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Abstract—Distributed database is a collection of logically 

related databases that cooperate in a transparent manner. Query 
processing uses a communication network for transmitting data 
between sites. It refers to one of the challenges in the database world. 
The development of sophisticated query optimization technology is 
the reason for the commercial success of database systems, which 
complexity and cost increase with increasing number of relations in 
the query. Mariposa, query trading and query trading with processing 
task-trading strategies developed for autonomous distributed 
database systems, but they cause high optimization cost because of 
involvement of all nodes in generating an optimal plan. In this paper, 
we proposed a modification on the autonomous strategy K-QTPT 
that make the seller’s nodes with the lowest cost have gradually high 
priorities to reduce the optimization time. We implement our 
proposed strategy and present the results and analysis based on those 
results. 
 

Keywords—Autonomous strategies, distributed database 
systems, high priority, query optimization.  

I. INTRODUCTION 

UERY processing includes translation of high-level 
queries into low-level expressions that can used at the 

physical level of the file system. 
Query Optimization is the process of finding the best 

strategy in order to execute the given query from a set of 
alternatives [1], [2]. Query optimization and actual execution 
of the query needed to get the result consists of three steps: 
parsing and translation, optimization and execution of the 
query submitted by the user; these steps shown in Fig. 1 [2]. 
A relational algebra operations and communication primitives 
like send or receive operations describe a distributed query 
execution strategy to transfer data between sites [3]. 

The query optimizer that follows this approach consists of 
three components: A search space, a search strategy and a cost 
model [3], [4]. The search space is the collection of different 
execution for performing the input query. The search 
strategies are equivalent, in the sense that they produce the 
same result but they differ on the execution order of 
operations and the way these operations are implemented [5], 
[6]. The search strategy inspects the search space in order to 
choose the best plan. It determines how to test the plans and 
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how to arrange them [5]. The cost model predicts the cost of a 
given execution plan which may consist of the following 
components [6]. 
1. Secondary storage cost: It is the cost of searching for 

reading and writing data blocks on secondary storage. 
2. Memory storage cost: This cost related to the number of 

memory buffers needed during query execution. 
3. Computation cost: It is the cost for performing in 

memory operations on the data buffers during query 
optimization. 

4. Communication cost: This cost responsible for shipping 
the query and its results from the database site to the site 
or terminal where the query originated. 
 

 
Fig. 1 Query processing steps 

 
Homogeneous distributed database systems strategies 

divided to non-autonomous and autonomous strategies. For 
non-autonomous strategies, all nodes are aware of physical 
schema, logical schema, and data statistics such as 
deterministic and randomized strategies with their types. For 
autonomous strategies, all nodes are independent and unaware 
of each other.  

II. BACKGROUND 

There is a central optimizer, which does not support total 
node autonomy, a non-autonomous distributed database 
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system. On the contrary in an autonomous distributed 
database system, there is no central optimizer where each site 
has complete control over its resources, we mean that, the 
participating nodes in query execution independently decide 
whether to participate or not according to the node’s resource 
capacity and data availability [7], [8]. So, all participating are 
nodes identified before actual query execution. 

Authors in [9] proposed an economic model in order to 
identify all participating nodes and to support node autonomy 
in an autonomous system. According to this economic model, 
as shown in Fig. 2 [10], there are two types of nodes - buyer 
nodes and seller nodes. The buyer node is the node where a 
query is initiated (initiator node), where the seller is the node 
that executes the query. 

 

 

Fig. 2 The Economic model 
 

The Mariposa [11] and Query Trading algorithms [9] 
depend on this economic model; in general, both algorithms 
follow the process as stated below: 
1. Buyer node prepares Request for bids (RFB) for sub-

queries that require cost estimation. 
2. Buyer node sends RFB to the seller nodes requesting cost 

for the sub-query. 
3. Seller nodes calculate the costs for sub-queries and send 

replies back to buyer node. 
4. Buyer node, based on replies, decides on an execution 

plan for the query; if required repeat step 2 and step 3. 

III. EARLIER WORK ON QUERY OPTIMIZATION STRATEGIES 

FOR AUTONOMOUS DISTRIBUTED DBMS 

In an autonomous distributed database management 
system, all nodes are independent and unaware of physical 
schema, logical schema, and data statistics.  

In this paper, we discuss the query optimization strategies 
for an autonomous Distributed Database Management System 
(DDBMS). These strategies are the Mariposa strategy, Query 
Trading (QT) strategy, and variations of the Query Trading 
strategy. 

A. Mariposa Strategy 

In the Mariposa strategy, a buyer node submit queries, a 
query starts with a budget that once is decided, the query is 
parsed and given to a single site optimizer that makes 
optimization for whole query, as if the data are not 
fragmented, and prepares a plan [7]. A fragmenter converts a 
single site plan into a fragmented plan depending on the 
number of fragments in the query. The fragmented query 
plans prepared by the fragmenter collect and advertise for bids 
to various sites; after that, the buyer decides which one to 
accept, as shown in Fig 3. Each Mariposa site is free to accept 
or reject, therefore it has total local autonomy [2], [12]. 
Mariposa generates optimal plans and is suitable for an 
autonomous distributed database management system. 
However, it does not support a fully autonomous 
environment, as it needs data statistics, indices information 
and partitioning information for generating good quality 
plans. This disadvantage of Mariposa is solved by the Query 
Trading strategy [10], [13]. 

 

 

Fig. 3 Architecture of the Mariposa strategy 
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B. Query Trading (QT) Strategy 

Compared to Mariposa, the QT strategy asks reserved 
nodes for information, but this information is less than the 
required information, which allows higher node autonomy to 
participate in executing the queries [7]. QT strategy is 
considering the queries and query answers as produces and 
the query optimization procedure as a trading of query 
answers between nodes.  

The query trading strategy means that there are two 
algorithms, the buyer side algorithm and the seller side 
algorithm. The buyer sends a request for all sellers asking it 
for help in evaluating some queries [12]. The seller nodes 
based on their fragmentation of data will rewrite query and 
use local optimizer to generate partial query execution plan. 
They offer that execution including answer’s cost of the 
queries and processing tasks involved in solving query. Buyer 
decides winner with lowest bid according to seller’s bids. 
Finally, the buyer query plan generator build possible 
execution plans for the original query by combination of the 
winner bids [13], as shown in Fig. 4.  

In distributed query optimization, the selection of nodes 
that will eventually process the data is considered as an 

important factor affecting on the overall performance of 
distributed execution plans [12], [14]. The processing can 
either be performed at the seller nodes or at either buyer 
nodes. In query trading, the seller only processes data that is 
locally available, while the buyer performs all leftover 
processing on the data received from the sellers [13]. These 
restrictions may lead to non-optimal plans, especially when 
the buyer is overloaded. Hence to handle such a situation, a 
modified strategy to the QT strategy and the QTPT strategy is 
proposed [15], [16]. 

C. Query Trading with Processing Task Trading (QTPT) 
Strategy 

QTPT is an extension of query trading strategy. It works in 
two phases [7]. In the first phase, it determines the initial 
distributed query execution plan, while in the second phase it 
repeats the same process as first phase, and again, sends RFBs 
for all seller nodes for all processing tasks involved in a plan 
(i.e., QTPT strategy run the QT strategy twice), as shown in 
Fig 5. QTPT produces better plans compared to QT; however, 
the times required for optimization increases due to an 
additional phase [13]. 

 

 

Fig. 4 Architecture of Query Trading 
 

 

Fig. 5 Architecture of QTPT Strategy 
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D. K-QTPT Strategy 

The K-QTPT strategy works in two phases, such as QTPT 
[10]. In the first phase, the K-QTPT is typically like QTPT, it 
determines initial query execution plan [13]. In the second 
phase, the buyer node will store the K winners from the first 
phase into a buffering list. Then, the RFBs will start the 
processing task by requesting from only those K nodes, 
instead of requesting from all the nodes. This reduces 
optimization time substantially. Deciding appropriate value of 
k is one of the challenges for implementing K-QTPT. Fig. 6 

shows the architecture of K-QTPT strategy. 
In autonomous systems, to increase local autonomy the 

optimizer consults the data sources involved in an operation to 
find the cost of that operation [17]. Hence, the main cost in 
optimization becomes the cost of contacting the underlying 
data sources; thus, we show that Mariposa produces less 
efficient plans compared to Query Trading (QT) strategy and 
requires more information for query optimization than QT 
strategy [18]. 

 

 

Fig. 6 Architecture of K-QTPT Strategy 
 

 

Fig. 7 Architecture of proposed strategy 
 

In the next section, we present our proposed strategy and 
then we compare it with the various optimization strategies 
for autonomous distributed database systems based on 
parameters like time delay and startup cost [19]. 

IV. THE PROPOSED STRATEGY 

The proposed strategy also works in two phases, like k-
QTPT. The first phase is the same as that in k-QTPT strategy, 
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determines the initial query execution plan (QEP). In the 
second phase, depending on the winners resulting from the 
first phase, buyer node buffers a list of K winning nodes then 
RFBs for the processing task that were requested from only 
these selected K nodes, instead of requesting from all nodes. 
After that, the buyer gives high priorities for the winner nodes 
to increase RFBs and receives quick responses from these 
winners. This will reduce the optimization time, as shown in 
Fig. 7. In the next subsection, we present the flowchart, 
pseudocode, challenges faced, and the experimental 
evaluation for the proposed strategy, followed by the analysis 
of the results compared with the QT, QTPT, and K-QTPT 
strategies. 

A. Flowchart 

The following flowchart in Fig. 9 explains the steps of our 
proposed strategy. In the beginning, the user starts entering 
the query at the initiator node, the buyer node. The buyer 
sends RFBs for all sellers to ask them for help in evaluating 
the query execution time. All the seller nodes estimate the 
query cost and send the response back to the buyer.  

 

 

Fig. 8 Flowchart of the proposed strategy 
 
The buyer determines the seller winner nodes that have the 

lowest cost. Then, sort these winners with priorities; the high 
priority winner only, which the buyer will send RFB to, and 
finally produces the QEP to answer the query [20]. 

B. Pseudocode 

In this paper, we propose a modification on the autonomous 
strategy KQTPT that we call the proposed strategy. The 
objective of this proposed strategy is to reduce the 
optimization time taken by KQTPT Strategy. According to 
our proposed strategy, the buyer sends RFBs to all sellers for 
estimation of the query cost and every seller replies with the 

query cost depending on its available resources. The buyer 
compares the costs to find the seller node with the lowest cost 
to be the winners. Then, the buyer sorts these winners 
according to the costs with priorities. The lowest cost of 
winners takes high priority and gradually completes the 
winners’ priorities. The buyer ignores low priorities and again 
sends RFBs for high priorities winners. Finally, the buyer 
generator takes the high priorities winners’ costs and produces 
the QEP that will be close enough to the optimal. 

Our proposed strategy starts with implementing a network 
that consists of one buyer and a number of sellers. The user 
enters the required query, the buyer asks the sellers to 
calculate the query execution cost (c). Each seller replies with 
its c. The buyer collects all the costs and put them ordered in 
an array list. After that, it compares all costs to find the 
minimum that is the winner seller node. Once the number of 
winner nodes k equals two, the buyer compares the two 
winners and sets high priority for the winner node that has the 
lowest cost. Then, it displays the cost of the high priority 
winner from the seller node. After that, the winner sends 
RFBs for this high priority winner for quick responses. The 
pseudocode of the proposed strategy is shown in Fig. 9. 

 

 

Fig. 9 Pseudocode of the proposed strategy 

C. Experimental Setup 

We built our experiment starting with designing a DDBMS 
on a 64-bit workstation device, Core i7 processor and 16 GB 
of RAM for studying the performance of QT, QTPT, K-QTPT 
and the proposed algorithm. Our design consists of seven 
nodes (one buyer and six sellers) interconnected by a network, 
as shown in Fig 8. All nodes are connected using a LAN with 
speed of 100 Mbps. We create eight tables using the MYSQL 
database. Horizontal fragmentation has been done on each 
table. We have used Java 1.7 and MYSQL 5.1 to simulate the 
DDBMS [21].  

Each node is equipped with MYSQL 5.1. The seven nodes 
in the emulation setup use Microsoft Windows 7 Ultimate as 
the operating system. Each node was equipped with NetBeans 
IDE 8. In order to connect java with MYSQL each node was 
added mysql-connector-java-5.1.14-bin.jar for the libraries 
and classpath [22]. 

D. Challenges Faced 

We initially tried to make a LAN network consisting of 

 Pseudocode 
Input: query 
Output: query execution plan 
- Calculate the query execution costs(c) at each seller node 
- Put c in the array list arrList[] 
- If c<min 
 - Set min=c 
- End if 
- For number of winners k<=2 
 - If arrList[k] < min then 
 - Put arrList[] = min & display c of winner with high priority 
 - End if 
- End for 
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three real computers using the Microsoft Windows 7 
operating system. Formerly, we faced a problem in the socket 
port number and we solved it by making different port 
numbers for the socket and the database. After that, a new 
problem was found which is the missing of the JDBC driver 
and solved by adding mysql-connector-java-5.1.14-bin.jar 
into the classpath and libraries. 

 

 

Fig. 10 Organization of the proposed strategy nodes 
 
Then, we met a heap space problem at adding random 

number of tuples and attributes in db, but it was overcome by 
setting the privilege of MYSQL. Because the nodes are not 
multithreading, we programmed a class, which we called 
socket thread, and the server imports it. Finally, we simulate 
our work at workstation devices. Based on the above 
experimental setup, we analyzed the performance of QT, 
QTPT, k-QTPT strategies and the proposed strategy 
algorithm. 

E. Results and Analysis  

In this section, we have measured optimization time, time 
taken to perform a processing task at query initiating node, 
buyer node, time taken to perform the processing task at the 

answering node, seller node, total response time, and total 
execution time. The main objective of this work is to reduce 
the optimization time of the proposed algorithm. 

In our experiment, the number of rounds assumed to find 
the best optimization plan is five, and in each round, we ran 
the experiment five times and took an average of optimization 
time (in mille seconds). The results of the average of 
optimization time comparison of QT, QTPT, K-QTPT and our 
proposed algorithm is as shown in Fig. 11. 

Fig. 11 describes the average of optimization time with the 
number of rounds. It shows that the optimization time 
increases with the increase in the number of rounds. The least 
number of rounds suitable for our simulation is five rounds. 

The average of the query execution time at each node with 
the number of rounds is illustrated in Fig. 12. It shows that the 
average query execution time increases with the increase of 
the number of rounds. In addition, the least number of rounds 
suitable for our simulation is five rounds. The figure shows 
that our proposed strategy is better than both the QTPT and 
the KQTPT strategies. However, due to the small load caused 
by the minimum number of seller nodes, the QT strategy is 
still the best and produces a QEP that is close and near to the 
optimal.  

In Fig. 13, the average of the query execution time at each 
node with the number of seller nodes is explained. It is seen 
that the average of the query execution time increases with the 
increase of the number of seller nodes. When we added six 
seller nodes connected at the buyer, the query execution time 
at each node was very high. The figure shows that our 
proposed strategy is better than the QTPT and the KQTPT 
strategies, but the traditional QT Strategy still gives the best 
QEP when the buyer was not overloaded. 

In our experiment, we avoid the Mariposa strategy from our 
comparison because it is not support the full node autonomy.  

 

 

Fig. 11 Average of optimization time vs. number of rounds 
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Fig. 12 Average of execution time at each node vs. number of rounds 
 

 

Fig. 13 Average of query execution time vs. number of seller nodes 
 

V. CONCLUSION 

In this paper, different optimization autonomous strategies 
are presented. The performance of a distributed database 
system depends on efficient query optimization. In a non-
autonomous environment, the algorithms produce the best 
plans but require complete information about other nodes in 
the system. Mariposa, QT, and QTPT are optimization 
strategies that are proposed to support an autonomous 
environment. QTPT generates optimal plans compared to QT, 
but incurs high optimization cost. To reduce the increase of 
optimization cost, an enhancement of the K-QTPT 
autonomous strategy is proposed, in which only the K nodes 
participate in generating the optimal plans. The high priority 
for the winner seller nodes are chosen to reduce the 
optimization cost.  

Our simulation results demonstrate that the proposed 
strategy efficiently reduces optimization cost, especially with 

the increase of the number of rounds, and minimizes the time 
delay and generates the best plan.  
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