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Abstract—In MPEG and H.26x standards, to eliminate the 

temporal redundancy we use motion estimation. Given that the 

motion estimation stage is very complex in terms of computational 

effort, a hardware implementation on a re-configurable circuit is 

crucial for the requirements of different real time multimedia 

applications. In this paper, we present hardware architecture for 

motion estimation based on "Full Search Block Matching" (FSBM) 

algorithm. This architecture presents minimum latency, maximum 

throughput, full utilization of hardware resources such as embedded 

memory blocks, and combining both pipelining and parallel 

processing techniques. Our design is described in VHDL language, 

verified by simulation and implemented in a Stratix II 

EP2S130F1020C4 FPGA circuit. The experiment result show that the 

optimum operating clock frequency of the proposed design is 89MHz 

which achieves 160M pixels/sec. 

Keywords—SAD, FSBM, Hardware Implementation, FPGA. 

I. INTRODUCTION

N the last few years, video coding systems have been 

assuming an increasingly important role in several 

application areas tied in with digital television, video-phone 

and video-conference, video-surveillance and with the storage 

of video data. Several video compression standards have been 

established for these different application [1], exploiting both 

spatial and temporal redundancies of video sequence to 

achieve the required compression rates. Among these 

technique, motion estimation has proved to be a fundamental 

technique to improve inter-frame prediction in video coding. 

It is often the case that video frames that are close in time are 

also similar. Therefore, when coding a video frame, it would 

be judicious to make as much use as possible of the 

information presented in a previously coded frame. One 

approach to achieve this goal is to simply consider the 

difference between the current frame and a previous reference 

frame, as shown in Fig. 1, and code the difference or residual. 
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When the two frames are very similar, the difference will be 

much more efficient to code than coding the original frame. In 

this case, the previous frame is used as an estimate of the 

current frame. A more sophisticated approach to increase 

coding efficiency is to work at the macroblock (NxN pixels) 

level in the current frame, instead of processing the whole 

frame all at once as described above. 

Fig. 1   Block-matching algorithm 

 The process is called motion compensated prediction, and 

is based on the assumption that most of the motion that the 

macroblocks (MB) undergo between frames is a translational 

motion. This approach attempts to find, for each NxN 

luminance block of a MB in the current frame, the best 

matching block in the previous frame. A search window is 

usually defined and bounds the area within which the encoder 

can perform the search for the best matching block. The 

motion of a MB is represented by a motion vector that has two 

components; the first indicating horizontal displacement, and 

the second indicating vertical displacement. Different criteria 

could be used to measure the closeness of two blocks [2]. The 

most popular measure is the Sum of Absolute Differences 

(SAD) [3], [4] defined by “(1)”. 
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 Where ),(, jiY lk  represents the thji ),(  pixel of a 16 x 16 

MB from the current picture at the spatial location ),( ji and

),(, jiY vluk represents the thji ),(  pixel of a candidate MB 

from a reference picture at the spatial location ),( lk  displaced 

by the vector ),( ji .

 To find the MB producing the minimum mismatch error, 

we need to compute SAD at several locations within a search 

window. This approach is called full search or exhaustive 

search, and is usually computationally expensive, but on the 

other hand yields good matching results. To perform FSBM 

algorithm, we must execute (2p+1)
2

SAD functions. As we 

can see that FSBM algorithm is very complex in term of 

computation, which can be a significant problem in a real time 

video coding using software solution [5], [6]. There are 

several block-matching algorithms (BMAs) [7]-[9] that can be 
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used for motion estimation but the FSBM algorithm is 

preferred due to their relative simplicity, low-control overhead 

and achieves optimal performances in terms of PSNR (Peak 

Signal to Noise Ratio) for a given compression factor. 

Nowadays configurable Field Programmable Gate Array 

(FPGA) technology is able to execute complex embedded 

video processing in real time. Thus, to reduce complexity and 

to take advantage of the FSBM algorithm a pipelined 

hardware implementation in FPGA of this algorithm is 

proposed. In our study, we suppose that MB size is 16x16 and 

search area is 32x32 pixels wide. Therefore, around current 

MB in current frame, we insert 8 pixels (p=8). Generally, 

current MB and search area have an NxN an (N+2p)x(N+2p) 

pixel-size respectively as shown in Fig. 2.

Fig. 2 The current MB position in the search area

This paper is organized as follows. Section 2 presents 

different hardware architectures for FSBM.  Section 3 

describes our proposed hardware architecture for FSBM 

algorithm. The simulation and synthesis results for all 

architectures are presented and discussed in section 4. Finally, 

section 5 concludes the paper.

II. DIFFERENT ARCHITECTURE FOR FSBM

In literature, different architectures are proposed to 

implement the FSBM algorithm [11]-[16], but these 

architectures have in important clock cycles number to 

compute the motion vector. This high number of clock makes 

these architectures unsuited to achieve for example the 

processing requirements of high definition TV (HTDV 1080i, 

1920x1088@60Hz) which requires 125M pixels/sec. This 

section presents briefly these different architectures and our 

pipelined hardware architecture.

A. T. Komarek and P. Pirsch Architecture 

All figures in this section are represented for N=3 and p=2. 

All architectures in this section are composed by 4 

components: 

ADi: calculate the Absolute difference value between tow 

pixels and accumulate present value with previous value. 

R : Registers allows the data synchronization   

A: Accumulator. 

M: Comparator. 

1) AB1 Architecture 

Fig. 3 represents AB1 architecture. It’s composed by N 

“AD”, (2xN +1) registers, one accumulator and one 

comparator. For calculate different SAD's (N=16 and p=8), 

we use 16 ADs, 33 registers, one accumulator and one 

comparator. Each AD has one input for MB and an others 

input for search window. To calculate (2p+1)
2

SAD's we use 

9250 clock cycles. The detail of intermediate operation of this 

architecture is described in [11]. 

Fig. 3 AB1 Architecture

2) AB2 Architecture 

Fig. 4 represent AB2 architecture. It’s composed by NxN 

“AD”, (NxN+(N-1)xN+2N+1) registers, N accumulators and 

one comparator.  

Fig. 4 AB2 Architecture

For N=16 and p=8, we use 256 ADs, 529 registers, 16 

accumulator and one comparator for calculate (2p+1)
2

SAD's. 

Each AD have one input for search window. The interesting 

point in this architecture is the storage of MB pixels in Each 

AD. With this idea, for calculate all SAD's and the motion 

vector, we use 579 clock cycles. The detail of intermediate 

operation of this architecture is described in [11]. 

3) AS1 Architecture 

Fig. 5 AS1 Architecture 

Fig. 5 represents AS1 architecture. It’s composed by 

“AD” (  is equal to number of displacement in search 

window), (3x ( -1) + 3x  +1) registers, ( ) accumulators 

and ( +1) comparator. For N=16 and p=8, we use 17 ADs, 

100 registers, 17 accumulators and 18 comparators. For all 

ADs, we have on input for MB and other input for search 

window. The detail of intermediate operation of this 
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architecture is described in [11]. For calculate all SAD's and 

the motion vector, we use 8722 clock cycles.

4) Architecture AS2 

Fig. 6 represents AS2 architecture. It’s composed by Nx 

“AD”, (3x( )xN-1 + Nx( -1)+ 3x  + 1+c) registers, 

accumulators and +1 comparators. (c = -( -1)+ -( -2)

+ …. +( -2)).

Fig. 6 AS2 Architecture

For this architecture we use 272 Ads, 685 registers, 17 

accumulators and 18 comparators (N=16 and p=8). Each AD 

has one input for MB and an others input for search window. 

To calculate (2p+1)
2

SAD's we use 577 clock cycles. The 

detail of intermediate operation of this architecture is 

described in [11]. 

B. K. M. Yang and al. Architecture  

This architecture is composed by N PEs, (N-1) flip-flop, N 

multiplexers (MUX) and one comparator for compute   the 

minimum SAD and the motion vector. All this components is 

presents in fig. 7. 

Fig. 7 K.M. Yang  and al Architecture 

For N=16 and P=8, we use 16 PEs, 15 DFF and 16 MUX. 

The intermediate operation of each PE and synchronization of 

data are presented in [12]. For calculate all SAD's and the 

motion vector, we use 4370 clock cycles. 

C. H. Hsieh and al. Architecture  

This architecture is composed by (NxN) processor element 

(PE), (NxP) Shift register (SR), Parallel Adder and 

comparator. Fig. 8 presents the connection between these 

elements. 

 For N=16 and P=8, we use 256 PEs, 128 SRs, one Parallel 

Adder and one comparator. We use 1028 clock cycles for 

calculate (2p+1)
2

SAD's and the motion vector. You can find 

all detail of this architecture in [13].  

Fig. 8 C.H. Hsieh and al. Architecture

D. H. Yeo and al. Architecture  

 This architecture is present in fig. 9. It is composed by NxN 

PEs, 2 MUX, one input for MB and tow input for search 

window. In [14], you can find the intermediate operation of 

this architecture. For N=16 and P=8, we use 256 PEs and 2 

MUX. The motion vector is outputted after 547clock cycles.  

Fig. 9 H. Yeo  and al Architecture

 F. M. Yang and al. Architecture 

Fig. 10 F.M. Yang and al Architecture

In this architecture, you can find NxN PEs, N MUX, input 

for MB and tow input for search window, (N+1) comparator 

for obtained the motion vector. Therefore, for synchronization 

of data, we use N registers for MB and (2xN) registers for 

search window. Fig. 10 present the schematic of this 

architecture. In this architecture “C” is input for MB and 

(P,P’) is input for search window.All detail for this 
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architecture is presented in [15]. For N=16 and P=8, we use 

256 PEs, 16 MUX and 48 registers. For calculate all SAD's 

and the motion vector, we use 534 clock cycles.  

E. Y. S. Jehng and al. Architecture 

Fig. 11 present the diagram of this architecture for N=4. It's 

composed by NxN “D” for computing the absolute value, 

(NxN -1) accumulator and one comparator. In addition, we 

find NxN input for MB and NxN input for search window. In 

[16], you can find the intermediate operation of this 

architecture.

For calculate all SAD’s and the motion vector for N=16 and 

P=8, we use 256 “D”, 255 accumulator and one comparator. 

The motion vector is outputted after 290 clock cycles. 

Fig. 11 Y.S. Jehng and al Architecture for N=4 

III. PROPOSED ACHITECTURE

A. Proposed structure 

In order to realize FSBM algorithm, various architectures 

have been proposed. By examining these architectures, we 

conclude that processing elements (PEs), address generator 

and data memories are indispensable and necessary 

components for FSBM algorithm implementation. In fact, PE 

accomplishes the computation of block distortion measure 

(SAD). Address generator generates the address to memories 

and transfer data from each memory block to the 

corresponding processing elements. Consequently, the 

proposed FSBM architecture is illustrated in Fig. 12. Our 

proposed architecture is composed of multiplexed registers, 

memories, Flip-flops, absolute difference components, 

accumulators, and a comparator for selecting the minimum 

SAD provided by each PE. Controller module contains the 

address generator engine that produces the memory addresses 

and transfers data from each memory block to the 

corresponding PEs. 

Fig. 12 The proposed architecture 

B. Data memories control 

For this architecture, we need a combination of 12 single-

port memories that enables the reading of 12 pixels for every 

clock cycle (8 memories for the search area and 4 memories 

for the current MB). Each memory is generated by LPM 

mega-functions library in order to take advantage of the 

“StratixII” embedded RAM blocks. We must read pixels from 

input frames by using VHDL description with various 

“TEXTIO” instructions (camera entity) and store them in 12 

memories. Then, the data coming from camera entity must be 

organized on these memories as shown in Table 1 and Table 

2.

Table 1 shows that we have stored search area pixels in 8 

separate memories in order to address 8 pixels at each clock 

cycle. These memories are presented by the search area 

memory block in the proposed architecture. 

Table 2 shows that we have stored pixels of current MB in 

4 memories in order to address 4 data’s at each clock cycle. 

These memories take parts of the current MB memory block 

in the proposed architecture. 

After memorizing search area and current MB, we will 

compute 289 SADs. That’s why we must respect the 

memories read order presented in Table 3. 

To test and simulate memory blocks, we use a test bench 

file allowing the mapping of each memory component with 

another component called “camera”, which allows the reading 

of the pixels values from PGM frame files. For the search 

area, we use 8 memories of 128 bytes each. In fact, the search 

area has 32x32 pixels size and 25x25=210=1024 addresses. 

Each address consist of 8 bits data, thus we obtain 1024 bytes. 

For the current MB, we use 4 memories of 64 bytes each.  

Indeed, the size of a current MB is 16x16 pixels requiring 

24x24 =28=256 addresses. Each address consists of 8 bits 

data, thus we obtain 256 bytes. Memories are synchronous 

and they can be used in writing or reading mode. In writing 

mode, the memories receive frame files data and store each 

one in the specified address. 

C. Multiplexers block diagram 

Multiplexers are used to select the data search area, and to 

allow horizontal movement for the execution of 17 SADs in 

parallel. Fig. 13 depicts the multiplexer’s block. 
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Fig. 13 Block of the multiplexers 

F1 to F8 represent the pixels generated by the various 

memories of the search area and will be organized 2 by 2. 

This block consists of 16 multiplexers as shown in fig. 13. S1 

to S16 represent the outputs of multiplexers, and correspond 

to the 16 horizontal movements (in the first horizontal 

movement we don’t use any multiplexer). The Flip-Flop block 

allows during the processing of 289 SADs to read the 

different memories only one time and pass various data to 

each PE in order to compute the corresponding SAD. 

D. SAD calculation 

Processing elements block represented in fig. 12 is 

composed by 1156 inputs for the search area data (X) and 

1156 inputs for the current MB data (Y). This block allows 

the computation of 289 SADs in a mixed mode: parallel and 

pipeline. It is possible to combine 4 processors elements (PE) 

in one engine in order to compute SAD 16x16 as shown on 

fig. 14. 

Fig. 14 Proposed SAD 16x16 diagram 

Each PEi allows the computation of a SAD 16x4. The 

parallel adder performs the sum of 4 SADs 16x4 values for a 

given SAD 16x16. That’s why we dispose of 1156 inputs 

(4*289) for both search area and current MB. Since we use 4 

PEs to compute 289 SADs. Fig. 15 represents the internal 

structure of each PE. Our proposed algorithm allows the 

computation of 16x16 SAD in 64 cycles instead of 256 cycles 

for the existing architectures. Table 4 represents the necessary 

method for computing 289 SADs in mixed mode: parallel and 

pipeline.  

Fig. 15 Processor Element 

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS

In the previous section, we present an overview of all 

architecture. These architectures are described with VHDL 

language. Result of synthesis on the “STRATIXII family – 

EP2S130F1020C4” component is presented in the following 

table: 

TABLE V

RESULT OF SYNTHESIS

Resources Avail Used Utilization 

Input/output 743 76 10% 

Logic ports 106032 70004 66% 

Memory Bits 6747840 10240 <1% 

The maximum clock frequency is 89 MHz. The 

experimental results show that just 140 cycles is necessary to 

compute the final motion vector. With this result, we can 

execute 160M pixels/sec which is suited to process HTDV 

(1920x1088@60Hz) video sequences. The table 6 and 7 

resumes the functional parameter and synthesis results for all 

presented architectures respectively. Form these tables, our 

pipelined FPGA architecture takes the minimum execution 

time for compute the motion vector. 

V. CONCLUSION

In this paper, we have proposed the motion estimation 

architecture. Our pipelined architecture benefits from several 

PE engines executing in parallel and pipeline mode. This will 

solve the real time constraint and enable a better efficiency in 

HTDV video coding. It has been proved through our study 

that FPGA is an ultimate solution for the design of a motion 

estimation algorithm based on FSBM conception through the 

hardware description language (VHDL).  
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TABLE I 

  DATA MEMORIES STRUCTURE FOR SEARCH AREA 

Memory F1 Memory F2 Memory F3 Memory F4 Memory F5 Memory F6 Memory F7 Memory F8 

F(0,0) F(1,0) F(2,0) F(3,0) F(16,0) F(17,0) F(18,0) F(19,0) 

F(4,0) F(5,0) F(6,0) F(7,0) F(20,0) F(21,0) F(22,0) F(23,0) 

F(8,0) F(9,0) F(10,0) F(11,0) F(24,0) F(25,0) F(26,0) F(27,0) 

F(12,0) F(13,0) F(14,0) F(15,0) F(28,0) F(29,0) F(30,0) F(31,0) 

F(0,1) F(1,1) F(2,1) F(3,1) F(16,1) F(17,1) F(18,1) F(19,1) 

…. …. …. …. …. …. …. …. 

F(0,2) F(1,2) F(2,2) F(3,2) F(16,2) F(17,2) F(18,2) F(19,2) 

…. …. …. …. …. …. …. …. 

…. …. …. …. …. …. …. …. 

F(12,15) F(13,15) F(14,15) F(15,15) F(28,15) F(29,15) F(30,15) F(31,15) 

F(0,16) F(1,16) F(2,16) F(3,16) F(16,16) F(17,16) F(18,16) F(19,16) 

…. …. …. …. …. …. …. …. 

F(12,31) F(13,31) F(14,31) F(15,31) F(28,31) F(29,31) F(30,31) F(31,31) 

TABLE II 

  DATA MEMORIES STRUCTURE FOR CURRENT MB 

Memory R1 Memory R2 Memory R3 Memory R4 

R(0,0) R(1,0) R(2,0) R(3,0) 

R(4,0) R(5,0) R(6,0) R(7,0) 

R(8,0) R(9,0) R(10,0) R(11,0) 

R(12,0) R(13,0) R(14,0) R(15,0) 

R(0,1) R(1,1) R(2,1) R(3,1) 

……. …… ……. ….. 

R(0,2) R(1,2) R(2,2) R(3,2) 

….. ….. …… …. 

….. …. ….. ….. 

R(12,14) R(13,14) R(14,14) R(15,14) 

R(0,15) R(1,15) R(2,15) R(3,15) 

….. ….. ….. ….. 

R(12,15) R(13,15) R(14,15) R(15,15) 

TABLE III 

MEMORIES ADDRESS GENERATOR 

T Current MB memory Search area memory 

1+(4*0) R(0,0) R(1,0) R(2,0) R(3,0) F(0,0) F(1,0) F(2,0) F(3,0)

2+(4*0) R(4,0) R(5,0) R(6,0) R(7,0) F(4,0) F(5,0) F(6,0) F(7,0)

3+(4*0) R(8,0) R(9,0) R(10,0) R(11,0) F(8,0) F(9,0) F(10,0) F(11,0)

4+(4*0) R(12,0) R(13,0) R(14,0) R(15,0) F(12,0) F(13,0) F(14,0) F(15,0)

1+(4*1) R(0,1) R(1,1) R(2,1) R(3,1) F(0,1) F(1,1) F(2,1) F(3,1) F(16,0) F(17,0) F(18,0) F(19,0) 

2+(4*1) R(4,1) R(5,1) R(6,1) R(7,1) F(4,1) F(5,1) F(6,1) F(7,1) F(20,0) F(21,0) F(22,0) F(23,0) 

…. …. …. …. …. …. …. …. …. …. …. …. …. 

1+(4*2) R(0,2) R(1,2) R(2,2) R(3,2) F(0,2) F(1,2) F(2,2) F(3,2) F(16,1) F(17,1) F(18,1) F(19,1) 

2+(4*2) R(4,1) R(5,1) R(6,1) R(7,1) F(4,1) F(5,1) F(6,1) F(7,1) F(20,1) F(21,1) F(22,1) F(23,1) 

…. …. …. …. …. …. …. …. …. …. …. …. …. 

…. …. …. …. …. …. …. …. …. …. …. …. …. 

1+(4*15

)

R(0,15) R(1,15) R(2,15) R(3,15) F(0,15) F(1,15) F(2,15) F(3,15) F(16,14

)

F(17,14

)

F(18,14

)

F(19,14) 

2+(4*15

)

R(4,15) R(5,15) R(6,15) R(7,15) F(4,15) F(5,15) F(6,15) F(7,15) F(20,14

)

F(21,14

)

F(22,14

)

F(23,14) 
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3+(4*15

)

R(8,15) R(9,15) R(10,15

)

R11,15) F(8,15) F(9,15) F(10,15

)

F(11,15

)

F(24,15

)

F(25,15

)

F(26,15

)

F(27,15) 

4+(4*15

)

R12,15

)

R(13,15

)

R(14,15

)

R(15,15

)

F(12,15

)

F(13,15

)

F(14,15

)

F(15,15

)

F(28,15

)

F(29,15

)

F(30,15

)

F(31,15) 

1+(4*16

)

F(0,16) F(1,16) F(2,16) F(3,16) F(16,15

)

F(17,15

)

F(18,15

)

F(19,15) 

…. …. …. …. …. …. …. …. ….

4+(4*30

)

F(12,30

)

F(13,30

)

F(14,30

)

F(15,30

)

F(28,29

)

F(29,29

)

F(30,29

)

F(31,29) 

1+(4*31

)

F(0,31) F(1,31) F(2,31) F(3,31) F(16,30

)

F(17,30

)

F(18,30

)

F(19,30) 

…. …. …. …. ….

1+(4*32

)

F(16,31

)

F(17,31

)

F(18,30

)

F(19,31) 

2+(4*32

)

F(20,31

)

F(21,31

)

F(22,31

)

F(23,31) 

3+(4*32

)

F(24,31

)

F(25,31

)

F(26,31

)

F(27,31) 

4+(4*32

)

F(28,31

)

F(29,31

)

F(30,31

)

F(31,31) 

TABLE IV

ARCHITECTURE OPERATION 

Clock

cycle 
SAD0 SAD1 SAD2 SAD3 SAD4  SAD287 SAD288 

1+(4*0)

R(0,0)-F(0,0)

R(1,0)-F(1,0)

R(2,0)-F(2,0)

R(3,0)-F(3,0)

       

2+(4*0)

R(4,0)-F(4,0)

R(5,0)-F(5,0)

R(6,0)-F(6,0)

R(7,0)-F(7,0)

R(0,0)-F(1,0)

R(1,0)-F(2,0)

R(2,0)-F(3,0)

R(3,0)-F(4,0)

R(0,0)-F(2,0)

R(1,0)-F(3,0)

R(2,0)-F(4,0)

R(3,0)-F(5,0)

R(0,0)-F(3,0)

R(1,0)-F(4,0)

R(2,0)-F(5,0)

R(3,0)-F(6,0)

R(0,0)-F(4,0)

R(1,0)-F(5,0)

R(2,0)-F(6,0)

R(3,0)-F(7,0)

   

3+(4*0)

R(8,0)-F(8,0)

R(9,0)-F(9,0)

R(10,0)-F(10,0) 

R(11,0)-F(11,0) 

R(4,0)-F(5,0)

R(5,0)-F(6,0)

R(6,0)-F(7,0)

R(7,0)-F(8,0)

R(4,0)-F(6,0)

R(5,0)-F(7,0)

R(6,0)-F(8,0)

R(7,0)-F(9,0)

R(4,0)-F(7,0)

R(5,0)-F(8,0)

R(6,0)-F(9,0)

R(7,0)-F(10,0) 

R(4,0)-F(8,0)

R(5,0)-F(9,0)

R(6,0)-F(10,0) 

R(7,0)-F(11,0) 

   

4+(4*0)

R(12,0)-F(12,0) 

R(13,0)-F(13,0) 

R(14,0)-F(14,0) 

R(15,0)-F(15,0) 

R(8,0)-F(9,0)

R(9,0)-F(10,0) 

R(10,0)-F(11,0) 

R(11,0)-F(12,0) 

R(8,0)-F(10,0) 

R(9,0)-F(11,0) 

R(10,0)-F(12,0) 

R(11,0)-F(13,0) 

R(8,0)-F(11,0) 

R(9,0)-F(12,0) 

R(10,0)-F(13,0) 

R(11,0)-F(14,0) 

R(8,0)-F(12,0) 

R(9,0)-F(13,0) 

R(10,0)-F(14,0) 

R(11,0)-F(15,0) 

   

1+(4*1)

R(0,1)-F(0,1)

R(1,1)-F(1,1)

R(2,1)-F(2,1)

R(3,1)-F(3,1)

R(12,0)-F(13,0) 

R(13,0)-F(14,0) 

R(14,0)-F(15,0) 

R(15,0)-F(16,0) 

R(12,0)-F(14,0) 

R(13,0)-F(15,0) 

R(14,0)-F(16,0) 

R(15,0)-F(17,0) 

R(12,0)-F(15,0) 

R(13,0)-F(16,0) 

R(14,0)-F(17,0) 

R(15,0)-F(18,0) 

R(12,0)-F(16,0) 

R(13,0)-F(17,0) 

R(14,0)-F(18,0) 

R(15,0)-F(19,0) 

   

2+(4*1)

R(4,1)-F(4,1)

R(5,1)-F(5,1)

R(6,1)-F(6,1)

R(7,1)-F(7,1)

R(0,1)-F(1,1)

R(1,1)-F(2,1)

R(2,1)-F(3,1)

R(3,1)-F(4,1)

R(0,1)-F(2,1)

R(1,1)-F(3,1)

R(2,1)-F(4,1)

R(3,1)-F(5,1)

R(0,1)-F(3,1)

R(1,1)-F(4,1)

R(2,1)-F(5,1)

R(3,1)-F(6,1)

R(0,1)-F(4,1)

R(1,1)-F(5,1)

R(2,1)-F(6,1)

R(3,1)-F(7,1)

   

         

1+(4*2)

R(0,2)-F(0,2)

R(1,2)-F(1,2)

R(2,2)-F(2,2)

R(3,2)-F(3,2)

R(12,1)-F(13,1) 

R(13,1)-F(14,1) 

R(14,1)-F(15,1) 

R(15,1)-F(16,1) 

R(12,1)-F(14,1) 

R(13,1)-F(15,1) 

R(14,1)-F(16,1) 

R(15,1)-F(17,1) 

R(12,1)-F(15,1) 

R(13,1)-F(16,1) 

R(14,1)-F(17,1) 

R(15,1)-F(18,1) 

R(12,1)-F(16,1) 

R(13,1)-F(17,1) 

R(14,1)-F(18,1) 

R(15,1)-F(19,1) 

   

2+(4*2)

R(4,2)-F(4,2)

R(5,2)-F(5,2)

R(6,2)-F(6,2)

R(7,2)-F(7,2)

R(0,2)-F(1,2)

R(1,2)-F(2,2)

R(2,2)-F(3,2)

R(3,2)-F(4,2)

R(0,2)-F(2,2)

R(1,2)-F(3,2)

R(2,2)-F(4,2)

R(3,2)-F(5,2)

R(0,2)-F(3,2)

R(1,2)-F(4,2)

R(2,2)-F(5,2)

R(3,2)-F(6,2)

R(0,2)-F(4,2)

R(1,2)-F(5,2)

R(2,2)-F(6,2)

R(3,2)-F(7,2)

   

         

         

4+(4*15)

R(12,15)-

F(12,15) 

R(13,15)-

F(13,15) 

R(14,15)-

F(14,15) 

R(15,15)-

F(15,15) 

R(8,15)-F(9,15) 

R(9,15)-F(10,15) 

R(10,15)-

F(11,15) 

R(11,15)-

F(12,15) 

R(8,15)-F(10,15) 

R(9,15)-F(11,15) 

R(10,15)-

F(12,15) 

R(12,15)-

F(13,15) 

R(8,15)-F(11,15) 

R(9,15)-F(12,15) 

R(10,15)-

F(13,15) 

R(11,15)-

F(14,15) 

R(8,15)-F(12,15) 

R(9,15)-F(13,15) 

R(10,15)-

F(14,15) 

R(11,15)-

F(15,15) 

   

1+(4*16)

R(12,15)-

F(13,15) 

R(13,15)-

F(14,15) 

R(14,15)-

F(15,15) 

R(15,15)-

F(16,15) 

R(12,15)-

F(14,15) 

R(13,15)-

F(15,15) 

R(14,15)-

F(16,15) 

R(15,15)-

F(17,15) 

R(12,15)-

F(15,15) 

R(13,15)-

F(16,15) 

R(14,15)-

F(17,15) 

R(15,15)-

F(18,15) 

R(12,15)-

F(16,15) 

R(13,15)-

F(17,15) 

R(14,15)-

F(18,15) 

R(15,15)-

F(19,15) 

   

         

1+(4*19)       R(0,0)-F(15,16) R(0,0)-F(16,16) 
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R(1,0)-F(16,16) 

R(2,0)-F(17,16) 

R(3,0)-F(18,16) 

R(1,0)-F(17,16) 

R(2,0)-F(18,16) 

R(3,0)-F(19,16) 

         

4+(4*34)       

R(12,15)-

F(27,31) 

R(13,15)-

F(28,31) 

R(14,15)-

F(29,31) 

R(15,15)-

F(30,31) 

R(12,15)-F(28,31) 

R(13,15)-F(29,31) 

R(14,15)-F(30,31) 

R(15,15)-F(31,31) 

4+(4*34)       

R(12,15)-

F(27,31) 

R(13,15)-

F(28,31) 

R(14,15)-

F(29,31) 

R(15,15)-

F(30,31) 

R(12,15)-F(28,31) 

R(13,15)-F(29,31) 

R(14,15)-F(30,31) 

R(15,15)-F(31,31) 

TABLE VI 

FUNCTIONAL RESULTS FOR DIFFERENT ARCHITECTURES 

N=16 et P=8 AB1 AB2 AS1 AS2 Heish 
K. M. 

Yang

F. M. 

Yang
Jehng Yeo 

Proposed 

Architecture

Processor element number 16 256 17 272 256 17 289 512 289 289

Architecture topology 1-D 2-D 1-D 2-D 1-D 1-D 2-D 2-D 2-D 2-D 

Input port number for search 

window
16 16 1 32 1 2 2 256 2 8

Input port number for MB 16 - 1 16 1 1 1 1 1 4 

Clock cycles number for 

compute the motion vector 
9250 579 8722 577 1028 4370 534 290 547 140

TABLE VII 

SYNTHESIS RESULTS FOR ALL ARCHITECTURES 

N=16 et 

P=8
AB1 AB2 AS1 AS2 Heish 

K. M. 

Yang

F. M. 

Yang
Jehng Yeo 

Proposed 

Architecture

Logic 

element 

number 

5153 17179 2068 20548 14010 1654 26799 69917 15866 70004

Pins

number 
62 62 62 62 62 62 52 62 62 76 

Memory 

bits

number 

10240 10240 10240 10240 - 10240 - - - 10240

Maximum 

frequency 

(Mhz) 

142.51 115.97 111.17 160.62 128.09 134.86 96.64 50.97 70.01 89 

Latency 

time 
2.6 0.922 2.173 2.593 2.41 0.973 8.844 10.278 8.717 7

Execution

time (ns)  64909.85 4993.639 78456.563 3594.995 8028.006 32404.523 5534.676 5705.878 7399.781 1579.432 
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