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Abstract—Conceptualization strengthens intelligent systems in 

generalization skill, effective knowledge representation, real-time 
inference, and managing uncertain and indefinite situations in 
addition to facilitating knowledge communication for learning agents 
situated in real world. Concept learning introduces a way of 
abstraction by which the continuous state is formed as entities called 
concepts which are connected to the action space and thus, they 
illustrate somehow the complex action space. Of computational 
concept learning approaches, action-based conceptualization is 
favored because of its simplicity and mirror neuron foundations in 
neuroscience. In this paper, a new biologically inspired concept 
learning approach based on the probabilistic framework is proposed. 
This approach exploits and extends the mirror neuron’s role in 
conceptualization for a reinforcement learning agent in 
nondeterministic environments. In the proposed method, instead of 
building a huge numerical knowledge, the concepts are learnt 
gradually from rewards through interaction with the environment. 
Moreover the probabilistic formation of the concepts is employed to 
deal with uncertain and dynamic nature of real problems in addition 
to the ability of generalization. These characteristics as a whole 
distinguish the proposed learning algorithm from both a pure 
classification algorithm and typical reinforcement learning. 
Simulation results show advantages of the proposed framework in 
terms of convergence speed as well as generalization and asymptotic 
behavior because of utilizing both success and failures attempts 
through received rewards. Experimental results, on the other hand, 
show the applicability and effectiveness of the proposed method in 
continuous and noisy environments for a real robotic task such as 
maze as well as the benefits of implementing an incremental learning 
scenario in artificial agents. 
 

Keywords—Concept learning, Probabilistic decision making, 
Reinforcement Learning. 

I. INTRODUCTION 
NTELLIGENT creatures should be capable of abstracting 
their perceptual information (stimuli) to manage the 

overwhelming amount of data they perceive. 
Conceptualization as a tool facilitates the process of 
abstraction by introducing some meaningful abstract pieces of 
knowledge called concepts. From the cognitive psychological 
view, a concept is defined as a meta-knowledge utilized to 
classify things into categories where each category captures 
some common characteristics of the stimuli [2]. Subsequently, 
concept learning can be characterized as the gradual process 
of creating the concepts by the creature itself. 
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On the other hand, if the creature is required to respond 
properly to each stimulus, it would be of main concern to 
generate the optimal response for each stimulus (i.e., the 
optimal policy) which is the ultimate aim of the decision 
making approaches. Here, the conjecture is that 
conceptualization can play a positive role in finding and 
encoding the optimal policy. Biological findings corroborate 
this surmise especially those which focus on mirror neurons 
system [3]. According to these evidences, a mirror neuron has 
the ability to abstract a variety of the stimuli to a concept and 
then relate it to the proper response (action). In fact, mirror 
neurons classify the perceptual space based on the available 
actions [4]-[6].  

Here, the proposed concept learning approach is presented 
in reinforcement learning framework which implies that the 
learning process is governed by the reinforcement signal 
issued by either the environment or the teacher. Some other 
models have also been proposed which all have the common 
theme of abstracting the continuous perceptual space through 
the reinforcement signal. Preliminary works include the 
manual abstraction and decomposition of the perceptual and 
action spaces [7]. Incorporating self-adaptability, Smith [8] 
has proposed to abstract and quantize the continuous 
perceptual and action spaces using two SOMs (self organizing 
map) and then relate them via a Q-table. Similarly, Mobahi et. 
al. [5], [6] have reported a successful imitative concept 
learning approach for phoneme acquisition problem which 
uses mapping functions for conceptualizing the perceptual 
space instead of SOM. 

However, most of these models abstract the perceptual 
space in a deterministic manner and ignore the incompleteness 
latent in real world. The probabilistic formalism and 
especially the Bayesian framework appear to be useful in this 
case. The Bayesian framework recently employed in many 
decision making and Robotics tasks (for example, Bayesian 
Robot Programming framework [9]) converts the 
unmanageable incompleteness into the manageable 
uncertainty.   

In this paper, we propose a new approach to partition 
(conceptualize) the reinforcement learning agent’s perceptual 
space based on its available actions in order to increase the 
average received reward during the time. The proposed 
method incorporates the Bayesian formalism and 
representation to challenge the uncertainty of both the 
environment and the agent's perception. Moreover, the 
proposed learning algorithm is designed so that the agent can 
learn from its failures in addition to its successes. 
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 The organization of the paper is as follows: in section II, 
the problem under consideration is described in more details. 
Then, it is formulated in the Probabilistic framework in 
section III. Section IV illustrates the proposed approach 
followed by the simulation and the experimental results are 
demonstrated in section V and section VI respectively. 
Finally, some conclusions are presented in section VII.  

II. THE PROBLEM STATEMENT 
A reinforcement learning (RL) agent can be characterized 

as one which tries to learn the optimal policy from the 
reinforcement signal r(t) received for its action a(t) in 
response to stimulus vector X(t). In real world systems, RL 
agents face some major problems. The most challenging of 
them is that generally the perceptual space is a multi-
dimensional continuous space which inundates the agent's 
mind. To deal with this problem, abstraction is employed. 
Using abstract knowledge, the RL agents are capable of 
generalizing their world, defeating the high dimensional 
continuous perceptual space, communicating with each other 
in a high level fashion and speeding up their learning by a 
facilitated cooperation. Moreover, abstraction provides an 
economical cognitive architecture for RL agents. 

These benefits as a whole lead us to develop a learning 
approach which tries to abstract the agent's perceptual space in 
a formal manner. To do so, conceptualization has been 
considered as a basic approach in this paper. More precisely, 
conceptualization categorizes the perceptual space into 
similarity classes (namely concepts) which unify similar state 
vectors as separated concepts. Indeed, concepts capture some 
common and hidden properties which are the true cause of 
similarity. Before going on the discussion, we should specify 
what we mean by the similarity of two states. From a 
functional view, two states are similar if the agent receives the 
maximum reward by performing similar actions in both states. 
This view is very close to the mirror neuron functionality in 
neuroscience which partitions the animals perception based on 
its actions [2]. 

To avoid unnecessary entanglement in theoretical debates 
between and within relevant communities, below we 
emphasize two broad types of relations that appear to unite 
events within a category [2]. 1) In perceptual concepts, 
stimuli are grouped primarily on the basis of shared physical 
features. 2) In relational concepts, it is not the physical 
features of stimuli but the relations among these features that 
are grouped. We employ relational concepts in our proposed 
framework in order to keep generality. As perceptual concepts 
are the building blocks of the relational concepts first we 
focus on how a perceptual concept is dealt with. 

To group stimuli based on the physical feature we need a 
kind of similarity/dissimilarity measure to quantify the state 
similarity. One of the straightforward similarity measures is 
distance; if we assume that the perceptual space is metric, the 
Euclidean distance can be used to indicate the similarity of 
two states. Based on this assumption, if two state vectors X 

and Y have a short Euclidean distance from each other, we can 
conclude that they are similar and subsequently the agent 
should perform similar actions in both of the states to receive 
the maximum reward. This is what is called Perceptual 
Concepts in concept learning literature [2].  

Although distance works well for many cases of the state 
similarity, there may be two similar state vectors which have a 
long distance from each other. This is specially the case when 
a concept has representatives in different locations of the 
perceptual space. Thus, we need a similarity measure more 
general than distance which in turn results in defining a more 
general concept type: Relational Concepts [2]. A relational 
concept groups the states which are not necessarily neighbors 
in perceptual space; in fact, the real cause of their similarity is 
something beyond the locality in the perceptual space. The 
way to compute the similarity in relational concepts greatly 
depends on the approach used for state-action value 
representation and the decision making method which will be 
explained in the following sections. 

On the other hand, RL agents should handle the uncertainty 
existing in the environment. To do that, in this paper, the 
proposed method is developed based on the Probabilistic 
framework which enables the agent to handle the uncertainty 
of the environment more conveniently.  

As delayed reward and multiple steps tasks are challenging 
in RL systems especially when the continuous RL is used, the 
proposed frame work is designed to deal with delayed rewards 
problems and can handle discounted reward case as well. 

Based on issues discussed till now, the original problem can 
be reduced to the problem of online reinforcement-based 
classification and clustering of the perceptual space in order to 
get the similarity classes (concepts) which are in turn directly 
related to optimal actions. In the next two sections a 
Probabilistic framework to formalize the solution and a 
learning algorithm for this framework are presented, 
respectively. 

III. THE PROBABILISTIC SOLUTION 

A. Modeling 
In the probabilistic formalism, the suitability of the ith 

action in the state X can be encoded as the probability 
P(actioni | X). As mentioned before, concepts are formed 
based on actions. This permits us to use them interchangeably. 
Thus, we can assess that: 

)|()|(      :]..1[ XCPXactionPri ii ≡∈∀                   (1) 
where r is the number of concepts (actions) and P(Ci | X) can 
be interpreted as the probability with which the perceptual 
vector X belongs to the concept Ci. Therefore, our decision 
making problem can be reduced to computing the posterior 
probabilities P(Ci | X). On the other hand, by applying the 
Bayes rule, we have: 

)()|(.)|( iii CPCXPXCP η=                           (2) 
where P(X | Ci) and P(Ci) are the likelihood of Ci and the 
prior probability of Ci, respectively. Thus, to compute P(Ci | 
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X), distributions P(X | Ci) and P(Ci) should be estimated 
which is the main focus of the next section. However, before 
estimation, we should first specify a parametric form for the 
likelihood P(X | Ci). As mentioned before, a concept may 
have representatives in different locations of the perceptual 
space; that is, for the concept Ci, there may be more than one 
location (vector) in the state space where the likelihood P(X | 
Ci) is high. We call these points the modes or the modals of 
the probability distribution P(X | Ci). As a result, P(X | Ci) 
should be modeled as a multi-modal distribution to capture the 
scattered nature of the concept in the perceptual space. To do 
so, the mixture densities model [10] is used. In other words, 
the likelihood of the concept Ci is decomposed as: 

∑
=

=
q

j
ijji CMPMXPCXP

1

)|()|()|(                    (3) 

where Mjs are the components of the mixture. P(X | Mj) 
conveys the probability of observing X if the observation is 
generated by the component Mj and P(Mj | Ci) is the 
contribution weight of the component Mj for the concept Ci. 
For the sake of simplicity, the components of different 
concepts are all unified in the set M whose cardinality is q 
(We simply set P(Mj | Ci) to zero if the component Mj does 
not belong to the concept Ci.) By substituting equation                    
(3) into equation                           (2), we get: 

∑ ∑

∑

= =

==
r

k

q

j
kjjk

q

j
ijji

i

CMPMXPCP

CMPMXPCP

XCP

1 1

1

)|()|()(

)|()|()(

)|(                (4) 

According to equation                (4), we can conclude that to 
compute P(Ci | X), we should first estimate the probability 
distributions P(Ci), P(Mj | Ci) and P(X | Mj). In the next 
subsection, the method used to model these distributions is 
described. 

B. The Parametric Forms 
In this section, the parametric forms used for each of the 

three mentioned probability distributions are explained in 
details. Here the Bayesian approach is adopted to estimate the 
parametric forms; that is, a meta-level parametric probability 
distribution function (which encodes our belief) is defined for 
each of the parameters and the parameters of these new 
distributions are estimated instead. 

Before assuming these probability distributions, we have to 

consider matrix ij r q
B b

×
⎡ ⎤= ∈ℜ⎣ ⎦ which ijb  is the non-

normalized belief of belonging the modal jM  to the 

concept iC . It is a fundamental matrix in our framework and 
in the following sections the way of updating and its 
relationship with other parts will be explained. 

- P(Mj | Ci): This distribution can be parameterized as: 

jijiijjiij ffCMPfCCMMP ==== ),|()|( ,                 (5) 
where fji ])..1[],..1[( qjri ∈∈  encodes our belief about the fact 
that Mj belongs Ci. In fact this is the normalized version of 

ijb . There are many methods to normalize but choosing a 

good one is somehow tricky. This method is experimentally 
resulted better than others such as Boltzmann method. 

{ }( )
{ }( ) { }( )minˆ min

1 min

[1.. ], [1.. ]

ij
ij

ij

b
b b

b

i r j q

= −
+

∈ ∈

       (6) 

where b̂ is the normalization factor. As a result our belief 
about belonging Mj to Ci is computed based on the follow. 

( ) ( ) ( )
1

ˆ ˆ|
q

j i ij ik
k

P M C b b b b
=

= + +∑             (7) 

- P(Ci): From equation             (7), the element bji of matrix 
B can be interpreted as the ratio of observed stimuli which 
simultaneously belong to the concept Ci and are absorbed by 
the component Mj. Thus, the probability P(Ci) can be 
computed directly from matrix B: 

( ) ( )
1 1 1

ˆ ˆ( )
q qr

i ji jk
j k j

P C b b b b
= = =

= + +∑ ∑∑               (8) 

- P(X | Mj): Due to the fact that P(X | Mj) measures the 
proximity of X to the center of the component Mj in a 
nonlinear fashion, a symmetric unimodal distribution is 
suitable to model it. Among different symmetric unimodal 
distributions, the normal distribution is selected because of its 
appropriate properties. However, P(X | Mj) will have the 
normal distribution only if we know its mean and covariance 
matrix in advance, but this is not the case here. Thus, we 
should define parametric distributions for these unknown 
parameters to encode our belief about them. As a result, the 
covariance matrix and the mean vector are set to take the 
Wishart distribution and the normal distribution conditional 
on the covariance matrix, respectively [11]. Using these 
distributions, it can be proved that P(X | Mj) will take 
multivariate t distribution with parameters αj, βj, µj and vj 
(interested readers can refer to [11] for the proof): 

⎟
⎟
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⎞
⎜
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⎝

⎛

+

+−
+−= −1

1
)1(

,,1;)|( j
j

jj
jjj v

nv
nXtMXP β

α
μα      (9) 

To explain each of the four parameters of P(X | Mj), we first 
define Sj to be the set of the perceptual vectors based on which 
the distribution P(X | Mj) is estimated. Then the parameters are 
defined as follows: vj is the cardinality of Sj; µj and βj are the 
empirical mean and the non-normalized empirical covariance 
matrix of the Sj's members, respectively. Normally, αj is set to 
vj – 1.  

Regarding to the parametric forms derived for P(Ci), P(Mj | 
Ci) and P(X | Mj) in this section, the parameters B = 

rqjib ×][ and D = 4j ] v  [ ×qjjj βμα should be learnt from data to 
compute the distribution P(Ci | X); moreover, the number of 
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the components (q) used to cluster the perceptual space should 
also be determined gradually from observations. In section IV, 
a reinforcement-based algorithm is proposed for learning the 
presented model from the sequential data. 

IV. THE LEARNING ALGORITHM 
The general scenario in each time step, is that the agent 

perceives the perceptual vector X from the environment and 
based on its current estimation of P(Ci | X) it stochastically 
finds the most promising concept Cg (Cguess) to which the 
vector X belongs. Performing the equivalent action of Cg (i.e. 
actiong), the agent receives the reinforcement signal r form the 
environment which is a signed real number. Regarding to the 
reinforcement signal, the learning algorithm walks through 
different conceptual steps: learning from positive samples, 
learning from negative samples and adaptation which are 
illustrated in the following subsections. Prior to consider the 
learning algorithm in details, the different parts of them and 
their relationships are roughly considered. 

 

Environment

Initialization

Estimating PDFs

Decision Making

Computing Updating 
Weight

Updating Step

B, D, q

Reward

Wj

B, D, q

P(C|X)

X (observation)

Cg

 
Fig 1 Structure overview of the proposed framework – different parts 

and their relationships 
 

A. Initialization 
In this step, the initial values for parameters q, 

B= rqjib ×][ and D= 4j ] v  [ ×qjjj βμα are set: 

 (The number of concepts)r ←  

1q ←  

r qB Rand ×←  

:]..1[ qj ∈∀  

  1−←jα ,  T
j n10] ... 0 0 0[ ×←μ  

  0←jv ,   nj IianceInitialVar ×←β  
where, InitialVariance is a scalar representing the initial 
variance of the components, n is the perceptual space 
dimension, Rand is a random matrix, and I is the identity 
matrix. 

B. Estimating Pdfs 
Although P(Ci), P(Mj|Ci), P(X|Mj) were considered in the 

modeling section, also some other Pdfs need to be estimated in 
order to employ the proposed method. These Pdfs are 
considered in details based on the following subsections. 

 - P(Mj|X): the probability of occurring component Mj by 
having observation X. 
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       (10) 

 - P(Mj): the probability of occurring the component Mj. 
 

( ) ( ) ( )
1 1 1

ˆ ˆ
qr r

j ij ik
i i k

P M b b b b
= = =
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 - P(Mj|Ci,X): the probability of occurring the component 
Mj by acting the action i (Ci) and receiving the observation X. 

( ) ( ) ( )
( ) ( )

( ) ( )
1

| |
| ,

| |

| |

j j i
j i q
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∑           (12) 

 - P(Mj|~Ci,X): the probability of occurring the component 
Mj by not acting action i (Ci) and receiving the observation X. 
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       (13) 

C. Decision Making 
As mentioned before the action by which we receive a 

higher reward is more suitable to decide and in our 
probabilistic framework this suitability is encoded in P(Ci|X). 
However we use an extra variable T (temperature) to go 
smoothly from random decision making to greedy one. 

( ) ( ) ( )
1

| || exp exp
r

i i
e i

i

P C X P C XP C X T T
=

⎛ ⎞ ⎛ ⎞= ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑     (14) 

( ){ }arg max |g e ii
C soft P C X=                   (15) 

where Cg is the guess Concept (Action) which the agent is 
going to act.  

D. Computing Updating Weight 
Similar to Temporal Difference, the most popular member 

of Reinforcement Learning family, in our framework the TD 
error is computed and the updating weight is calculated based 
on the computed TD error. 

Before computing the TD error let's turn our thought to 
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which component that observes the X more than others. This 
component is named "most observant component" and is 
computed as below.  

( )arg | ,mac j gj
M Max P M C X=                  (16) 

Indeed we merely notice the most observant component 

macM  instead of all existing components in updating step. 
Subsequently the guess action is acted and then next most 
observant component macM ′  is also computed by receiving 

the next observation X ′ .  

( )arg |g ii
C Max P C X′ ′=                       (17) 

( )arg | ,mac j gj
M Max P M C X′ ′ ′=                 (18) 

gC ′ , macM ′ are the next guess action and the next most 

observant component respectively and finally the TD error is 
computed as below. 

( )g mac g macerr C M C MTD r b bα γ ′ ′= + −                 (19) 

where α is the learning rate, γ  is the forgetting factor and  
r is the received reward by agent. 

Due to the value of the TD error, the updating weights are 
computed based on the following as. 

[ ]
( )

( )
( )

( )

( )

_

_

1..
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j j g
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j j g

j j

j q

if TD thr

w P M C X

elseif TD thr

w P M C X

else

w P M X
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>

=

<

=

=

                (20) 

where _positive samplethr , _negative samplethr  are thresholds that 

indicate the guess action is the correct choice or is not. 

E. Updating Step 
In this step all parameters ( B = rqjib ×][  and  D = 

4j ] v  [ ×qjjj βμα  ) are updated. First updating of B is 
considered. 

{ }arg max
gJ gJ err J

jj

b b TD w

J w

← + ×

=
                       (21) 

Only gJb  relating to the maximum weight is updated that is 

so-called hard updating. It means that instead of updating all 

gjb , just gJb  is updated. This way, because of not 

propagating the uncertainty of the TD error along with all 
components, the convergence rate of the learning is increased. 

As the second sub-step of updating, we have to consider 

matrix D = 4j ] v  [ ×qjjj βμα . Basically this matrix is belongs 
to the infrastructure of P(X|Mj) and defines the components in 
the perceptual space. Thus there are two sub-tasks when we 
faced with a new observation such as X; it can be used for 
updating the existing components or can be used to create a 
new component. A predetermined threshold is defined to 
indicate which sub-step should be chosen. 

( )( )_1
max |

q

j new componentj
if P X M thr

Updating components
else

Adding a new component

=
⎡ ⎤ >⎣ ⎦

             (22) 

where the value of _new componentthr  can determine the density 

of distributing the components in the perceptual space. In 
other words, if this threshold is too small most of the 
observations are used to update existence components and the 
perceptual space will be encoded by a few and big 
components and vice versa there will be a lot of small 
components which are close to each other if the threshold is 
huge. Therefore this threshold can specify which level of 
concepts might be recognized. 

1)  Updating Components 
Similar to the updating step of the matrix B, in this case just 

one component is updated in order to build a more local 
model of perceptual space by components. Which component 
that maximize the P(X|Mj) is one that will be updated. 

( ){ }ˆ arg max | jj
j P X M=                           (23) 

After determining the component which should be updated 
we have to consider the details based on the following as: 

( )( )ˆ ˆ
ˆ ˆ ˆ ˆ

ˆ ˆ

Tj j
j j j j

j j

v w
X X

v w
β β μ μ= + − −

+
               (24) 

( )ˆ
ˆ ˆ ˆ

ˆ ˆ

j
j j j

j j

w
X

v w
μ μ μ= + −

+
                         (25) 

ˆ ˆ ˆ

ˆ ˆ ˆ

j j j

j j j

w

v v w

α α= +

= +
                                      (26) 

2) Adding a New Component 
As mentioned before a new component is created if some 

criterion is satisfied; that is, in our algorithm, a new 
component is created if the likelihood P(X | Mj) is less than a 
predetermined threshold ( _new componentthr ) which represents 

the minimum likelihood an exemplar of a component should 
have (There are also other criteria like ones mentioned in 
Adaptive Mixtures [13]). 

Once a new component is created its new parameters are 
initialized the same as initial step expect that gqb  is valued 

based on the TD error where was computed before. 
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         (27) 

: 1q qB Rand ×←                                  (28) 

( )
( )

_

_

1

0

err positive sample gq

err negative sample gq

if TD thr b

elseif TD thr b

> =

< =
            (29) 

 
In equation                                  (28) if TDerr is bigger than 

_positive samplethr  most probably the guess action (Cg) will be 

the correct choice and accordingly by initializing gqb  with 

"1", the probability of selecting Cg in future will increase and 
on the other hand, setting gqb  to zero will decrease the 

probability of being selected. 

V. SIMULATION RESULTS 
To demonstrate the performance and the general 

applicability of the proposed learning algorithm in this paper, 
it has been applied on a maze problem and also the result has 
been compared with a typical Q-Learning algorithm. As a 
result, the proposed algorithm has achieved better average 
reward within a shorter time. In the simulation the following 
conditions are set: the perceptual space is a two dimensional 
space; the values of _new componentthr  is set to 0.5 and also 

_positive samplethr  and _negative samplethr are set to 5, -5 

respectively; and the initial variance is set to 0.1. In this 
problem a simulated robot is placed in an area with specific 
width and length in which there are some obstacles and a goal. 
The robot is supposed to learn the shortest path of the goal 
while is avoiding the obstacles. In each decision making step, 
we let the robot move in one of the 8 (r = 8) predetermined 
directions (i.e. 0, π/4, π/2, 3π/4, π, 5π/4, 3π/2, and 7π/4) with 
0.5 unit relative movement which means that the robot 
classifies the perceptual space into 8 distinct categories. 
Indeed, this correspondence comes from our action-based 
conceptualization view. After acting the decision the robot 
will receive three different rewards; if it comes into an empty 
space (neither goal nor obstacle) it gets -0.1 as the reward, if it 
faces with an obstacle, the reward is -5 and finally if it reaches 
the goal, it receives 20. In addition, the learning rate (α ) has 
changed from 0.9 to 0.05, the forgetting factor has set to 0.8, 
and the temperature has changed from 0.2 to 0.0001. The 
conditions of the Q-learning simulation are exactly the same 
as above. 
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Fig. 2 The learnt optimal policy by the proposed algorithm, red area 
is the goal, black area is the obstacle, and white area is the empty 

place 
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Fig. 3 The prototype number (component number), the learning rate, 

and the temperature during the learning 
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Fig. 4 Received rewards and  average rewards by the proposed 

algorithm in compared to the Q-Learning algorithm (quantization 
level of the Q-Learning algorithm is 0.5) 

 
In the simulation, powerful generalization and convergence 

speed of the proposed algorithm in compared to a typical Q-
learning algorithm have been obviously shown. Also for 
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faithfully comparing, the quantization level of Q-learning 
algorithm has been regarded as the robot movement step (0.5) 
which is the most proper quantization level. 

VI. EXPERIMENTAL RESULT 
In this section, a real robotic task has been designed to 

demonstrate the applicability of using the proposed 
framework in the noisy environment in addition to dealing 
with the continuous perceptual space of the robot. 

The physical robot employed in the experiments is an E-
puck robot [14] (Fig. 5). This mobile robot is equipped with 
two stepper motors by which it can be navigated. Moreover, 
the robot has USB Bluetooth communication system which 
permits us to run the learning algorithm on our PC instead of 
on the limited hardware of the robot. 

Similar to the simulation, the robot is supposed to learn to 
reach a specific area while it is avoiding the obstacles which 
are in the environment. To achieve this goal, the robot should 
distinguish different areas of the environment in order to learn 
and exhibit the desired behavior. In other words, in this 
problem, concepts (the robot’s actions) are closely related to 
different positions of the robot in the environment. In each 
decision making step, we let the robot move in one of the 
eight (r = 8) predetermined directions (i.e. –3π/4, –π/2, –π/4, 
0, π/4, π/2, 3π/4 and π) which means that the robot classifies 
all of its positions into eight distinct categories. Using a 
camera which can capture the whole environment globally, 
two-dimensional position of the robot is obtained. In fact, the 
sole perceptual space in the experiment is a 2D continuous 
one as robot position which is computed by the camera. 

Based on the new position which is obtained after each 
robot’s action, an internal reinforcement signal is generated. If 
the robot goes to the empty area, the reward -0.1 is generated, 
if it contacts with the obstacles, the reward -5 is generated, 
and if it reaches the goal, the reward 20 is given to the robot. 

 
 

 

Fig. 5 The E-puck robot and the experimental environment 
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Fig. 6 The learnt optimal policy by the proposed algorithm, red area 
is the goal, black area is the obstacle, and white area is the empty 

place (model of the real environment which is used in the first step) 
 

0 100 200 300 400 500 600
-800

-600

-400

-200

0

episode

re
w

ar
ds

0 100 200 300 400 500 600
-300

-200

-100

0

episode

av
er

ag
e 

re
w

ar
ds

 
Fig. 7 Received rewards and average rewards during the learning in 

the first step 
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Fig. 8 Received rewards and average rewards in the second step 

(greedy decision making) 
 
This experiment includes two steps. In the first one, a 

model of the real environment is employed to learn, see Fig. 6. 
In other words, the robot first learns the desired behaviors by 
simulation. Then in the second step, the robot uses the learnt 
behaviors in the real environment, see Fig. 5. In fact, in this 
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step the robot makes greedy decisions. Fig. 7 illustrates the 
received rewards in the first step during the 600 episodes and 
Fig. 8 demonstrates the received rewards in the second step 
during the 50 episodes.  

The experiment reported in this section is one example of 
many robotic applications with continuous perceptual spaces 
on which the proposed framework can be applied. It is enough 
to define a proper reinforcement function for the problem and 
let the robot explore the environment and interactively learn 
the optimal response to each stimulus using the proposed 
conceptualization method. Besides, the experiment shows that 
the algorithm is robust in face of the environmental and 
perceptual noises due to its probabilistic foundation. 

VII. CONCLUSION 
In this paper, a new concept learning approach was 

presented to abstract the RL agent's perception and knowledge 
of its environment. Inspired from the mirror neurons 
functionality, the proposed method was simultaneously 
classifying and clustering the agent's perceptual space based 
on its available actions. Moreover, the learning algorithm was 
constructed based on the Probabilistic model which enabled 
the agent to face the uncertainty of its perception and its 
environment. Utilizing the mixture destinies model with 
adaptive number of components, the developed model was 
capable of learning concepts with any probability. On the 
other hand, the learning algorithm was designed so that it 
could learn through received rewards and could manage the 
multi step problems as well as discounted rewards. This 
property improved the learning process by speeding up the 
convergence and directing the learning curve to a higher 
asymptotic value. Simulation and experimental results 
confirmed these claims.  

Future works can include extensions for handling the 
continuous action case as well as equipping the proposed 
method with babbling techniques to create concepts (actions) 
automatically. Additionally, some parallel mechanisms can be 
incorporated to determine and update existing thresholds, (e.g. 

_new componentthr , _positive samplethr , and _negative samplethr  ) 

adaptively during the learning process. 
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