
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:12, No:3, 2018

133

Abstract—Distributed database is a collection of logically

related databases that cooperate in a transparent manner. Query
processing uses a communication network for transmitting data
between sites. It refers to one of the challenges in the database world.
The development of sophisticated query optimization technology is
the reason for the commercial success of database systems, which
complexity and cost increase with increasing number of relations in
the query. Mariposa, query trading and query trading with processing
task-trading strategies developed for autonomous distributed
database systems, but they cause high optimization cost because of
involvement of all nodes in generating an optimal plan. In this paper,
we proposed a modification on the autonomous strategy K-QTPT
that make the seller’s nodes with the lowest cost have gradually high
priorities to reduce the optimization time. We implement our
proposed strategy and present the results and analysis based on those
results.

Keywords—Autonomous strategies, distributed database
systems, high priority, query optimization.

I. INTRODUCTION

UERY processing includes translation of high-level
queries into low-level expressions that can used at the

physical level of the file system.
Query Optimization is the process of finding the best

strategy in order to execute the given query from a set of
alternatives [1], [2]. Query optimization and actual execution
of the query needed to get the result consists of three steps:
parsing and translation, optimization and execution of the
query submitted by the user; these steps shown in Fig. 1 [2].
A relational algebra operations and communication primitives
like send or receive operations describe a distributed query
execution strategy to transfer data between sites [3].

The query optimizer that follows this approach consists of
three components: A search space, a search strategy and a cost
model [3], [4]. The search space is the collection of different
execution for performing the input query. The search
strategies are equivalent, in the sense that they produce the
same result but they differ on the execution order of
operations and the way these operations are implemented [5],
[6]. The search strategy inspects the search space in order to
choose the best plan. It determines how to test the plans and

Dina K. Badawy is with Computers and Control Engineering Dept. Tanta

University, Egypt (e-mail: dina.khattab@f-eng.tanta.edu.eg).
Dina M. Ibrahim (Lecturer) is with Computers and Control Engineering

Dept. Tanta University, Egypt (phone: 002-01000250820; e-mail:
dina.mahmoud@f-eng.tanta.edu.eg).

Elsayed A. Sallam (Emeritus Professor) is with Computers and Control
Engineering Dept. Tanta University, Egypt (phone: 002-01155411019; e-
mail: sallam@f-eng.tanta.edu.eg).

how to arrange them [5]. The cost model predicts the cost of a
given execution plan which may consist of the following
components [6].
1. Secondary storage cost: It is the cost of searching for

reading and writing data blocks on secondary storage.
2. Memory storage cost: This cost related to the number of

memory buffers needed during query execution.
3. Computation cost: It is the cost for performing in

memory operations on the data buffers during query
optimization.

4. Communication cost: This cost responsible for shipping
the query and its results from the database site to the site
or terminal where the query originated.

Fig. 1 Query processing steps

Homogeneous distributed database systems strategies

divided to non-autonomous and autonomous strategies. For
non-autonomous strategies, all nodes are aware of physical
schema, logical schema, and data statistics such as
deterministic and randomized strategies with their types. For
autonomous strategies, all nodes are independent and unaware
of each other.

II. BACKGROUND

There is a central optimizer, which does not support total
node autonomy, a non-autonomous distributed database

Dina K. Badawy, Dina M. Ibrahim, Alsayed A. Sallam

A Query Optimization Strategy for Autonomous
Distributed Database Systems

Q

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:12, No:3, 2018

134

system. On the contrary in an autonomous distributed
database system, there is no central optimizer where each site
has complete control over its resources, we mean that, the
participating nodes in query execution independently decide
whether to participate or not according to the node’s resource
capacity and data availability [7], [8]. So, all participating are
nodes identified before actual query execution.

Authors in [9] proposed an economic model in order to
identify all participating nodes and to support node autonomy
in an autonomous system. According to this economic model,
as shown in Fig. 2 [10], there are two types of nodes - buyer
nodes and seller nodes. The buyer node is the node where a
query is initiated (initiator node), where the seller is the node
that executes the query.

Fig. 2 The Economic model

The Mariposa [11] and Query Trading algorithms [9]
depend on this economic model; in general, both algorithms
follow the process as stated below:
1. Buyer node prepares Request for bids (RFB) for sub-

queries that require cost estimation.
2. Buyer node sends RFB to the seller nodes requesting cost

for the sub-query.
3. Seller nodes calculate the costs for sub-queries and send

replies back to buyer node.
4. Buyer node, based on replies, decides on an execution

plan for the query; if required repeat step 2 and step 3.

III. EARLIER WORK ON QUERY OPTIMIZATION STRATEGIES

FOR AUTONOMOUS DISTRIBUTED DBMS

In an autonomous distributed database management
system, all nodes are independent and unaware of physical
schema, logical schema, and data statistics.

In this paper, we discuss the query optimization strategies
for an autonomous Distributed Database Management System
(DDBMS). These strategies are the Mariposa strategy, Query
Trading (QT) strategy, and variations of the Query Trading
strategy.

A. Mariposa Strategy

In the Mariposa strategy, a buyer node submit queries, a
query starts with a budget that once is decided, the query is
parsed and given to a single site optimizer that makes
optimization for whole query, as if the data are not
fragmented, and prepares a plan [7]. A fragmenter converts a
single site plan into a fragmented plan depending on the
number of fragments in the query. The fragmented query
plans prepared by the fragmenter collect and advertise for bids
to various sites; after that, the buyer decides which one to
accept, as shown in Fig 3. Each Mariposa site is free to accept
or reject, therefore it has total local autonomy [2], [12].
Mariposa generates optimal plans and is suitable for an
autonomous distributed database management system.
However, it does not support a fully autonomous
environment, as it needs data statistics, indices information
and partitioning information for generating good quality
plans. This disadvantage of Mariposa is solved by the Query
Trading strategy [10], [13].

Fig. 3 Architecture of the Mariposa strategy

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:12, No:3, 2018

135

B. Query Trading (QT) Strategy

Compared to Mariposa, the QT strategy asks reserved
nodes for information, but this information is less than the
required information, which allows higher node autonomy to
participate in executing the queries [7]. QT strategy is
considering the queries and query answers as produces and
the query optimization procedure as a trading of query
answers between nodes.

The query trading strategy means that there are two
algorithms, the buyer side algorithm and the seller side
algorithm. The buyer sends a request for all sellers asking it
for help in evaluating some queries [12]. The seller nodes
based on their fragmentation of data will rewrite query and
use local optimizer to generate partial query execution plan.
They offer that execution including answer’s cost of the
queries and processing tasks involved in solving query. Buyer
decides winner with lowest bid according to seller’s bids.
Finally, the buyer query plan generator build possible
execution plans for the original query by combination of the
winner bids [13], as shown in Fig. 4.

In distributed query optimization, the selection of nodes
that will eventually process the data is considered as an

important factor affecting on the overall performance of
distributed execution plans [12], [14]. The processing can
either be performed at the seller nodes or at either buyer
nodes. In query trading, the seller only processes data that is
locally available, while the buyer performs all leftover
processing on the data received from the sellers [13]. These
restrictions may lead to non-optimal plans, especially when
the buyer is overloaded. Hence to handle such a situation, a
modified strategy to the QT strategy and the QTPT strategy is
proposed [15], [16].

C. Query Trading with Processing Task Trading (QTPT)
Strategy

QTPT is an extension of query trading strategy. It works in
two phases [7]. In the first phase, it determines the initial
distributed query execution plan, while in the second phase it
repeats the same process as first phase, and again, sends RFBs
for all seller nodes for all processing tasks involved in a plan
(i.e., QTPT strategy run the QT strategy twice), as shown in
Fig 5. QTPT produces better plans compared to QT; however,
the times required for optimization increases due to an
additional phase [13].

Fig. 4 Architecture of Query Trading

Fig. 5 Architecture of QTPT Strategy

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:12, No:3, 2018

136

D. K-QTPT Strategy

The K-QTPT strategy works in two phases, such as QTPT
[10]. In the first phase, the K-QTPT is typically like QTPT, it
determines initial query execution plan [13]. In the second
phase, the buyer node will store the K winners from the first
phase into a buffering list. Then, the RFBs will start the
processing task by requesting from only those K nodes,
instead of requesting from all the nodes. This reduces
optimization time substantially. Deciding appropriate value of
k is one of the challenges for implementing K-QTPT. Fig. 6

shows the architecture of K-QTPT strategy.
In autonomous systems, to increase local autonomy the

optimizer consults the data sources involved in an operation to
find the cost of that operation [17]. Hence, the main cost in
optimization becomes the cost of contacting the underlying
data sources; thus, we show that Mariposa produces less
efficient plans compared to Query Trading (QT) strategy and
requires more information for query optimization than QT
strategy [18].

Fig. 6 Architecture of K-QTPT Strategy

Fig. 7 Architecture of proposed strategy

In the next section, we present our proposed strategy and
then we compare it with the various optimization strategies
for autonomous distributed database systems based on
parameters like time delay and startup cost [19].

IV. THE PROPOSED STRATEGY

The proposed strategy also works in two phases, like k-
QTPT. The first phase is the same as that in k-QTPT strategy,

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:12, No:3, 2018

137

determines the initial query execution plan (QEP). In the
second phase, depending on the winners resulting from the
first phase, buyer node buffers a list of K winning nodes then
RFBs for the processing task that were requested from only
these selected K nodes, instead of requesting from all nodes.
After that, the buyer gives high priorities for the winner nodes
to increase RFBs and receives quick responses from these
winners. This will reduce the optimization time, as shown in
Fig. 7. In the next subsection, we present the flowchart,
pseudocode, challenges faced, and the experimental
evaluation for the proposed strategy, followed by the analysis
of the results compared with the QT, QTPT, and K-QTPT
strategies.

A. Flowchart

The following flowchart in Fig. 9 explains the steps of our
proposed strategy. In the beginning, the user starts entering
the query at the initiator node, the buyer node. The buyer
sends RFBs for all sellers to ask them for help in evaluating
the query execution time. All the seller nodes estimate the
query cost and send the response back to the buyer.

Fig. 8 Flowchart of the proposed strategy

The buyer determines the seller winner nodes that have the

lowest cost. Then, sort these winners with priorities; the high
priority winner only, which the buyer will send RFB to, and
finally produces the QEP to answer the query [20].

B. Pseudocode

In this paper, we propose a modification on the autonomous
strategy KQTPT that we call the proposed strategy. The
objective of this proposed strategy is to reduce the
optimization time taken by KQTPT Strategy. According to
our proposed strategy, the buyer sends RFBs to all sellers for
estimation of the query cost and every seller replies with the

query cost depending on its available resources. The buyer
compares the costs to find the seller node with the lowest cost
to be the winners. Then, the buyer sorts these winners
according to the costs with priorities. The lowest cost of
winners takes high priority and gradually completes the
winners’ priorities. The buyer ignores low priorities and again
sends RFBs for high priorities winners. Finally, the buyer
generator takes the high priorities winners’ costs and produces
the QEP that will be close enough to the optimal.

Our proposed strategy starts with implementing a network
that consists of one buyer and a number of sellers. The user
enters the required query, the buyer asks the sellers to
calculate the query execution cost (c). Each seller replies with
its c. The buyer collects all the costs and put them ordered in
an array list. After that, it compares all costs to find the
minimum that is the winner seller node. Once the number of
winner nodes k equals two, the buyer compares the two
winners and sets high priority for the winner node that has the
lowest cost. Then, it displays the cost of the high priority
winner from the seller node. After that, the winner sends
RFBs for this high priority winner for quick responses. The
pseudocode of the proposed strategy is shown in Fig. 9.

Fig. 9 Pseudocode of the proposed strategy

C. Experimental Setup

We built our experiment starting with designing a DDBMS
on a 64-bit workstation device, Core i7 processor and 16 GB
of RAM for studying the performance of QT, QTPT, K-QTPT
and the proposed algorithm. Our design consists of seven
nodes (one buyer and six sellers) interconnected by a network,
as shown in Fig 8. All nodes are connected using a LAN with
speed of 100 Mbps. We create eight tables using the MYSQL
database. Horizontal fragmentation has been done on each
table. We have used Java 1.7 and MYSQL 5.1 to simulate the
DDBMS [21].

Each node is equipped with MYSQL 5.1. The seven nodes
in the emulation setup use Microsoft Windows 7 Ultimate as
the operating system. Each node was equipped with NetBeans
IDE 8. In order to connect java with MYSQL each node was
added mysql-connector-java-5.1.14-bin.jar for the libraries
and classpath [22].

D. Challenges Faced

We initially tried to make a LAN network consisting of

 Pseudocode
Input: query
Output: query execution plan
- Calculate the query execution costs(c) at each seller node
- Put c in the array list arrList[]
- If c<min
 - Set min=c
- End if
- For number of winners k<=2
 - If arrList[k] < min then
 - Put arrList[] = min & display c of winner with high priority
 - End if
- End for

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:12, No:3, 2018

138

three real computers using the Microsoft Windows 7
operating system. Formerly, we faced a problem in the socket
port number and we solved it by making different port
numbers for the socket and the database. After that, a new
problem was found which is the missing of the JDBC driver
and solved by adding mysql-connector-java-5.1.14-bin.jar
into the classpath and libraries.

Fig. 10 Organization of the proposed strategy nodes

Then, we met a heap space problem at adding random

number of tuples and attributes in db, but it was overcome by
setting the privilege of MYSQL. Because the nodes are not
multithreading, we programmed a class, which we called
socket thread, and the server imports it. Finally, we simulate
our work at workstation devices. Based on the above
experimental setup, we analyzed the performance of QT,
QTPT, k-QTPT strategies and the proposed strategy
algorithm.

E. Results and Analysis

In this section, we have measured optimization time, time
taken to perform a processing task at query initiating node,
buyer node, time taken to perform the processing task at the

answering node, seller node, total response time, and total
execution time. The main objective of this work is to reduce
the optimization time of the proposed algorithm.

In our experiment, the number of rounds assumed to find
the best optimization plan is five, and in each round, we ran
the experiment five times and took an average of optimization
time (in mille seconds). The results of the average of
optimization time comparison of QT, QTPT, K-QTPT and our
proposed algorithm is as shown in Fig. 11.

Fig. 11 describes the average of optimization time with the
number of rounds. It shows that the optimization time
increases with the increase in the number of rounds. The least
number of rounds suitable for our simulation is five rounds.

The average of the query execution time at each node with
the number of rounds is illustrated in Fig. 12. It shows that the
average query execution time increases with the increase of
the number of rounds. In addition, the least number of rounds
suitable for our simulation is five rounds. The figure shows
that our proposed strategy is better than both the QTPT and
the KQTPT strategies. However, due to the small load caused
by the minimum number of seller nodes, the QT strategy is
still the best and produces a QEP that is close and near to the
optimal.

In Fig. 13, the average of the query execution time at each
node with the number of seller nodes is explained. It is seen
that the average of the query execution time increases with the
increase of the number of seller nodes. When we added six
seller nodes connected at the buyer, the query execution time
at each node was very high. The figure shows that our
proposed strategy is better than the QTPT and the KQTPT
strategies, but the traditional QT Strategy still gives the best
QEP when the buyer was not overloaded.

In our experiment, we avoid the Mariposa strategy from our
comparison because it is not support the full node autonomy.

Fig. 11 Average of optimization time vs. number of rounds

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:12, No:3, 2018

139

Fig. 12 Average of execution time at each node vs. number of rounds

Fig. 13 Average of query execution time vs. number of seller nodes

V. CONCLUSION

In this paper, different optimization autonomous strategies
are presented. The performance of a distributed database
system depends on efficient query optimization. In a non-
autonomous environment, the algorithms produce the best
plans but require complete information about other nodes in
the system. Mariposa, QT, and QTPT are optimization
strategies that are proposed to support an autonomous
environment. QTPT generates optimal plans compared to QT,
but incurs high optimization cost. To reduce the increase of
optimization cost, an enhancement of the K-QTPT
autonomous strategy is proposed, in which only the K nodes
participate in generating the optimal plans. The high priority
for the winner seller nodes are chosen to reduce the
optimization cost.

Our simulation results demonstrate that the proposed
strategy efficiently reduces optimization cost, especially with

the increase of the number of rounds, and minimizes the time
delay and generates the best plan.

REFERENCES
[1] E. Ramez, and S. B. Navathe, Fundamentals of database systems,

Pearson, 2015.
[2] D. V. Elena, M. Rebollo, and V. Botti, "An overview of search

strategies in distributed environments," The Knowledge Engineering
Review, vol. 29, no. 3, pp. 281-313, 2014.

[3] Y. E. Ioannidis, "Query Optimization," Computer Sciences Department
University of Wisconsin Madison, WI 53706, 2000.

[4] B. M. Alom, F. Henskens, and M. Hannaford, "Query processing and
optimization in distributed database systems," IJCSNS International
Journal of Computer Science and Network Security, vol. 9, no. 9, pp.
143-152, 2009.

[5] M. T. Ozsu, and P. Valduriez. Principles of distributed database
systems. Springer Science & Business Media, 2011.

[6] A. Aljanaby , E. Abuelrub , M. Odeh, “A Survey of Distributed Query
Optimization,” the international Arab Journal of Information
Technology, vol. 2, no.1, pp. 48-57, January 2005.

[7] D. Pankti, and V. Raisinghani, "Review of dynamic query optimization

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:12, No:3, 2018

140

strategies in distributed database," Electronics Computer Technology
(ICECT), 2011 3rd International Conference on. Vol. 6. IEEE, 2011.

[8] C. Surajit, "An overview of query optimization in relational systems,"
Proceedings of the seventeenth ACM SIGACT-SIGMOD-SIGART
symposium on Principles of database systems. ACM, pp. 34-43,1998.

[9] P. Fragkiskos, and Y. Ioannidis, "Query optimization in distributed
networks of autonomous database systems," ACM Transactions on
Database Systems (TODS), vol. 31, no. 2, pp. 537-583, 2006.

[10] D. Pankti, and V. Raisinghani, "k-QTPT: A Dynamic Query
Optimization Approach for Autonomous Distributed Database
Systems," Advances in Computing, Communication, and Control 361,
pp. 1-13, 2013

[11] D. Amol, and J. M. Hellerstein, "Decoupled query optimization for
federated database systems," Data Engineering, 2002. Proceedings.
18th International Conference on. IEEE, pp. 716-727, 2002.

[12] T. Robert, "Query Optimization for Distributed Database Systems,"
Master Thesis University of Oxford, August 2010.

[13] H. Abdelkader, and F. Morvan, "Evolution of query optimization
methods," Transactions on Large-Scale Data-and Knowledge-Centered
Systems I. Springer Berlin Heidelberg, pp. 211-242, 2009.

[14] P. Fragkiskos, and Y. Ioannidis, "Distributed query optimization by
query trading," International Conference on Extending Database
Technology. Springer, Berlin, Heidelberg, pp. 532-550, 2004.

[15] K. Donald, and K. Stocker, "Iterative dynamic programming: a new
class of query optimization algorithms," ACM Transactions on
Database Systems (TODS) vol. 25, no. 1, pp. 43-82, 2000.

[16] K. Donald, "The state of the art in distributed query processing," ACM
Computing Surveys (CSUR), vol. 32, no. 4, pp. 422-469, 2000.

[17] Z. Lin, Y. chen, T. Li, and Y. Yu, "The Semi-join Query Optimization
in Distributed Database System," National Conference on Information
Technology and Computer Science (CITCS 2012), pp. 606-609, 2012.

[18] E. I. Yannis, and Y. Kang, "Randomized algorithms for optimizing
large join queries," ACM Sigmod Record, ACM vol. 19. no. 2, pp. 312-
321, 1990.

[19] K. Stocker ; D. Kossmann ; R. Braumandi ; A. Kemper, "Integrating
semi-join-reducers into state-of-the-art query processors," Data
Engineering, Proceedings. 17th International Conference on. IEEE, pp.
575-584, 2001.

[20] M. Vikash, and V. Singh, "Generating optimal query plans for
distributed query processing using teacher-learner based optimization,"
Procedia Computer Science, vol. 54, pp. 281-290, 2015.

[21] S. David, and R. Dantas. Netbeans IDE 8 Cookbook 2014. Packt
Publishing Ltd, last Access: 2017.

[22] MySQL, A. B. "Mysql 5.1 reference manual, 2009" Accessible in URL:
http://dev.mysql.com/doc, last Access: 10/10/2017.

