculate

temperatures T
∗ at the sensor locations; compare these

temperatures and measured values U and modify the

assumed data Y
∗. The computations of the direct problem

were performed in an unsteady state and tested with

different values of a number of the time steps. The most

effective procedure in terms of the total calculation time

was obtained for the number of the time steps equal to

25 in each cycle. This means that the solution was only

partly converged in a particular cycle. Obviously, the final

values of the retrieved heat fluxes were obtained after a

number of the cycles that guaranteed a fully converged

solution of the direct problem.

In the paper the sensitivity analysis was applied to find

the solution of the discussed inverse heat transfer problem.

Generally the concept of sensitivity coefficients is utilized in

this procedure [8]. The coefficients Z are derivatives of the

measured quantity i.e. temperature Ti at certain location, with

respect to the assumed and then identified input data Yj :

Zij =
∂Ti

∂Yj

(8)

They provide a measure of each identified value and indicate

how much it should be modified. Moreover, the sensitivity

analysis helps one to determine which measurements are the

most precious. Unfortunately, the measurement errors cause

that ”the best” sensor location is not unique.

Two different distributions of twenty sensors used for the

temperature measurements were considered. In the first case,

the measurement points were located in the vicinity to the top

and bottom of the crystallizer, while in the second one sensors

were uniformly distributed along the crystallizer. The obtained

values of the temperatures and the sensitivity coefficients in

both systems of sensor distributions produced very satisfactory

results in the inverse procedure. In the paper the solution

achieved for the uniformly distributed sensors was reported

only, see Figure 1.

The sensitivity coefficients can be calculated by different

techniques but the most effective one requires solution of

adjoined boundary problem, obtained by a differentiation of

the governing equation, the known boundary conditions and

the boundary conditions consisting of the estimated heat fluxes

with respect to the design variables.

In the computations of the sensitivity coefficients the do-

main included the solidified part of the ingot only. As a result,

the direct sensitivity problem is formulated on the basis of the

heat conduction equation in the following form:

∇ · (k∇Z) = ∇ · ρwcpZ +
∂

∂t
(ρcpZ) (9)

while the boundary conditions along the external boundary

(for ith design variable) equals:

−z1,i(x) = ∂
∂qi

(f1(x)) if x ∈< 0, dm >

−z2,i(x) = ∂
∂qi

(f2(x)) if x ∈< dm, dm + r >

−z3,i(x) = ∂
∂qi

(f3(x)) if x ≥ dm + r

(10)

The boundary conditions on the top, bottom and the symme-

try planes of the body were as in the original thermal problem,

but homogeneous.

As already mentioned, in the considered case the three

heat fluxes were estimated (compare equation (10)). In conse-

quence, the sensitivity coefficients resulted in three systems of

equations [5], [2]. Once calculated sensitivity coefficients were

introduced into the objective function and as a result of its

minimization the following system of equations was obtained:

(ZT
W

−1
Z + W

−1

Y )Y =

= Z
T
W

−1(U − T
∗) + (ZT

W
−1

Z)Y∗ + W
−1

Y
˜Y

(11)

where Z stands for the sensitivity coefficients matrix and T
∗ is

the vector of temperatures at the sensor locations obtained by
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solving the direct problem with trial heat fluxes Y
∗. The sys-

tem (11) is obtained by minimization of the objective function

(7) and introduction of Z by the Taylor series representation

of temperature T (in the vicinity of temperature T ∗). Using

matrix notation and truncating the Taylor series after the first

term one obtains

T = T
∗ + Z (Y − Y

∗) (12)

The solution of this set of equations resulted in a vector of

the sought design variables (i.e. vector Y). The objective was

to estimate the components of the vector Y which uniquely

described the heat flux distribution along boundary of ingot.

Above procedure was successfully applied for both bound-

ary and geometry inverse problems in 2-D model [9]. For

this reason, it was decided to use the above algorithm in

3-D case. For this kind of formulation, the inverse problem

is solved by building up a series of direct solutions, which

gradually approaches the correct values of the design variables.

As mentioned in the previous section, in a particular cycle the

solution was only partly converged (15 times steps, and 10

iterations per time step). This means that the final values of

the retrieved heat fluxes were obtained after a number of the

cycles.

IV. NUMERICAL RESULTS

In the study (because of assumptions reported in section II)

a vector of the estimated variables contained three components

i.e. Y = [q1, q2, q3]. In the numerical model (with air gap and

mushy zone taken under consideration) the heat fluxes had

the following values: q1 = −0.5 MW/m2, q2 = 0 MW/m2,

q3 = −1.9 MW/m2 and for these values the temperatures at

sensor points were calculated.

Because experimental tests are always burdened with errors,

the numerically simulated measurements were obtained by

adding to the temperature at sensor points random errors with

uniform distribution.

One has to remember that the measurement errors consid-

erably influence the results of the inverse thermal analysis and

due to the ill-posed nature of the problem, the estimated heat

fluxes might be very inaccurate. Therefore, the influence of

the accuracy of measurements on the estimated heat fluxes

was investigated.

Tests were performed for numerically generated measure-

ments disturbed by 0.1% 0.5%, 1%, 2% and 5% error. Addi-

tionally, the calculations with ”error” 0% were carried out to

test the method. The results obtained have been presented in

Table I.

It is easy to check that the average error of the estimated

values (calculated as arithmetic mean of
|qest

i − qmodel
i |

qmodel
i

,

where qmodel
i and qest

i are the values of ith heat flux in

numerical model and obtained at the end of iteration process,

respectively) is approximately a half of the measurement error.

Still better results can be found in the last column of Table

I where the average errors of the temperatures calculated

at sensor points are collected. One has to remember that

in real problems a comparison of the measurements and

TABLE I
RESULTS OBTAINED FOR DIFFERENT LEVEL OF MEASUREMENTS ERROR.

measurement estimated average error in

error in % value in W/m2 sensors in K (in %)

q1 0.0 -500 265 0.007
q2 78 (0.0009)
q3 -1 899 583

q1 0.1 -500 077 0.276
q2 113 (0.0038)
q3 -1 897 627

q1 0.2 -500 536 0.03
q2 103 (0.0032)
q3 -1 895 336

q1 1.0 -501 089 2.982
q2 515 (0.3809)
q3 -1 878 917

q1 2.0 -501 872 5.960
q2 938 (0.7605)
q3 -1 858 500

q1 5.0 -504 640 14.895
q2 2 182 (1.8948)
q3 -1 796 991

temperatures calculated in the model is the only possibility.

In the calculations presented here, the average difference at

20 points (for 1% error of measurements) is less than 1 K

at the average temperature level of 800 − 900 K. The values

in the last column of Table I should be understood as the

arithmetic mean of the error in all sensor points. The error in

K is the absolute difference between temperature calculated at

sensor point and measurement. The average percentage error is

calculated as the averaging quotient of the absolute difference

mentioned before and measurement.

Fig.3 presents a comparison of the temperatures at sensor

locations calculated in the direct, fully liquid-solid model

(taking an air gap into consideration), numerically simulated

measurements (with errors not bigger than 2%), and the

temperatures calculated for the retrieved boundary conditions

in the inverse procedure.

Fig. 3. The temperature values at sensor locations obtained in the iteration
procedure.

As already mentioned, the computational procedure of re-
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trieving the unknown values was carried out iteratively. Figure

4 presents the flow of this procedure for the measurement

error 2% (character of the flow for other error levels is the

same). It should be stressed that for different error levels the

obtained results demonstrated similar accuracy and in all cases

the stabilization of iteration process was observed after 80-100

iterations.

Fig. 4. The retrieved heat fluxes obtained in iteration procedure.

The big oscillations observed in first few steps can be

reduced by properly selected absolute error of estimates (oc-

curring in matrix WY ) and starting values. The final results do

not depend on a choice of this values, only the computational

time can be lengthened.

V. CONCLUSION

The problem was formulated as a 3-D inverse boundary

problem in a continuous casting and was solved as a series

of direct solutions, which gradually produced an accurate

values of the designed variables. On the basis of subject

literature, the heat flux distribution was approximated by linear

and exponential functions inside and outside the crystallizer,

appropriate. It considerably allowed the reduction of a number

of the estimated values. The procedure developed for retrieving

the cooling conditions turned out to be computationally very

effective and independent on the starting value of the assumed

boundary condition. A comparison of the measured and re-

trieved values showed a high accuracy of the computations.

The satisfactory results were also obtained in calculations

investigating the influence of the accuracy of measurements

on the estimated heat fluxes. Some observations concerning

the possibility of the calculation time reduction were also

made. This paper discussed an identification procedure of

the heat flux distribution along an ingot external boundary

in continuous casting.
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