International Journal of Business, Human and Social Sciences
ISSN: 2517-9411
Vol:8, No:5, 2014

A Redesigned Pedagogy in Introductory Programming
Reduces Failure and Withdrawal Rates by Half

Said C. Fares, Mary A. Fares

Abstract—It is well documented that introductory computer
programming courses are difficult and that failure rates are high. The
aim of this project was to reduce the high failure and withdrawal rates
in learning to program. This paper presents a number of changes in
module organization and instructional delivery system in teaching
CS1. Daily out of class help sessions and tutoring services were
applied, interactive lectures and laboratories, online resources, and
timely feedback were introduced. Five years of data of 563 students
in 21 sections was collected and analyzed. The primary results show
that the failure and withdrawal rates were cut by more than half.
Student surveys indicate a positive evaluation of the modified
instructional approach, overall satisfaction with the course and
consequently, higher success and retention rates.

Keywords—Failure Student

engagement, CS1.

Rate, Interactive Learning,

I. INTRODUCTION

ROGRAMMING is a core skill in the computer science
field, and therefore most computer science programs start
with introductory programming courses. However, regardless
of the recognized importance of programming, the results can
be disappointing. Deficiencies in basic programming skills
were reported by instructors of the upper-level courses.
Another consequence of poor learning was high failure rates in
introductory programming courses. Many colleges report
dropout rates of 20 to 40 percent, even higher, for students in
introductory programming courses [1]-[4]. Pedagogical
approaches, which take advantage of learning theories and
information technologies, have been proposed in the research
literature to tackle the learning problems associated with
introductory computer programming [5]-[8], [10]-[13].
However, there are very few evidence-based experiences, and
the difficulties of learning how to program for novice students
remain to be researched [6]. As blended learning becomes
more and more pervasive in higher education as the most
prominent delivery mechanism, expectations for learning
benefits in computer programming are becoming greater. But,
simply providing instruction with a mix of face-to-face
learning and information technologies will not have the
desired effect if the underlying blended learning model does
not rely on learning theory and pedagogical principles [9].
To confront this problem, an initiative was developed in
2012 to revise one institution’s traditional face-to-face

S. F. is with the Mathematics and Computer Science Department, Valdosta
State University, Valdosta, Georgia 31698 USA (email: sfares@valdosta.edu).

M. F. is with the Physics, Astronomy, and Geosciences Department,
Valdosta State University, Valdosta, Georgia 31698 USA (email:
mfares@valdosta.edu).

lecturing approach in teaching Computer Science I (CS1).
This interactive model was supported by the university
Institutional Planning Council in an attempt to improve the
overall student satisfaction, retention, and success rates. Five
years of data were collected and analyzed. Three years (2009
through 2011) of data represent the previous traditional
method of instruction and two years (2012 and 2013) of data
represent the current interactive method of instruction. Seven
different instructors taught the 21 sections of the programming
course from 2009 to 2013. Introductory Java programming is
taught to over 60 undergraduate students per semester, where
more than 86% of them major in computer science or
computer information systems. Course contents, pre-
requisites, requirements, and program entrance criteria have
remained virtually unchanged.

II. DESCRIPTION OF THE MODULE

Until fall semester 2011, we used a traditional model to
teach the introductory programming course. Regular lectures,
occasional laboratory meeting, out of class programming
projects, limited online resources and limited out of class
support. Since spring semester 2012, daily out of class help
sessions and tutoring services were available. Interactive
lecturing and laboratory have been used, where students
participated in writing codes and class discussions. Online
resourced and self-paced practice exercises were provided
and utilized by the majority of students.

After careful analysis of the traditional teaching method,
the new module was developed with the following
components described in the following subsections.

A. Help Sessions

Since programming concepts and skills are related, they are
often prerequisites or co-requisites. Students who do not
understand early in the semester the introductory
programming concepts face a greater danger of not grasping
the course materials and end up dropping or failing the course.
In order to support students in this critical transitional phase,
we offered students daily laboratory help sessions and tutoring
services. Help sessions offered one on one assistance with
programming problems as well as covered common course
topics that students expressed difficulty in understanding. The
help sessions presented timely support for serious students
who faced a “brick wall” in their transitional period. Students’
attendance at these voluntarily activities directly correlated to
the effectiveness of the early intervention.

B. Interactive Face-to-Face Lectures

Modified regular classroom lectures were introduced to

1272

International Journal of Business, Human and Social Sciences
ISSN: 2517-9411
Vol:8, No:5, 2014

present class materials, using slides presentations, board, live
code developing, debugging, and running sample programs
with students ‘active involvement and participation.

C. Online Delivery System

Extensive online content was developed to support student
learning and housed online in the learning management
system (LMS) which was available 24/7. The online
components of the module of the course included (1) a course
web site, organized by Power Point Slides, assignments,
sample codes, test data and executable versions of assigned
programming projects, and (2) a large test bank of self-paced
exercises with instant and automated feedback to students.

D. Laboratory

The class met in a computer laboratory twice a week. The
laboratory was used for instruction, practice, and testing.

Table I highlights the main components and features of the
traditional approach compared to the new interactive method
of learning.

Individuals and teams shared their findings with the class by
presenting solutions or demonstrating their work to the class
using a projector. At the end of the period, sample solutions
were posted on the course web site for all students to study,
evaluate, and compare.

E. Interactive Programming and Practice

After a brief description by the instructor of the lab
programming project, students worked individually or in
groups to design and implement the solution of the
programming task.

F. Quizzes

To encourage student learning, two types of weekly
laboratory quizzes were given. The non-programming quizzes
were given to encourage students to keep up with class
materials while the programming quizzes were intended to
give students enough programming practice to enforce
learning. During the programming quizzes, students
developed programs by using an IDE and submitted their
work online by the end of laboratory period. To encourage
students to complete the project and understand the concepts,
late submissions were allowed but graded out of 50% of the
total grade. More than 90% of the students submitted their
work on time. Live coding quizzes were also given and
allowed open book, online search, and open notes.

G. Progress Monitoring

Combinations of tools were applied to monitor students’
performance and identify students-at-risk early enough to
intervene. WebCT system tracking data of student activities,
class attendance, and students’ weekly progress report were
used in our intervention. Post-questionnaire results showed
that 95% of the students found the weekly performance report
helpful.

TABLEI
TRADITIONAL VS. INTERACTIVE METHOD
Component Traditional Interactive
Method Method
1 Help Sessions v [V
Occasionally Daily
Individual
Tutoring
2 Face-to-face v v
Lectures With Student
Engagement
3 Programming v [V
Assignments
Testing v ¥4
5 Quizzes v
Weekly
6 Laboratory v v
Occasionally Twice a Week
7 Online Resources (v
8 Self-Paced
Practice Exercises
9 Tutoring Service v
Occasionally Daily
University In House
Centralized Laboratory
Center
10 Progress Midterm v
Monitoring grades only Weekly
11 Student-Instructor Limited to v
Interaction class time and Chatting and
office hours emailing

1. EVALUATION

A detailed evaluation of the interactive approach was
conducted to study the effectiveness of the new learning

environment and its

major

components.

Two survey

questionnaires were employed to study student’s learning.

A. Pre-Questionnaire

Survey provided to the students after four weeks of the
semester. This was designed to collect data related to the
activities that were going well, issues that needed to be
improved, instructor’s feedback, students’ overall satisfaction
with the course, and students’ suggestions for better learning.

B. Post-Questionnaire

An extensive survey was administered to students one week
before the end of the semester. Technical evaluation issues
addressed the extent to which in class lectures, laboratory, and
online resources helped the students to learn programming.
Also, pedagogical evaluation issues addressed the extent to
which the daily out of class help sessions and tutoring
services, interactive learning model provided support to the

learning process.

The questions of the survey were grouped into four
categories: (1) General student information, (2) Overall
student satisfaction with the course, (3) Usefulness of the
course resources, and (4) Effectiveness of student —instructor

interaction and feedback.

Fig. 1 shows that Eighty-six percent (86%) of the students
agreed or strongly agreed that the course advanced their
learning to program. Eighty-one percent (81%) agreed or
strongly agreed that the course increased their interest in the

1273

International Journal of Business, Human and Social Sciences
ISSN: 2517-9411
Vol:8, No:5, 2014

computer science field, and they would recommend the course
to other students.

100%

80% -

60% -

40% -

20% -

0% -

Learning Satisfaction

Fig. 1 Student learning and satisfaction

Fig. 2 shows that eighty-file percent (85%) of the students
agreed or strongly agreed that the assignments and tests
prompt grading and feedback benefited their learning. Ninety-
five percent 95% of students agreed or strongly agreed that the
updated announcements on Blazeview and the prompt
instructor’s responses via email kept them informed and
connected and helped them understood the class materials by
answering their questions.

100%

80% -

60% -

40% -

20% -

0% -

Grading feedback ~ Prompt communication

Fig. 2 Prompt grading and communication

Fig. 3 indicates that hundred percent (100%) of the students
were satisfied with classroom discussions and live
programming examples, eighty percent (80)% of them were
satisfied with programming projects, 80% were satisfied with
help sessions, but only thirty-six percent (36%) of the students
were satisfied with Power Point presentations.

100%
80%
60%
40%
20%

0%

Fig. 3 Usefulness of course resources

Figs. 4 and 5 show that the passing rate of grades (A, B, and
C) increased by about 25% using the new interactive method
over the traditional teaching method. It is also useful to point
out that the course requirements and subjects taught in the
course remained virtually unchanged from the old model to
the new approach.

70%

60% o~

50%

40% \//

30%

20%

10%
0%

2009 | 2010 | 2011 | 2012 | 2013
== ABC%| 37% | 32% | 44% | 60% | 55%

Fig. 4 Percentage of Passing Grades (A, B, and C) from 2009 to 2013

50%
40% 7—Aﬁ
30%

20% \

N

0%

2009 | 2010 | 2011 | 2012 | 2013
e——Fs&Ws| 37% | 43% | 39% | 19% 7%

Fig. 5 Percentages of W and F Grades from 2009 to 2013

IV.CoONCLUSIONS

This paper reported on an interactive learning approach to
tackle the problem of a low pass rate in introductory
programming course. The results showed significant
improvements in decreasing the failure and withdrawal rate by

1274

International Journal of Business, Human and Social Sciences
ISSN: 2517-9411
Vol:8, No:5, 2014

more than half and increasing the pass rate by about 25%.
Evidence from increased student class and help sessions
attendance and high utilization of the online resources
increased student engagement and subsequently, increased the
retention and passing rates.

(1
[2]

B3]

[4]

[3]

(6]

(7

(8]
[9]

[10]

[11]

[12]

[13]

REFERENCES

Jens Bennedsen, Michael E. Caspersen. “Failure Rates in Introductory
Programming”. SIGCSE Bulletin, Vol. 39, No. 2. 2007.

Bennedsen, J. and Caspersen, M.E. “An Investigation of Potential
Success factors for an Introductory Model-Driven Programming
Course”. Proceedings of the First International Workshop on Computing
Education Research (ICER ’05). ACM. 2005.

Piivi Kinnunen, Lauri Malmi. “Why Students Drop Out CS1 Course?”.
ICER, Canterbury, UK, 2006.

Rountree, N., Rountree, J., Robins, A. & Hannah, R. “Interacting Factors
that Predict Success and Failure in a CS1 Course”. SIGCSE Bulletin,
Vol. 36, No. 4. 2004.

Tom Boyle, Claire Bradley, Peter Chalk, Ray Jones & Poppy Pickard.
“Using Blended Learning to Improve Student Success Rates in Learning
to Program”. Journal of Education Media, Vol. 28, 2003.

Said Hadjerrouit. “Towards a Blended Learning Model for Teaching and
Learning Computer Programming: A case Study”. Informatics in
Education, Vol. 7, No. 2, 181-210, 2008.

Grandon Gill and Carolyn F. Holton. ADJERROUIT. “A Self-Paced
Introductory Programming Course”. Journal of Information Technology
Education. Volume 5, 2006.

Anthony Robins. Learning Edge Momentum: “A New Account of
Outcomes in CS1”. Computer Science Education Vol. 20, No. 1. 2010.
Nocols, M. “A theory of e-learning”. Educational technology and
Society. Vol. 5, No. 2, 2003.

Wilson, B.C. & Shrock, S. “Contributing to Success in an Introductory
Computer Science Course: A Study of Twelve Factors”. ACM SIGCSE
Bulletin, Vol. 33, No. 1. 2006.

Woszczynski, A., Haddad, H., & Zgambo, A.: “Towards a Model of
Student Success in Programming Courses”. Proceedings of the 43rd
Annual Southeast Regional Conference. Vol. 1. ACM-SE 43), 2005.
Porter, Leo, Simon, Beth. “Retaining Nearly One-Third more Majors
with a Trio of Instructional Best Practices in CS1”. SISCSE” 13, 2013.
Zingaro, Daniel, Bailey Lee, Cynthia, Porter, Leo. “Peer Instruction in
Computing: the Role of Reading Quizzes”. SISCSE” 13, 2013.

1275

