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A Relationship between Two Stabilizing Controllers
and Its Application to Two-Stage Compensator Design

without Coprime Factorizability
— Single-Input Single-Output Case —

Abstract—In this paper, we first show a relationship between two
stabilizing controllers, which presents an extended feedback system
using two stabilizing controllers. Then, we apply this relationship to
the two-stage compensator design. In this paper, we consider single-
input single-output plants. On the other hand, we do not assume the
coprime factorizability of the model. Thus, the results of this paper
are based on the factorization approach only, so that they can be
applied to numerous linear systems.

Keywords—Relationship among Compensators, Two-Stage Com-
pensator Design, Parametrization of Stabilizing Controllers, Factor-
ization Approach

I. INTRODUCTION

THE factorization approach to control systems has the
advantage that it embraces, within a single framework,

numerous linear systems such as continuous-time as well as
discrete-time systems, lumped as well as distributed systems,
one-dimensional as well as multidimensional systems, etc.[1],
[2], [3], [4]. Hence the result given in this paper will be able
to a number of models in addition to the multidimensional
systems. In factorization approach, when problems such as
feedback stabilization are studied, one can focus on the key
aspects of the problem under study rather than be distracted
by the special features of a particular class of linear systems.
This approach leads to conceptually simple and computa-
tionally tractable solutions to many important and interesting
problems[5]. A transfer function of this approach is considered
as the ratio of two stable causal transfer functions. For
a long time, the theory of the factorization approach had been
founded on the coprime factorizability of transfer functions,
which is satisfied by transfer functions over the principal ideal
domains or the Bézout domains.

In some design problems, one uses a so-called two-state pro-
cedure for selecting an appropriate stabilizing compensator[5].
Given a plant, the first stage consists of selecting a stabi-
lizing compensator for the plant. The second stage consists
of selecting a stabilizing controller for the new closed-loop

decoupling, sensitivity minimization, etc. The rationale behind
this procedure is that the design problems are often easier
to solve when the plant is stable. It is known that there are
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models such that some stabilizable plants do not have coprime
factorizations [6]. For some models of control systems, it is
not known yet whether or not a stabilizable plant always has
its doubly coprime factorization.

In this paper, we restrict our attention to single-input and
single-output plants. Our first result is to give a relation-
ship between two stabilizing controllers, which presents an
extended feedback system using two stabilizing controllers.
Then, we apply this relationship to the two-stage compensator
design. This two-stage compensator design is different from
the original two-stage compensator design[5]. The original
one considered one input and one output. On the other hand,
this two-stage compensator design uses two inputs and two
outputs. Further, all stabilizing controllers can be obtained.

II. PRELIMINARIES

The stabilization problem considered in this paper follows
that of [7], and [8], who consider the feedback system Σ [5,
Ch.5, ig. 5.1] as in Fig. 1. For further details the reader is
referred to [5], [7], [8], and [9].

c p
u2

u1 e1 e2y1 y2

We consider that the set of stable causal transfer functions is
an integral domain, denoted by A. The total ring of fractions
of A is denoted by F ; that is, F = {n/d |n, d ∈ A, d �=
0}. This F is considered as the set of all possible transfer
functions. Matrices over F are transfer matrices. Let Z be
a prime ideal of A with Z �= A. Define the subsets P and Ps
of F as follows: P = {a/b ∈ F | a ∈ A, b ∈ A\Z}, Ps =
{a/b ∈ F | a ∈ Z, b ∈ A\Z}. Then, every transfer function
in P (Ps) is called causal (strictly causal). Analogously, if
every entry of a transfer matrix is in P (Ps), the transfer
matrix is called causal (strictly causal).

Throughout the paper, the plant we consider has single-input
and single-output, and its transfer function, which is also called
a plant itself simply, is denoted by p and belongs to P . We

Fig. 1 Feedback system Σ

system that also achieves some other design objectives such as
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can always represent p in the form of a fraction p = nd−1,
where n ∈ A and d ∈ A with nonzero d.

For p ∈ P and c, a matrix H(p, c) ∈ F2×2 is defined as

H(p, c) :=
[

(1 + pc)−1 −p(1 + pc)−1

c(1 + pc)−1 (1 + pc)−1

]
(1)

provided that 1 + pc is a nonzero of A. This H(p, c) is the
transfer matrix from [ ut

1 ut
2 ]t to [ et

1 et
2 ]t of the feedback

system Σ. If 1 + pc is a nonzero of A and H(p, c) ∈ A2×2,
then we say that the plant p is stabilizable, p is stabilized by c,
and c is a stabilizing controller of p. In the definition above,
we do not mention the causality of the stabilizing controller.
However, it is known that if a causal plant is stabilizable, there
always exists a causal stabilizing controller of the plant [8].

It is known that W (p, c) defined below is over A if and
only if H(p, c) is over A:

W (p, c) :=
[

c(1 + pc)−1 −pc(1 + cp)−1

pc(1 + pc)−1 p(1 + cp)−1

]
. (2)

This W (p, c) is the transfer matrix from [ ut
1 ut

2 ]t to
[ yt

1 yt
2 ]t.

We employ the symbols used in [10] and [7]. Also we will
denote by S(p) the set of stabilizing controllers of p.

III. A RELATIONSHIP BETWEEN TWO STABILIZING

CONTROLLERS

Let p be a causal plant (p ∈ P). Here we consider two
stabilizing controllers c0 and c1 of p (c0, c1 ∈ F). Using c0

only we consider w(p, c0), a feedback system. The relationship
we give here is that the this w(p, c0) can be stabilized by the
following matrix: [

p 1 + 2pc1

1 c1

]
. (3)

We note that c0 and c1 can be independently selected. Even
so (3) is a stabilizing controller of W (p, c).

This is stated as following theorem:
Theorem 1: Let p be a causal plant. Also let c0 and c1 of p

be stabilizing controllers of p. Then w(p, c0) is stabilized by
the matrix of (3).
We note that there is no restriction between c0 and c1 in this
theorem.

Before starting the proof of this theorem, we present the
following:

Theorem 2: ([11, Theorem 2.4]) Let F be a field. Let A
is a square matrix of F with size n1 + n2 and is decomposed
into as follows:

[ n1 n2

n1 A11 A12

n2 A21 A22

]
:= A

Assume that A11 is nonsingular. Then, A is nonsingular if and
only if A22 − A21A

−1
11 A12 is also nonsingular.

In the case where two matrices A11 and A22−A21A
−1
11 A12

are nonsingular, then we have the following:

(i) The (1, 1)-block of A−1 is

A−1
11 + A−1

11 A12(A22 − A21A
−1
11 A12)−1A21A

−1
11 .

(ii) The (1, 2)-block of A−1 is

−A−1
11 A12(A22 − A21A

−1
11 A12)−1.

(iii) The (2, 1)-block of A−1 is

−(A22 − A21A
−1
11 A12)−1A21A

−1
11 .

(iv) The (2, 2)-block of A−1 is

−(A22 − A21A
−1
11 A12)−1.

Proof: First we denote by C1 the matrix in (3). Thus we
need to show that
(i) (I2 + C1W (p, c0)) (or equivalently (I2 + W (p, c0)C1))

is well-defined.
(ii) W (W (p, c0), C1) is over A.

First we show (i) and then (ii).

(i). Let N and d be a matrix over A and an element of A,
respectively, such that p = Nd−1. Also let A and b be a
matrix over A and an element of A, respectively, such that
C1 = Ab−1. We consider the following matrix:[

(1 + pc0)−1 −2p(1 + c0p)−1 + p(1 + c1p)−1

−c0(1 + pc0)−1 2c0(1 + pc0)−1p + (1 + c1p)−1

]
. (4)

The determinant of (4) is (1 + c1p)−1, which is nonsingular.
Hence (4) has its inverse.

Now we compute I2 + C1W (p, c0):

I2 + C1W (p, c0)

= I2 +
[

p 1 + 2pc1

1 c1

]

×
[

c0(1 + pc0)−1 −c0p(1 + c0p)−1

pc0(1 + pc0)−1 p(1 + c0p)−1

]

=

⎡
⎢⎣

1 + 2(1 + pc1)pc0(1 + pc0)−1

(p + 2pc1p − pc0p)(1 + c0p)−1

c0(1 + pc1)(1 + pc0)−1

(1 + c1p)(1 + c0p)−1

⎤
⎥⎦ . (5)

Now we consider the multiplication of (4) and (5).[
(1 + pc0)−1 −2p(1 + c0p)−1 + p(1 + c1p)−1

−c0(1 + pc0)−1 2c0(1 + pc0)−1p + (1 + c1p)−1

]

×

⎡
⎢⎣

1 + 2(1 + pc1)pc0(1 + pc0)−1

(p + 2pc1p − pc0p)(1 + c0p)−1

c0(1 + pc1)(1 + pc0)−1

(1 + c1p)(1 + c0p)−1

⎤
⎥⎦ . (6)

This multiplication results the identity of the size 2× 2. Now
we see that the matrix (I2 + C1W (p, c0)) is well-defined and
its inverse is the matrix of (4).

(ii). We now turn to show that the transfer matrix
W (W (p, c0), C1) is over A, which means that w(p, c0) is
stabilized by the matrix of (3). Decompose W (W (p, c0), C1)
into [

M11 M12

M21 M22

]
= W (W (p, c0), C1)

as follows

M11 = C1(I2 + W (p, c0)C1)−1,

M12 = −C1W (p, c0)(I2 + C1W (p, c0))−1,

M21 = W (p, c0)C1(I2 + W (p, c0)C1)−1,

M22 = W (p, c0)(I2 + C1W (p, c0))−1. (7)
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In the following, we show every M11 to M22 is over A.
First we consider M12, which is as follows:

M11 = C1(I2 + W (p, c0)C1)−1 (8)

= (I2 + C1W (p, c0))−1C1

=

⎡
⎢⎢⎣

−p(1 + c0p)−1 + p(1 + c1p)−1

(1 + pc0)−1 + p(1 + c1p)−1c1

c0(1 + pc0)−1p + (1 + c1p)−1

− c0(1 + pc0)−1 + (1 + c1p)−1c1

⎤
⎥⎥⎦ .

Then we consider M12, which is as follows:

M12 = −C1W (p, c0)(I2 + C1W (p, c0))−1

= −I2 + I2 − C1W (p, c0)(I2 + C1W (p, c0))−1

= −I2 + (I2 + C1W (p, c0))−1. (9)

The first and the second terms of the right hand side is over
A. Hence M12 is over A. Then we consider M21, which is as
follows:

M21 = W (p, c0)C1(I2 + W (p, c0)C1)−1

= W (p, c0)(I2 + C1W (p, c0))−1C1

= W (p, c0)M11. (10)

The last one is M22, which is as follows:

M22 = W (p, c0)(I2 + C1W (p, c0))−1. (11)

Both W (p, c0) and (I2 + C1W (p, c0))−1 are over A.
Hence W (W (p, c0), C1) is over A.

IV. TWO-STAGE COMPENSATOR DESIGN

In some design problems, one uses a so-called two-
stage procedure for selecting an appropriate stabilizing
compensator[5]. Given a plant p, the first stage consists of
selecting a stabilizing compensator for p. Let c0 ∈ S(p) denote
this compensator (that is, an arbitrary but fixed compensator
of p) and define p1 = p(1+c0p)−1. The second stage consists
of selecting a stabilizing controller for p1 that also achieves
some other design objectives such as decoupling, sensitivity
minimization, etc. The rationale behind this procedure is that
the design problems are often easier to solve when the plant
is stable. The resulting configuration with its inner and outer
loops is shown in Fig. 2.

p

c1

p1

c0

2 2

The following show that, in general, the two-stage com-
pensator design based on Fig. 2 cannot give all stabilizing
controllers.

Theorem 3 ([12]): Let p denote a causal plant of P and c0

a causal stabilizing controller of p (c0 ∈ P). Further let p1 be
p(1 + c0p)−1. Denote by c0 + S(p1) the following set:

{c0 + c1 | c1 ∈ S(p1)}.
Then

c0 + S(p1) ⊂ S(p), (12)

with equality holding if and only if c0 ∈ A.
Theorem 4 ([12]): Let p, c0, p1 be as in Theorem 3.
Let n, d, y, x be in A such that{

p = nd−1, c0 = yx−1,
ny + dx = 1.

(13)

Then we have

c0 + S(p1) =
{(x−rn)−1(y + rd) | r=r1x

2, r1 ∈ A, (x−rn) �= 0}. (14)

By Theorem 3, we see that the sum of c0 and a stabilizing
controller of p1, say c1, is again a stabilizing controller of p.
This sum, a stabilizing controller of p, is the parallel allocation
of c0 and c1, as shown in Fig. 3. However, this cannot give
all stabilizing controllers if c0 �∈ A. To solve this problem we
will apply Theorem 1 to the two-stage compensator design.

p

c1

c0

0 1

V. APPLICATION TO TWO-STAGE COMPENSATOR DESIGN

This section investigates the full-feedback of Fig. 4, to
which we apply the result of the last section.

Theorem 5:

S(p) = {(1 + w12)−1w11|
(a) R1 ∈ A2×2,

(b) (I2 − R1W (p, c0)) is nonsingular,

(c) C1 := (I2 − R1W (p, c0))−1R1,

(d)

[
w11 w12

w21 w22

]
:=

[
0 1 1 0
0 0 0 1

]

W (W (p, c0), C1)

⎡
⎢⎣

0 0
1 0
1 0
0 1

⎤
⎥⎦ ,

(e) 1 + w12 is nonsingular}. (15)

Fig. 3 Composite Stabilized Feedback with c and c

Fig. 2 Two-Stage Compensator Design (y to u )
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Proof: “⊂”-part. Let c0 and c1 be stabilizing controllers
of p (c0, c1 ∈ S(p)). Let C1 be

C1 =
[

p 1 + 2pc1

1 c1

]
.

Then by Theorem 1, W (W (p, c0), C1) is over A. This
W (W (p, c0), C1) is calculated as follows:

W (W (p, c0), C1) =

⎡
⎢⎣

m11 m12 m13 m14

m21 m22 m23 m24

m31 m32 m33 m34

m41 m42 m43 m44

⎤
⎥⎦ ,

where

m11 = −p(1 + c0p)−1 + p(1 + c1p)−1,

m12 = (1 + pc0)−1 + pc1(1 + pc1)−1,

m13 = −1 + (1 + pc0)−1,

m14 = −2p(1 + c0p)−1 + p(1 + c1p)−1,

m21 = c0(1 + pc0)−1p + (1 + c1p)−1,

m22 = −c0(1 + pc0)−1 + (1 + c1p)−1c1,

m23 = −c0(1 + pc0)−1,

m24 = −1 + 2c0(1 + pc0)−1p + (1 + c1p)−1,

m31 = −c0(1 + pc0)−1,

m32 = c0(1 + pc0)−1,

m33 = c0(1 + pc0)−1,

m34 = −2c0p(1 + c0p)−1,

m11 = p(1 + c1p)−1,

m42 = p(1 + c1p)−1c1,

m43 = 0,

m44 = p(1 + c1p)−1.

Consider Condition (c):
[

w11 w12

w21 w22

]

=
[

0 1 1 0
0 0 0 1

]
W (W (p, c0), C1)

⎡
⎢⎣

0 0
1 0
1 0
0 1

⎤
⎥⎦

=
[

0 1 1 0
0 0 0 1

]⎡⎢⎣
m11 m12 m13 m14

m21 m22 m23 m24

m31 m32 m33 m34

m41 m42 m43 m44

⎤
⎥⎦
⎡
⎢⎣

0 0
1 0
1 0
0 1

⎤
⎥⎦

=
[

m22 + m32 + m23 + m33 m24 + m34

m42 + m43 m44

]
(16)

Thus,

w11 = m22 + m32 + m23 + m33

= −c0(1 + pc0)−1 + (1 + c1p)−1c1

+ c0(1 + pc0)−1 − c0(1 + pc0)−1

+ c0(1 + pc0)−1

= (1 + c1p)−1c1, (17)

w12 = m24 + m34

= −1 + 2c0(1 + pc0)−1p

+ (1 + c1p)−1 − 2c0p(1 + c0p)−1

= −1 + (1 + c1p)−1, (18)

w21 = m42 + m43

= p(1 + c1p)−1c1, (19)

and

w22 = m44

= p(1 + c1p)−1. (20)

Hence, w11 to w22 are all in A. Thus,

1 + w12 = 1 + (−1 + (1 + c1p)−1)
= (1 + c1p)−1 (21)

This is nonsingular, by which Condition (e) in Theorem 5 is
satisfied.

Further (1 + w12)−1w11 is now ((1 + c1p)−1)−1((1 +
c1p)−1c1), which is equal to c1. That is, c1 is an element
of the right hand of (15).

Let R1 ∈ A2×2 of Condition (a) in Theorem 5 be

R1 = C1(I2 + W (p, c0)C1)−1. (22)

This is equal to (8), so that this R1 is over A.
Now, I2 − R1W (p, c0) is equal to (I2 + C1W (p, c0))−1,

which means that I2 − R1W (p, c0) is nonsingular. Thus
Condition (b) of Theorem 5 is satisfied. Also, from (22), we
have Condition (c) of Theorem 5.
“⊃”-part. Let c0 be stabilizing controllers of p (c0, c1 ∈ S(p)).
Let R1 ∈ A2×2, C1 ∈ F2×2 be arbitrary matrices that satisfy
Conditions (a) to (e) of Theorem 5.

First we decompose r1 as follows:[
r11 r12

r21 r22

]
:= r1.

Then, »
w11 w12

w21 w22

–

=

»
0 1 1 0
0 0 0 1

–
W (W (p, c0), C1)

2
64

0 0
1 0
1 0
0 1

3
75

=

2
64
(1 + c0p)−1(−c0r11c0 − r21c0 + c0r12 + r22)(1 + pc0)−1

(1 + c0p)−1(c0r11c0 + r21c0 − c0r12 − r22)p(1 + c0p)−1

p(1 + c0p)−1(−c0r11c0 − r21c0 + c0r12 + r22)(1 + pc0)−1

p(1 + c0p)−1(c0r11c0 + r21c0 − c0r12 − r22)p(1 + c0p)−1

3
75

+

»
c0(1 + pc0)

−1 −c0p(1 + c0p)−1

pc0(1 + pc0)
−1 p(1 + c0p)−1

–
.

Now, we have

w11 = (1 + c0p)−1(−c0r11c0 − r21c0 + c0r12 + r22)

×(1 + pc0)
−1 + c0(1 + pc0)

−1,

w12 = (1 + c0p)−1(c0r11c0 + r21c0 − c0r12 − r22)

×p(1 + c0p)−1 − c0p(1 + c0p)−1,

w21 = p(1 + c0p)−1(−c0r11c0 − r21c0 + c0r12 + r22)

×(1 + pc0)
−1 + pc0(1 + pc0)

−1,

w22 = p(1 + c0p)−1(c0r11c0 + r21c0 − c0r12 − r22)

×p(1 + c0p)−1 + p(1 + c0p)−1.
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Let cNew be

cNew

= (1 + w12)
−1w11

= ((c0r11c0 + r21c0 − c0r12 − r22)p(1 + c0p)−1 + 1)−1

((−c0r11c0 − r21c0 + c0r12 + r22)(1 + pc0)
−1 + c0).(23)

Further let Q = −c0r11c0 − r21c0 + c0r12 + r22. Then

cNew = (−Qp(1 + c0p)−1 + 1)−1(Q(1 + pc0)
−1 + c0)(24)

In the following we show that cNew is in S(p). To do so, we show
that (1 + cNewp)−1, cNew(1 + cNewp)−1, p(1+ cNewp)−1 are in A.

Now

(1 + cNewp)−1

= (1 + c0p)−1(−Qp(1 + c0p)−1 + 1)

= (1 + c0p)−1c0r11c0p(1 + c0p)−1

+(1 + c0p)−1r21c0p(1 + c0p)−1

−(1 + c0p)−1c0r12p(1 + c0p)−1

−(1 + c0p)−1r22p(1 + c0p)−1

+(1 + c0p)−1

Every rij and every underlined expression above are in A. Hence
(1 + cNewp)−1 is in A.

p(1 + cNewp)−1

= −p(1 + c0p)−1Qp(1 + c0p)−1 + p(1 + c0p)−1

= −p(1 + c0p)−1(−c0r11c0 − r21c0 + c0r12 + r22)

×p(1 + c0p)−1 + p(1 + c0p)−1

= p(1 + c0p)−1c0r11c0p(1 + c0p)−1

+p(1 + c0p)−1r21c0p(1 + c0p)−1

−p(1 + c0p)−1c0r12p(1 + c0p)−1

−p(1 + c0p)−1r22p(1 + c0p)−1

+p(1 + c0p)−1

Every rij and every underlined expression above are in A. Hence
p(1 + cNewp)−1 is in A.

(1 + cNewp)−1cNew

= (1 + c0p)−1(−Qp(1 + c0p)−1 + 1)cNew

= (1 + c0p)−1Q(1 + pc0)
−1 + (1 + c0p)−1c0

= −(1 + c0p)−1c0r11c0(1 + pc0)
−1

−(1 + c0p)−1r21c0(1 + pc0)
−1

+(1 + c0p)−1c0r12(1 + pc0)
−1

+(1 + c0p)−1r22(1 + pc0)
−1

+(1 + c0p)−1c0

Every rij and every underlined expression above are in A. Hence
(1 + cNewp)−1cNew is in A.

Hence cNew is in S(p).

VI. CONCLUSION

In this paper, we have shown a relationship between two sta-
bilizing controllers (Theorem 1). This result gives that for any
stabilizing controller c0 of p, the feedback system W (p, c0)
of p and c0 is stabilized by the matrix[

p 1 + 2pc1

1 c1

]
,

where c1 is also any stabilizing controller of p.
We have applied this relationship to the two-stage com-

pensator design. This two-stage compensator design uses two
inputs u1 and u2 and two outputs y1 and y2 (Theorem5). This
gives the parametrization of all stabilizing controllers.

The results of this paper are based on the factorization
approach, so that they can be applied to numerous linear
systems. In this paper, we do not have considered multi-input
multi-output case, which should be investigated as a future
work.

cu20

e2u10 e1
p

y1
0

u32

u31

c111

c122

c121

c112

+y32

u2
1u

u2New

=y1New

y2=y2New

u1New

=0

C1
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