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A Refined Nonlocal Strain Gradient Theory for
Assessing Scaling-Dependent Vibration Behavior of

Microbeams
Xiaobai Li, Li Li, Yujin Hu, Weiming Deng, Zhe Ding

Abstract—A size-dependent Euler–Bernoulli beam model, which
accounts for nonlocal stress field, strain gradient field and higher
order inertia force field, is derived based on the nonlocal strain
gradient theory considering velocity gradient effect. The governing
equations and boundary conditions are derived both in dimensional
and dimensionless form by employed the Hamilton principle. The
analytical solutions based on different continuum theories are
compared. The effect of higher order inertia terms is extremely
significant in high frequency range. It is found that there exists
an asymptotic frequency for the proposed beam model, while for
the nonlocal strain gradient theory the solutions diverge. The effect
of strain gradient field in thickness direction is significant in low
frequencies domain and it cannot be neglected when the material
strain length scale parameter is considerable with beam thickness.
The influence of each of three size effect parameters on the natural
frequencies are investigated. The natural frequencies increase with
the increasing material strain gradient length scale parameter or
decreasing velocity gradient length scale parameter and nonlocal
parameter.

Keywords—Euler-Bernoulli Beams, free vibration, higher order
inertia, nonlocal strain gradient theory, velocity gradient.

I. INTRODUCTION

IN recent years, various investigations have been carried

out to study wave propagation [1]–[3], bending [4],

[5], buckling [6]–[9] and free vibration [5], [10]–[13]

of the micro/nano structures in which the continuum

mechanic theories have been employed. For these micro

structures, such as actuators, sensors, microscopes,

micro/nano-electro-mechanical systems (MEMS/NEMS),

the effects of a very small scale over which the neighboring

material particles or constituents interact should be considered.

Beams are core structures widely used in these micro systems

and the dynamic properties are closely related to the

microstructures. To accurately evaluate the dynamic behaviors

of MEMS/NEMS, it’s necessary to study the dynamic

properties of microbeams.

In small scales, the vibration behavior of microbeams cannot

be predicted accurately by employing the classical elasticity

theory. Recently, a series of nonclassical mechanics theories

considering the size-effect, including nonlocal elasticity theory
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[14], strain gradient theory [15], [16] and nonlocal strain

gradient theory [17], were developed and employed to simulate

the dynamic behaviors of micro structures. The nonlocal

elasticity theory (NET) states that the total stress at one

point (a reference point) is a function of the strain at all

points in the domain. Some studies [18]–[23] showed that

the nonlocal size effect plays an important role in dynamic

properties especially in high frequency range. However, NET

cannot always be accurate when predicting the size-dependent

dynamic behavior of microbeams. For instance, its capability

of identifying size-dependent stiffness is limited as illustrated

in several articles [24]–[27].

Yang et al. [28] have proposed a modified couple stress

theory by considering the effects of the curvature tensor

conjugated with couple stress tensor. Thus, a new higher

order equilibrium equation (moments of couples equilibrium

equation) is considered as a supplementary of classical

equilibrium equations. The strain gradient theory (SGT) state

that not only the classical strain tensor but also the derivatives

of the strain tensor should be taken into consideration. Fleck

and Hutchinson [29], [30] used and simplified Mindlin’s

formulations by only considering the first derivative of the

strain tensor. Compared with the couple stress theory, the

SGT contains some additional higher order stress components

beside the classical stress and couple stress. It means that the

couple stress theory is a special case of the SGT.

The higher order inertia term, namely velocity gradients,

which are introduced by Mindlin [16], should be included in

the governing equations, enlightened by the strain gradient

theory (SGT), especially for microbeams [31]–[33]. Under

this assumption, the kinetic energy depends not only on the

velocity but also on the velocity gradient. In a series of studies

[34]–[36], considering the higher order inertia effect in wave

motion and the related dispersion problems gave results in

consistent with those of atomic-lattice models. It was found

that the higher order inertia effect is indispensable for wave

propagating at high frequencies.

Lim et al. [17] considering both nonlocal elasticity effect

and the effect of the gradient of strain tensor, proposed a

nonlocal strain gradient theory (NSGT) to study the mechanics

behaviors of solids at micro and nano scales. To the best

knowledge of authors, the NSGT is probably the most

successful theory to study the static and dynamic behavior

considering the size effects. Li et al. [1]–[3], [5], [7], [12],

[13] have studied mechanical and dynamical behaviors of

microbeams, such as wave propagation properties, buckling
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behaviors and free vibration characteristics based on NSGT.

However, to the best knowledge of the authors, the studies

considering size-effect in both length direction and other

directions are rare. Therefore, there is a desperate need to

discuss the influence of size-effect in thickness direction of a

micro plane beam structure.

In the present work, the higher order inertia effect as well

as the strain gradient through thickness direction is considered

in the size-dependent Euler–Bernoulli beams models based

on the NSGT (i.e. the nonlocal elasticity effect and strain

gradient effect are also considered). In this model, microbeams

are assumed to be thin and long enough. Besides, the

nonlocal elasticity effect, strain gradient effect and the higher

order inertia effect are combined. In Section II, Hamilton

principle is employed to derive the balance equations and

the corresponding boundary conditions. The dimensionless

formulation and boundary conditions are explicitly expressed.

In Section III, a kind of simply supported boundary condition

is given and the analytical solutions of natural frequencies are

obtained. The influences of size effects in thickness direction

and higher order inertia are discussed respectively. Section IV

compared the solution based on different kinds of continuum

theory (namely classical elasticity theory, nonlocal elasticity

theory, strain gradient theory, nonlocal strain gradient theory

and the proposed theory). The effects of different length scale

parameters are discussed respectively. Conclusions are drawn

in Section V.

II. EQUATIONS OF MOTION OF SIZE-DEPENDENT

EULER–BERNOULLI BEAMS

In MEMS/NEMS engineering, there are many beam-like

structures used as key components of the micro-/nano-systems.

Usually, these beam-like components are treated as

micro-beam structures during dynamic/mechanic behaviors

analysis. In these studies, the structures are assumed as lines

or curves and the mechanical quantities, such as kinetic and

potential energies, are simplified from 3-dimensional(3D)

form by integrating on cross-section. In this section, the

3D equations of kinetic and potential energy are expressed

explicit, firstly. The basic assumption of Euler–Bernoulli

beam displacement fields is employed to simplifying the

energy equations. Then, Hamilton’s principle is employed to

obtain the equilibrium equations and governing equations.

Furthermore, the dimensionless form of governing equations

and corresponding boundary conditions are given.

A. Variational Formulation of the Nonlocal Gradient
Theory

The strain energy U of the continuum body based on

nonlocal strain gradient theory has been expressed in 3D form

as [17]:

U =

∫
V

(
1

2
σ : ε+

1

2
τ

...η

)
dV

where σ and ε are nonlocal Cauchy stress tensor and classical

strain tensor, respectively. η = ∇ε denotes the first gradient of

strain tensor which is work-conjugate to higher order nonlocal

stress tensor τ . “ : ” and “
... ” denote, respectively, double

dot product and triple dot product. V denotes the region

occupied by the material body. The classical symmetric strain

component εij and strain gradient component ηkij can be

expressed as

εij = εji =
1

2
(ui,j + uj,i)

ηkij = εij,k

here coma denotes the partial derivative. By considering

the nonlocal assumption, the constitutive relations can be

expressed as

σ =

∫
V

α0 (x
′,x, e0a)C : ε′dV ′

τ = l2
∫
V

α1 (x
′,x, e1a)C : η′dV ′

= l2
∫
V

α1 (x
′,x, e1a)C : ∇ε′dV ′

where C is fourth order material elasticity tensor and

its component can be expressed as Cijkl = λδijδkl +
μ (δikδjl + δjkδil). λ and μ are Lame constants and δij
denotes the Kronecker delta function. α0 and α1 are

attenuation kernel function related to nonlocal elasticity effect

in terms of the distance between the point x and x′. ∇ denotes

the 3D gradient operator. e0a and e1a are nonlocal parameters

introduced to consider the nonlocal stress field effect. l is a

material length scale parameter with units of m2 introduced

to consider the strain gradient effect.

According to the nonlocal strain gradient theory, the total

stress tensor accounts for the nonlocal stress tensor as well as

the strain gradient stress tensor and has been given as

t = σ −∇τ

where the nonlocal Cauchy stress tensor and the higher order

stress tensor can be expressed in gradient form as[
1− (e0a)

2∇2
]
σ = C : ε[

1− (e1a)
2∇2

]
τ = l2C : η = l2C : ∇ε

Thus, considering homogeneous material, the total stress

tensor can be expressed as[
1− (e1a)

2∇2
] [

1− (e0a)
2∇2

]
t = C :

[
1− (e1a)

2∇2
]
ε

−l2C :
[
1− (e0a)

2∇2
]
∇2ε

where ∇2 is the Laplacian operator and is denoted by ∇2 =(
∂2/∂x2 + ∂2/∂y2 +∂2/∂z2

)
.

By assuming e = e0 = e1, the general constitutive equation

for the size-dependent continuum can be simplified as[
1− (ea)

2∇2
]
t = C : ε− l2C : ∇2ε (1)

Finally, the variation of strain energy U in terms of

components can be expressed as

δU =

∫
V

(σijδεij + τkijδηkij) dV (2)
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The higher order inertia effect, as is introduced by Mindlin

[16], is considered. According to the assumption, the kinetic

energy of the continuum body depends not only on the velocity

but also on the velocity gradient and can be expressed as

K =

∫
V

(
1

2
ρu̇ · u̇+

1

2
l21ρ∇u̇ : ∇u̇

)
dV

where u denotes the displacement vector of a reference point,

“•̇” denotes the time derivative of “•”, thus u̇ is the velocity

vector. ∇ denotes the 3D gradients operator. “·” is dot product

and “ : ” denotes double dot product. ρ denotes the mass

density of the material and l1 is a material characteristic

parameter (one kind of length scale parameter) with units

of m2 introduced to consider the higher order inertia effect

[31]. Polyzos et al. [37], [38] investigated and obtained the

coefficient l1 as well as the strain gradient coefficient l by

using lattice model. The Kinetic energy which considering

the velocity gradient can be reduced to the classical form by

setting l1 = 0. The variation of kinetic energy can be expressed

in terms of displacement components as

δK =

∫
V

ρ
(
u̇iδu̇i + l21u̇i,jδu̇i,j

)
dV

B. Constitutive Relation of Nonlocal Strain Gradient
Euler–Bernoulli Beams

According to Euler–Bernoulli beam theory, the

displacement field can be expressed as

u (x, z, t) = u (x, t)− z
∂w

∂x
v (x, z, t) = 0

w (x, z, t) = w (x, t)

(3)

where x, y z are the Cartesian coordinates, u (x, t) is the axial

displacement of the cross-section in x direction, w (x, t) is the

transverse displacement of the cross-section in the z direction.

The nonzero linear strain-displacement and strain

gradient-displacement relations can be expressed according

to (3) as

εxx =
∂u

∂x
− z

∂2w

∂x2

ηxxx = εxx,x =
∂2u

∂x2
− z

∂3w

∂x3

ηzxx = εxx,z = −∂2w

∂x2

(4)

By substituting (4) into (1) and neglecting the effect of

Poisson’s ratio, the constitutive relations can be obtained as

[
1− (ea)

2∇2
]
σxx = Eεxx[

1− (ea)
2∇2

]
τxxx = El2ηxxx[

1− (ea)
2∇2

]
τzxx = El2ηzxx

(5)

Here, the conjugate pair τzxx and ηzxx takes the strain gradient

effect in the thickness direction into account by cross-section

integrating in next subsection.

C. Equilibrium Equations in Terms of Hamilton Principle

The first variation of strain energy functional U can be

expressed, by considering (2), (4) and (5) as

δU =

∫
V

(σxxδεxx + τxxxδηxxx + τzxxδηzxx) dV

=

∫
L

(
Nδ

∂u

∂x
+Nhδ

∂2u

∂x2

− (M + P ) δ
∂2w

∂x2
−Mhδ

∂3w

∂x3

)
dx

(6)

Here, the following stress resultant (including classical axial

force N , higher order axial force Nh and P , classical bending

moment M , higher order bending moment Mh) are defined as

N =

∫
A

σxxdA, Nh =

∫
A

τxxxdz, P =

∫
A

τzxxdA,

M =

∫
A

zσxxdA, Mh =

∫
A

zτxxxdA.

(7)

where P is the term considering strain gradient effect through

thickness direction. According to constitutive equations (1)

and the above resultants (7), the resultants of the total nonlocal

stresses read

�N = N − ∂Nh

∂x

�M = (M + P )− ∂Mh

∂x

Using strain-displacement relations (4), nonlocal constitutive

equations (5), the relations between resultants (7) and

displacement are as:

[
1− (ea)

2∇2
]
N = EA

∂u

∂x
,[

1− (ea)
2∇2

]
Nh = EAl2

∂2u

∂x2
,[

1− (ea)
2∇2

]
M = −EI

∂2w

∂x2
,[

1− (ea)
2∇2

]
Mh = −EIl2

∂3w

∂x3[
1− (ea)

2∇2
]
P = −EAl2

∂2w

∂x2

(8)

where A denotes the area of cross section, I denotes the inertia

moment and can be expressed as I =
∫
A
z2dA. According

to definition (7), we can clearly observe that the resultants

of stresses are functions of x because of the integrating on

cross-section. Thus, the operator ∇2 of nonlocal terms can be

reduced to one-dimension form as ∇2 = ∂2/∂x2.

The first variation of kinetic energy K, while both the axial

displacement and the transverse motions are considered, can
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be given by

δK =

∫
L

{
ρA

(
∂u

∂t
δ

(
∂u

∂t

)
+

∂w

∂t
δ

(
∂w

∂t

))

+ρI

(
∂2w

∂x∂t
δ

(
∂2w

∂x∂t

))}
dx

+ l21

∫
L

{
ρA

(
∂2u

∂x∂t
δ

(
∂2u

∂x∂t

)
+ 2

∂2w

∂x∂t
δ

(
∂2w

∂x∂t

))

+ρI

(
∂3w

∂x2∂t
δ

(
∂3w

∂x2∂t

))}
dx

(9)

According to Hamilton’s principle, we have

∫ t2

t1

(δK − δU + δW ) dt = 0 (10)

where t1 and t2 denote, respectively, the initial and final time

of motion.

For free vibration problems, there is no external load. Thus

the first variation of work done by external loads δW = 0.

By substituting (6) and (9) and using partial integration, the

above equation can be rewritten as

0 =

∫
L

[
ρA

∂u

∂t
δu+ l21ρA

∂2u

∂x∂t
δ

(
∂u

∂x

)]t2
t1

dx

+

∫
L

⎡
⎢⎢⎣

ρA
∂w

∂t
δw + l21ρI

∂3w

∂x2∂t
δ

(
∂2w

∂x2

)

+

(
ρI

∂2w

∂x∂t
+ 2l21ρA

∂2w

∂x∂t

)
δ

(
∂w

∂x

)
⎤
⎥⎥⎦
t2

t1

dx

+

∫ t2

t1

∫
L

(
∂N̂

∂x
− ρA

∂2u

∂t2

)
δudxdt

+

∫ t2

t1

∫
L

(
∂Q̂

∂x
− ρA

∂2w

∂t2

)
δwdxdt

−
∫ t2

t1

[
Q̂δw − M̂δ

(
∂w

∂x

)
−Mhδ

(
∂2w

∂x2

)]L
0

dt

−
∫ t2

t1

[
N̂δu+Nhδ

(
∂u

∂x

)]L
0

dt

(11)

where the total tension force, bending moment, shear force of

the cross-section in which the higher-order inertia terms are

considered as inertial forces can be expressed as

N̂ = �N + l21ρA
∂3u

∂x∂t2

M̂ = �M − l21ρI
∂4w

∂x2∂t2

Q̂ =
∂M̂

∂x
+ ρI

∂3w

∂x∂t2
+ 2l21ρA

∂3w

∂x∂t2

Assuming that the initial and final state are prescribed as

δu = δ

(
∂u

∂x

)
= 0, δw = δ

(
∂w

∂x

)
= δ

(
∂2w

∂x2

)
= 0

Then, the equilibrium equation can be obtained as

δu :
∂N̂

∂x
− ρA

∂2u

∂t2
= 0

δw :
∂Q̂

∂x
− ρA

∂2w

∂t2
= 0

(12)

with the corresponding boundary conditions divided into

classical and non-classical parts. The classical boundary

conditions can be expressed as

specify u or N̂

specify w or Q̂

specify
∂w

∂x
or M̂

and the non-classical boundary conditions are given as

specify
∂u

∂x
or Nh

specify
∂2w

∂x2
or Mh

By substituting (8) into equilibrium equations (12), the

governing equations of the beams can be obtained as

δu : EA
∂2u

∂x2
− EAl2

∂4u

∂x4

− (ea)
2

(
l21ρA

∂6u

∂x4∂t2
− ρA

∂4u

∂x2∂t2

)

+ l21ρA
∂4u

∂x2∂t2
− ρA

∂2u

∂t2
= 0

δw : − EI
∂4w

∂x4
− EAl2

∂4w

∂x4
+ EIl2

∂6w

∂x6

+ 2l21ρA
∂4w

∂x2∂t2
− l21ρI

∂6w

∂x4∂t2
− ρA

∂2w

∂t2

+ ρI
∂4w

∂x2∂t2
− (ea)

2

(
2l21ρA

∂6w

∂x4∂t2

−l21ρI
∂8w

∂x6∂t2
− ρA

∂4w

∂x2∂t2
+ ρI

∂6w

∂x4∂t2

)
= 0

(13)

with N , Nh, P , M , Mh explicitly expressed in V-A and N̂ ,

M̂ , Q̂ as following.

N̂ = EA
∂u

∂x
− EAl2

∂3u

∂x3
+ l21ρA

∂3u

∂x∂t2

− (ea)
2

(
l21ρA

∂5u

∂x3∂t2
− ρA

∂3u

∂x∂t2

)

M̂ = −EI
∂2w

∂x2
− EAl2

∂2w

∂x2
+ EIl2

∂4w

∂x4

− l21ρI
∂4w

∂x2∂t2
− (ea)

2

(
2l21ρA

∂4w

∂x2∂t2

−l21ρI
∂6w

∂x4∂t2
− ρA

∂2w

∂t2
+ ρI

∂4w

∂x2∂t2

)

Q̂ = −EI
∂3w

∂x3
− EAl2

∂3w

∂x3
+ EIl2

∂5w

∂x5

− l21ρI
∂5w

∂x3∂t2
+ ρI

∂3w

∂x∂t2
+ 2l21ρA

∂3w

∂x∂t2

− (ea)
2

(
2l21ρA

∂5w

∂x3∂t2
− l21ρI

∂7w

∂x5∂t2

−ρA
∂3w

∂x∂t2
+ ρI

∂5w

∂x3∂t2

)
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D. Dimensionless Equations

To analyze the dynamic characters of the nonlinear

size-dependent beams regardless of their material properties,

while neglecting the fast dynamics (i.e. the axial motion), the

following dimensionless variables are introduced:

X =
x

L
, W =

w

L
, α =

ea

L
, ζ =

l

L
,

ξ =
l1
L
, γ =

AL2

I
, Ω = ω

√
ρL2

E

Q̃ =
Q̂L2

EI
, M̃ =

M̂L

EI
, M̃h =

Mh

EI

Thus, we have

∂nw

∂xn
=

1

Ln−1

∂nW

∂Xn

and dimensionless shear force and bending moments can be

obtained as

Q̃ =
(
2α2ξ2γΩ2 + α2Ω2 + ξ2Ω2 − ζ2γ − 1

) ∂3W

∂X3

+
(
ζ2 − α2ξ2Ω2

) ∂5W

∂X5

− (
α2γΩ2 +Ω2 + 2ξ2γΩ2

) ∂W

∂X

M̃ =
(
2α2ξ2γΩ2 + α2Ω2 + ξ2Ω2 − ζ2γ − 1

) ∂2W

∂X2

+
(
ζ2 − α2ξ2Ω2

) ∂4W

∂X4
− α2γΩ2W

M̃h =
1

α2 + α2ζ2γ − ζ2

[(
α2ζ4 − ξ2α4ζ2Ω2

) ∂5W

∂X5

− γα4ζ2Ω2 ∂W

∂X
+

(
α2 − ζ2 + 2γξ2α4Ω2

−γα2ζ2 + α4Ω2
)
ζ2

∂3W

∂X3

]
(14)

and the governing equation of the Euler–Bernoulli–Rayleigh

beams can be expressed as dimensionless form in frequency

domain(
ζ2 − α2ξ2Ω2

) ∂6W

∂X6
+

(
ξ2Ω2 + 2α2ξ2γΩ2

+α2Ω2 − γζ2 − 1
) ∂4W

∂X4

− (
2ξ2γΩ2 + α2γΩ2 +Ω2

) ∂2W

∂X2
+ γΩ2W = 0

(15)

with the boundary conditions at X = 0 or 1:

specify W or Q̃

specify
∂W

∂X
or M̃

specify
∂2W

∂X2
or M̃h

Particularly, we can give a typical form of simply supported

boundary condition as

W = 0, M̃ = 0,
∂2W

∂X2
= 0

III. FREE VIBRATION OF SIMPLY SUPPORTED NONLOCAL

STRAIN GRADIENT BEAMS

This section presents the analytical solutions

for free vibrations of nonlocal strain gradient

Euler–Bernoulli–Rayleigh beams under typical simply

supported boundary condition.

A. A Type of Simply Supported Boundary Conditions

In this section, some common a probable kind of simply

supported boundary condition, for nonlocal strain gradient

Rayleigh beams containing higher-order terms are discussed.

Here, we use the end at x = 0 to discuss the boundary

condition. It should be noted that only one term of each of

the three pairs ought to be specified on one end of the beam.

For simply supported end, as mentioned above, the

displacement and bending moment at the end point of beam

are specified. Thus, the lower order boundary conditions are

W = 0, M̃ = 0

One kind of the higher order boundary conditions is considered

in this paper as

∂2W

∂X2
= 0

By substituting (14), the above boundary conditions can be

expressed as

W = 0,
∂4W

∂X4
= 0,

∂2W

∂X2
= 0

B. General Solutions

In order to find the natural frequencies of the nonlocal

strain gradient Euler–Bernoulli–Rayleigh beams, the harmonic

solution in frequency domain can be assumed as W = CekX .

Substituting into the sixth order ordinary differential equation

(15), the characteristic equation can be obtained as

ar3 + br2 + cr + d = 0

where

r = k2, a = ζ2 − α2ξ2Ω2,

b = ξ2Ω2 + 2α2ξ2γΩ2 + α2Ω2 − γζ2 − 1,

c = − (
2ξ2γΩ2 + α2γΩ2 +Ω2

)
, d = γΩ2

The corresponding solution can be obtained as (16), where

θ =
−1 +

√
3i

2
, m =

c

a
− b2

3a2
, n =

2b3

27a3
− bc

3a2
+

d

a
Thus, the general solution of the dimensionless governing

equation, can be given as

W =
[
C1 C2 C3 C4 C5 C6

]
· [ ek1X e−k1X ek2X e−k2X ek3X e−k3X

]T
(17)
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k1 =

√√√√ 3

√
−n

2
+

√(n
2

)2

+
(m
3

)3

+
3

√
−n

2
−

√(n
2

)2

+
(m
3

)3

− b

3a

k2 =

√√√√
θ

3

√
−n

2
+

√(n
2

)2

+
(m
3

)3

+ θ2
3

√
−n

2
−

√(n
2

)2

+
(m
3

)3

− b

3a

k3 =

√√√√
θ2

3

√
−n

2
+

√(n
2

)2

+
(m
3

)3

+ θ
3

√
−n

2
−

√(n
2

)2

+
(m
3

)3

− b

3a

(16)

C. Analytical Solution for Simply Supported Beams

Considering a nonlocal strain gradient beam simply

supported at ends X = 0 and X = 1, the characteristic

equation can be obtained by substituting (17) into the boundary

conditions as∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1 1 1 1
k21 k21 k22 k22 k23 k23
k41 k41 k42 k42 k43 k43
ek1 e−k1 ek2 e−k2 ek3 e−k3

ek1k21 e−k1k21 ek2k22 e−k2k22 ek3k23 e−k3k23
ek1k41 e−k1k41 ek2k42 e−k2k42 ek3k43 e−k3k43

∣∣∣∣∣∣∣∣∣∣∣∣
= 0

The above characteristic equation can be simplified as

e−k1−k2−k3
(
e2k1 − 1

) (
e2k2 − 1

) (
e2k3 − 1

)
(
k21 − k22

)2(
k21 − k23

)2(
k22 − k23

)2
= 0

A possible solution of the normalized deflection W may read

W = sin (nπX) (18)

where n is the mode number.

Substituting (18) into the governing equation (15) yield the

analytical solution of the dimensionless mode frequency:

Ω =

√√√√ (nπ)
6
ζ2 + γζ2(nπ)

4
+ (nπ)

4(
1 + α2(nπ)

2
)(

ξ2(nπ)
4
+ (nπ)

2
+ 2ξ2γ(nπ)

2
+ γ

)
(19)

As can be seen, the analytical frequency solution implies

that the dimensionless strain length scale parameter ζ increases

the frequency, while the dimensionless inertia length scale

parameter ξ and nonlocal parameter α decrease the frequency.

When n → ∞, the dimensionless asymptotic frequency can

be obtained as

Ωasym =
ζ

αξ

It is worth discussing that some kinds of scale-effects

influence on the solutions showed in (19), significantly.

1) (Size-effect in thickness direction): It is interesting that

the solution can be reduced to the following form when

the scale effect in thickness direction is neglected, which

is applied in many articles. In this case, the gradient

of strain ηzxx and the work-conjugate stress τzxx are

vanished. Hence, the dimensionless natural frequencies

can be reduced to

Ωred =

√
(nπ)

6
ζ2 + (nπ)

4

ξ2(nπ)
4
+ (nπ)

2
+ 2ξ2γ(nπ)

2
+ γ

·
√

1

1 + α2(nπ)
2

(20)

When the dimensionless parameters are satisfied

with (21), the error will be significant (i.e.

(Ω− Ωred) /Ωred × 100% ≥ 5%).

√
1 +

γ

(nπ)
2
+ 1/ζ2

≥ 1.05 (21)

It indicates that the increasing geometrical parameter γ
and length-scale parameter ζ and decreasing order n of

natural frequencies increase the error. When and only

when the relation

ζ2 <
0.1025

γ − 0.1025× (Nπ)
2

is satisfied for a specific microbeam structure, the

size-effect in the thickness direction can be neglected.

Here, N denotes the lowest order of natural frequency

that is concerned about. Especially, while N = 1, it

means the value of ζ satisfies the above inequality for all

natural frequencies. In this case, the strain gradient effect

through thickness direction can be neglected. Further

more, for a specific material (i.e. l is a constant), only

when the geometric parameters of microbeam structure

satisfy

0.1025L2

γ − 0.1025× (Nπ)
2 > l2

the size-effect in the thickness direction can be

neglected. Thus, one can design the geometric properties

according this inequality to avoid the size-effect through

thickness direction. Also, it indicates that for higher

frequencies than N th order natural frequency this effect

could be neglected. Thus, the strain gradient effect

in thickness direction is more significant in lower

frequency range.
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2) (Higher order inertia terms): If the higher order inertia

effect is neglected (i.e. l1 = 0 and ξ = 0), the

dimensionless natural frequencies can be reduced to

Ωred =

√√√√ (nπ)
6
ζ2 + γζ2(nπ)

4
+ (nπ)

4(
1 + α2(nπ)

2
)(

(nπ)
2
+ γ

) (22)

When the dimensionless parameters are satisfied with

(23), the error will be significant (i.e.
Ω− Ωred

Ω
×

100% ≥ 5%).√
ξ2

1/(nπ)
2
+ 1/γ

+ ξ2(nπ)
2
+ 1 ≥ 1.05 (23)

As can be seen, the increasing order n, geometrical

parameter γ and length-scale parameter ξ increase the

error. By simplifying the inequality, one can point out

that when the length scale parameter ξ satisfied

ξ2 <
0.0125

(
γ + (Nπ)

2
)

2γ(Nπ)
2
+ (Nπ)

4

the higher order inertia effect can be neglected. Here

N denotes the highest order of natural frequencies

that is concerned about. Further more, for a specific

material (i.e. l1 is a constant), only when the geometric

parameters are designed satisfying

0.0125
(
γ + (Nπ)

2
)
L2

2γ(Nπ)
2
+ (Nπ)

4 > l21

the velocity gradient effect of the beam can be neglected.

However, it can be obviously found that this condition

can not always be satisfied, especially, for high orders

of natural frequencies. Thus, the effect of higher order

inertia should be considered in the free vibration

analysis.

IV. RESULT AND DISCUSSION

This section presents the numerical results to evaluate the

effect of three length scale parameters on natural frequencies.

Since Euler–Bernoulli–Rayleigh assumption is considered, the

ratio of length to diameter (or the height of cross-section)

should be large enough.

A. Effect of Different Continuum Theories

In this section, we consider a microbeam with dimensionless

parameter γ = 4800 and dimensionless scale parameters α, ξ
and ζ varying from 0 ∼ 0.05. As is detected in [12], the

natural frequencies for nonlocal elasticity theory (NET) are

smaller than the ones for classical elasticity theory (CET)

because of the effect of nonlocal parameter α on inertia

terms. However, the natural frequencies for strain gradient

theory (SGT) are larger than the ones for CET, because the

length scale parameter ζ positively effects on dynamic stiffness

of the micro-structure. For nonlocal strain gradient theory

(NSGT), the natural frequencies are effected by both α and

ζ. Fig. 1 shows the natural frequencies of the microbeam for

different continuum theories. As can be seen, it makes the

natural frequencies increasing to consider the effect of strain

gradient. On the contrast, it makes the natural frequencies

decreasing to consider the effect of nonlocal elasticity and

higher oder inertia. These effects are much more significant at

higher order frequencies than at lower ones. As a consequence,

the values of natural frequencies for nonlocal strain gradient

theory considering higher order inertia (NSG-HI) are between

those for NSGT and those for NET. It is of interest that, the

solutions for CET, SGT, NSGT diverge with the increasing

order, while the solutions for NET and NSG-HI converge.

That means both for NET and NSG-HI there is an asymptotic

value of frequencies. Especially, the analytical expression of

the asymptotic frequency for NSG-HI beam has been given in

Section III.

0 10 20 30 40 50

orders of natural frequencies

0

50

100

150

200

Ω

CE
NE
SG
NSG
NSG-HI

Fig. 1 Natural frequencies of simply supported microbeams for different
continuum theories (including classical elasticity (CE) theory, nonlocal

elasticity (NE) theory, strain gradient (SG) theory, nonlocal strain gradient
(NSG) theory and nonlocal strain gradient theory with higher-order inertia

effect (NSG-HI))

0 10 20 30 40 50 60

orders of natural frequencies

0

20

40

60

80

100

120

140

Ω

ξ=0.01,  ζ=0.025
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Fig. 2 Natural frequencies of simply supported microbeams for NSG-HI
with dimensionless parameters: velocity gradient coefficient ξ = 0.01, strain

gradient coefficient ζ = 0.025 and various nonlocal parameter α
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ζ=0.035
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Fig. 3 Natural frequencies of simply supported microbeams for NSG-HI
with dimensionless parameters: nonlocal parameter α = 0.015, velocity
gradient coefficient ξ = 0.01 and various strain gradient coefficient ζ

0 10 20 30 40 50 60

orders of natural frequencies

0

20

40

60

80

100

120

140

Ω

α=0.015,  ζ=0.025

ξ

ξ=0.01
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Fig. 4 Natural frequencies of simply supported microbeams for NSG-HI
with dimensionless parameters: nonlocal parameter α = 0.015, strain

gradient coefficient ζ = 0.025 and various velocity gradient coefficient ξ

B. Effect of Length Scale Parameters

Here, we consider a microbeam for NSG-HI with length

scale parameter ζ = 0.025 and ξ = 0.01. Fig. 2 shows the

natural frequencies with varying values of nonlocal parameter

α. As can be seen, the natural frequencies decrease with

the increasing value of α. Similarly, Fig. 3 shows natural

frequencies for NSG-HI with varying values of ξ while the

length scale parameter α = 0.015 and ζ = 0.025. Fig. 4

shows natural frequencies for NSG-HI with varying values of

ζ while the length scale parameter α = 0.015 and ξ = 0.01.

The values of natural frequencies increase with the increasing

value of ζ and decreasing value of ξ.

Fig. 5 shows the lowest three orders of natural frequencies

of microbeam for NSG-HI with constant ξ = 0.01 versus the

rate of other two scale parameters c = ζ/α. The dark solid

lines plot the natural frequencies for CET. Dash lines plot the

natural frequencies for ξ = 0.01 and α = ζ = 0. In each
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(a) First-order frequency
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(b) Second-order frequency
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α=0.02
α=0.03
α=0.05

(c) Third-order frequency

Fig. 5 Effect of dimensionless scale parameters on the first three natural
frequencies of a simply supported microbeam with ξ = 0.01

subfigure, the curves for NSG-HI cross the point satisfied

c =

√
(nπ)

2

(nπ)
2
+ γ

(24)

It is worth mentioning that the above equation can meet the

results by Li. et. al [12], [13] when the size-dependent behavior

in the thickness direction is neglected.

For a constant α = 0.025, the dimensionless natural

frequencies of NSG-HI beam for various values of ζ and

ξ = c′ζ are shown in Fig. 6. The dark solid lines plot the
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Fig. 6 Effect of dimensionless scale parameters on the first three natural
frequencies of a simply supported microbeam with α = 0.025

solutions for CET, while the dash lines plot the solutions for

NET. The intersection points of these curves and y-axis are

solutions for NSGT.

In each subfigure, the curves for NSG-HI and the line for

NET cross the point satisfied

c′=
(nπ)

2
+ γ

nπ

√
1

(nπ)
2
+ 2γ

(25)

V. CONCLUSION

This paper combines the nonlocal elasticity effect, strain

gradient effect and higher order inertia effect and proposes

a new model of micro thin beam. Hamilton principle

is employed to obtain the equilibrium equations and the

corresponding boundary conditions of the nonlocal strain

gradient Euler-Bernoulli beams with considering higher order

inertia effect. Two additional material length scale parameters

are employed to consider the significance of strain gradient

stress field and higher order inertia force field. A nonlocal

parameter is also employed to consider the significance of

nonlocal elasticity stress field. For a more general study

(to analyze the dynamic properties of microbeams), the

dimensionless governing equation and the explicit boundary

conditions are deduced. For simply supported boundary

conditions, the analytical solutions of the proposed beam

models for free vibration problems are derived. The influences

of strain gradient in thickness direction and the higher order

inertia force field are discussed. Besides, the influences of

each size dependent parameters on the natural frequencies are

investigated. The most important results are as follows:

1) The strain gradient field in thickness direction affect

significantly on natural frequencies, especially at low

frequency domain for thin beams. It’s because, in this

case (for thin microbeams), the length scale parameter l
is considerable with the thickness h.

2) The effect of higher order inertia term on higher order

frequencies is more significant than that on lower ones.

Besides, with the decreasing of thickness h and length

L, the effect of higher order inertia force field become

significant.

3) For the Euler-Bernoulli beam models based on the

nonlocal strain gradient theory considering the higher

order inertia, similarly to that based on the nonlocal

elasticity theory, there is an asymptotic value of

natural frequencies, which is probably about the atomic

vibration frequencies.

4) The vibration frequencies increase with the increasing

material strain gradient length scale parameter ζ or

decreasing higher order inertia length scale parameter

ξ and nonlocal parameter α.

APPENDIX

A. Explicit Expression of Stress Resultants

According to (8), we have the following relations

Nh = l2
∂N

∂x
, Mh = l2

∂M

∂x
, P =

l2A

I
M

Thus, the explicit express of the stress resultants can be

obtained as

N = EA
∂u

∂x
− EAl2ea2

ea2 − l2
∂3u

∂x3

− (ea)
4

ea2 − l2

(
l21ρA

∂5u

∂x3∂t2
− ρA

∂3u

∂x∂t2

)

Nh = l2EA
∂2u

∂x2
− EAl4ea2

ea2 − l2
∂4u

∂x4

− (ea)
4
l2

ea2 − l2

(
l21ρA

∂6u

∂x4∂t2
− ρA

∂4u

∂x2∂t2

)
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M = −
(

ea2 − l2

ea2I + ea2l2A− l2I

)
EI2

∂2w

∂x2

− (ea)
2
l2EIA

(ea)
2
I + (ea)

2
l2A− l2I

∂2w

∂x2

+
(ea)

2
EI2l2

(ea)
2
I + (ea)

2
l2A− l2I

∂4w

∂x4

− (ea)
4
I

(ea)
2
I + (ea)

2
l2A− l2I

(
2l21ρA

∂4w

∂x2∂t2

−l21ρI
∂6w

∂x4∂t2
− ρA

∂2w

∂t2
+ ρI

∂4w

∂x2∂t2

)

P = −
(

ea2 − l2

ea2I + ea2l2A− l2I

)
l2EIA

∂2w

∂x2

− (ea)
2
l4EA2

(ea)
2
I + (ea)

2
l2A− l2I

∂2w

∂x2

+
(ea)

2
EIAl4

(ea)
2
I + (ea)

2
l2A− l2I

∂4w

∂x4

− (ea)
4
l2A

(ea)
2
I + (ea)

2
l2A− l2I

(
2l21ρA

∂4w

∂x2∂t2

−l21ρI
∂6w

∂x4∂t2
− ρA

∂2w

∂t2
+ ρI

∂4w

∂x2∂t2

)

Mh = −
(

ea2 − l2

ea2I + ea2l2A− l2I

)
l2EI2

∂3w

∂x3

− (ea)
2
l4EIA

(ea)
2
I + (ea)

2
l2A− l2I

∂3w

∂x3

+
(ea)

2
EI2l4

(ea)
2
I + (ea)

2
l2A− l2I

∂5w

∂x5

− (ea)
4
l2I

(ea)
2
I + (ea)

2
l2A− l2I

(
2l21ρA

∂5w

∂x3∂t2

−l21ρI
∂7w

∂x5∂t2
− ρA

∂3w

∂x∂t2
+ ρI

∂5w

∂x3∂t2

)
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