
International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:2, No:10, 2008

2235

Abstract—In MPEG and H.26x standards, to eliminate the

temporal redundancy we use motion estimation. Given that the

motion estimation stage is very complex in terms of computational

effort, a hardware implementation on a re-configurable circuit is

crucial for the requirements of different real time multimedia

applications. In this paper, we present hardware architecture for

motion estimation based on "Full Search Block Matching" (FSBM)

algorithm. This architecture presents minimum latency, maximum

throughput, full utilization of hardware resources such as embedded

memory blocks, and combining both pipelining and parallel

processing techniques. Our design is described in VHDL language,

verified by simulation and implemented in a Stratix II

EP2S130F1020C4 FPGA circuit. The experiment result show that the

optimum operating clock frequency of the proposed design is 89MHz

which achieves 160M pixels/sec.

Keywords—SAD, FSBM, Hardware Implementation, FPGA.

I. INTRODUCTION

N the last few years, video coding systems have been

assuming an increasingly important role in several

application areas tied in with digital television, video-phone

and video-conference, video-surveillance and with the storage

of video data. Several video compression standards have been

established for these different application [1], exploiting both

spatial and temporal redundancies of video sequence to

achieve the required compression rates. Among these

technique, motion estimation has proved to be a fundamental

technique to improve inter-frame prediction in video coding.

It is often the case that video frames that are close in time are

also similar. Therefore, when coding a video frame, it would

be judicious to make as much use as possible of the

information presented in a previously coded frame. One

approach to achieve this goal is to simply consider the

difference between the current frame and a previous reference

frame, as shown in Fig. 1, and code the difference or residual.

H. Loukil Is With University Of Sfax, National School Of Engineering, Bp

W, 3038 Sfax, Tunisia. E-Mail : Hassenloukil@Gmail.Com

A. Ben Atitallah Is With University Of Sfax, High Institute Of Electronics

And Communication, Bp 868, 3018 Sfax, Tunisia. E-Mail :

Ahmad.Benatitallah@Isecs.Rnu.Tn

F. Ghozzi Is With University Of Sfax, High Institute Of Electronics And

Communication, Bp 868, 3018 Sfax, Tunisia. E-Mail :

Fahmi.Ghozzi@Isecs.Rnu.Tn

M. A. Ben Ayed Is With University Of Sfax, High Institute Of Electronics

And Communication, Bp 868, 3018 Sfax, Tunisia. E-Mail :

Mohamedali.Benayed@Isecs.Rnu.Tn

N. Masmoudi Is With University Of Sfax, National School Of Engineering,

Bp W, 3038 Sfax, Tunisia. E-Mail : Nouri.Masmoudi@Enis.Rnu.Tn

When the two frames are very similar, the difference will be

much more efficient to code than coding the original frame. In

this case, the previous frame is used as an estimate of the

current frame. A more sophisticated approach to increase

coding efficiency is to work at the macroblock (NxN pixels)

level in the current frame, instead of processing the whole

frame all at once as described above.

Fig. 1 Block-matching algorithm

 The process is called motion compensated prediction, and

is based on the assumption that most of the motion that the

macroblocks (MB) undergo between frames is a translational

motion. This approach attempts to find, for each NxN

luminance block of a MB in the current frame, the best

matching block in the previous frame. A search window is

usually defined and bounds the area within which the encoder

can perform the search for the best matching block. The

motion of a MB is represented by a motion vector that has two

components; the first indicating horizontal displacement, and

the second indicating vertical displacement. Different criteria

could be used to measure the closeness of two blocks [2]. The

most popular measure is the Sum of Absolute Differences

(SAD) [3], [4] defined by “(1)”.

15

0

15

0

),(
,

),(
,

i j

jivlukYjilkYSAD

 Where),(, jiY lk represents the thji),(pixel of a 16 x 16

MB from the current picture at the spatial location),(ji and

),(, jiY vluk represents the thji),(pixel of a candidate MB

from a reference picture at the spatial location),(lk displaced

by the vector),(ji .

 To find the MB producing the minimum mismatch error,

we need to compute SAD at several locations within a search

window. This approach is called full search or exhaustive

search, and is usually computationally expensive, but on the

other hand yields good matching results. To perform FSBM

algorithm, we must execute (2p+1)
2

SAD functions. As we

can see that FSBM algorithm is very complex in term of

computation, which can be a significant problem in a real time

video coding using software solution [5], [6]. There are

several block-matching algorithms (BMAs) [7]-[9] that can be

A Pipelined FSBM Hardware Architecture for

HTDV-H.26x

H. Loukil, A. Ben Atitallah, F. Ghozzi, M. A. Ben Ayed, N. Masmoudi

I

(1)

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:2, No:10, 2008

2236

used for motion estimation but the FSBM algorithm is

preferred due to their relative simplicity, low-control overhead

and achieves optimal performances in terms of PSNR (Peak

Signal to Noise Ratio) for a given compression factor.

Nowadays configurable Field Programmable Gate Array

(FPGA) technology is able to execute complex embedded

video processing in real time. Thus, to reduce complexity and

to take advantage of the FSBM algorithm a pipelined

hardware implementation in FPGA of this algorithm is

proposed. In our study, we suppose that MB size is 16x16 and

search area is 32x32 pixels wide. Therefore, around current

MB in current frame, we insert 8 pixels (p=8). Generally,

current MB and search area have an NxN an (N+2p)x(N+2p)

pixel-size respectively as shown in Fig. 2.

Fig. 2 The current MB position in the search area

This paper is organized as follows. Section 2 presents

different hardware architectures for FSBM. Section 3

describes our proposed hardware architecture for FSBM

algorithm. The simulation and synthesis results for all

architectures are presented and discussed in section 4. Finally,

section 5 concludes the paper.

II. DIFFERENT ARCHITECTURE FOR FSBM

In literature, different architectures are proposed to

implement the FSBM algorithm [11]-[16], but these

architectures have in important clock cycles number to

compute the motion vector. This high number of clock makes

these architectures unsuited to achieve for example the

processing requirements of high definition TV (HTDV 1080i,

1920x1088@60Hz) which requires 125M pixels/sec. This

section presents briefly these different architectures and our

pipelined hardware architecture.

A. T. Komarek and P. Pirsch Architecture

All figures in this section are represented for N=3 and p=2.

All architectures in this section are composed by 4

components:

ADi: calculate the Absolute difference value between tow

pixels and accumulate present value with previous value.

R : Registers allows the data synchronization

A: Accumulator.

M: Comparator.

1) AB1 Architecture

Fig. 3 represents AB1 architecture. It’s composed by N

“AD”, (2xN +1) registers, one accumulator and one

comparator. For calculate different SAD's (N=16 and p=8),

we use 16 ADs, 33 registers, one accumulator and one

comparator. Each AD has one input for MB and an others

input for search window. To calculate (2p+1)
2

SAD's we use

9250 clock cycles. The detail of intermediate operation of this

architecture is described in [11].

Fig. 3 AB1 Architecture

2) AB2 Architecture

Fig. 4 represent AB2 architecture. It’s composed by NxN

“AD”, (NxN+(N-1)xN+2N+1) registers, N accumulators and

one comparator.

Fig. 4 AB2 Architecture

For N=16 and p=8, we use 256 ADs, 529 registers, 16

accumulator and one comparator for calculate (2p+1)
2

SAD's.

Each AD have one input for search window. The interesting

point in this architecture is the storage of MB pixels in Each

AD. With this idea, for calculate all SAD's and the motion

vector, we use 579 clock cycles. The detail of intermediate

operation of this architecture is described in [11].

3) AS1 Architecture

Fig. 5 AS1 Architecture

Fig. 5 represents AS1 architecture. It’s composed by

“AD” (is equal to number of displacement in search

window), (3x (-1) + 3x +1) registers, () accumulators

and (+1) comparator. For N=16 and p=8, we use 17 ADs,

100 registers, 17 accumulators and 18 comparators. For all

ADs, we have on input for MB and other input for search

window. The detail of intermediate operation of this

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:2, No:10, 2008

2237

architecture is described in [11]. For calculate all SAD's and

the motion vector, we use 8722 clock cycles.

4) Architecture AS2

Fig. 6 represents AS2 architecture. It’s composed by Nx

“AD”, (3x()xN-1 + Nx(-1)+ 3x + 1+c) registers,

accumulators and +1 comparators. (c = -(-1)+ -(-2)

+ …. +(-2)).

Fig. 6 AS2 Architecture

For this architecture we use 272 Ads, 685 registers, 17

accumulators and 18 comparators (N=16 and p=8). Each AD

has one input for MB and an others input for search window.

To calculate (2p+1)
2

SAD's we use 577 clock cycles. The

detail of intermediate operation of this architecture is

described in [11].

B. K. M. Yang and al. Architecture

This architecture is composed by N PEs, (N-1) flip-flop, N

multiplexers (MUX) and one comparator for compute the

minimum SAD and the motion vector. All this components is

presents in fig. 7.

Fig. 7 K.M. Yang and al Architecture

For N=16 and P=8, we use 16 PEs, 15 DFF and 16 MUX.

The intermediate operation of each PE and synchronization of

data are presented in [12]. For calculate all SAD's and the

motion vector, we use 4370 clock cycles.

C. H. Hsieh and al. Architecture

This architecture is composed by (NxN) processor element

(PE), (NxP) Shift register (SR), Parallel Adder and

comparator. Fig. 8 presents the connection between these

elements.

 For N=16 and P=8, we use 256 PEs, 128 SRs, one Parallel

Adder and one comparator. We use 1028 clock cycles for

calculate (2p+1)
2

SAD's and the motion vector. You can find

all detail of this architecture in [13].

Fig. 8 C.H. Hsieh and al. Architecture

D. H. Yeo and al. Architecture

 This architecture is present in fig. 9. It is composed by NxN

PEs, 2 MUX, one input for MB and tow input for search

window. In [14], you can find the intermediate operation of

this architecture. For N=16 and P=8, we use 256 PEs and 2

MUX. The motion vector is outputted after 547clock cycles.

Fig. 9 H. Yeo and al Architecture

 F. M. Yang and al. Architecture

Fig. 10 F.M. Yang and al Architecture

In this architecture, you can find NxN PEs, N MUX, input

for MB and tow input for search window, (N+1) comparator

for obtained the motion vector. Therefore, for synchronization

of data, we use N registers for MB and (2xN) registers for

search window. Fig. 10 present the schematic of this

architecture. In this architecture “C” is input for MB and

(P,P’) is input for search window.All detail for this

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:2, No:10, 2008

2238

architecture is presented in [15]. For N=16 and P=8, we use

256 PEs, 16 MUX and 48 registers. For calculate all SAD's

and the motion vector, we use 534 clock cycles.

E. Y. S. Jehng and al. Architecture

Fig. 11 present the diagram of this architecture for N=4. It's

composed by NxN “D” for computing the absolute value,

(NxN -1) accumulator and one comparator. In addition, we

find NxN input for MB and NxN input for search window. In

[16], you can find the intermediate operation of this

architecture.

For calculate all SAD’s and the motion vector for N=16 and

P=8, we use 256 “D”, 255 accumulator and one comparator.

The motion vector is outputted after 290 clock cycles.

Fig. 11 Y.S. Jehng and al Architecture for N=4

III. PROPOSED ACHITECTURE

A. Proposed structure

In order to realize FSBM algorithm, various architectures

have been proposed. By examining these architectures, we

conclude that processing elements (PEs), address generator

and data memories are indispensable and necessary

components for FSBM algorithm implementation. In fact, PE

accomplishes the computation of block distortion measure

(SAD). Address generator generates the address to memories

and transfer data from each memory block to the

corresponding processing elements. Consequently, the

proposed FSBM architecture is illustrated in Fig. 12. Our

proposed architecture is composed of multiplexed registers,

memories, Flip-flops, absolute difference components,

accumulators, and a comparator for selecting the minimum

SAD provided by each PE. Controller module contains the

address generator engine that produces the memory addresses

and transfers data from each memory block to the

corresponding PEs.

Fig. 12 The proposed architecture

B. Data memories control

For this architecture, we need a combination of 12 single-

port memories that enables the reading of 12 pixels for every

clock cycle (8 memories for the search area and 4 memories

for the current MB). Each memory is generated by LPM

mega-functions library in order to take advantage of the

“StratixII” embedded RAM blocks. We must read pixels from

input frames by using VHDL description with various

“TEXTIO” instructions (camera entity) and store them in 12

memories. Then, the data coming from camera entity must be

organized on these memories as shown in Table 1 and Table

2.

Table 1 shows that we have stored search area pixels in 8

separate memories in order to address 8 pixels at each clock

cycle. These memories are presented by the search area

memory block in the proposed architecture.

Table 2 shows that we have stored pixels of current MB in

4 memories in order to address 4 data’s at each clock cycle.

These memories take parts of the current MB memory block

in the proposed architecture.

After memorizing search area and current MB, we will

compute 289 SADs. That’s why we must respect the

memories read order presented in Table 3.

To test and simulate memory blocks, we use a test bench

file allowing the mapping of each memory component with

another component called “camera”, which allows the reading

of the pixels values from PGM frame files. For the search

area, we use 8 memories of 128 bytes each. In fact, the search

area has 32x32 pixels size and 25x25=210=1024 addresses.

Each address consist of 8 bits data, thus we obtain 1024 bytes.

For the current MB, we use 4 memories of 64 bytes each.

Indeed, the size of a current MB is 16x16 pixels requiring

24x24 =28=256 addresses. Each address consists of 8 bits

data, thus we obtain 256 bytes. Memories are synchronous

and they can be used in writing or reading mode. In writing

mode, the memories receive frame files data and store each

one in the specified address.

C. Multiplexers block diagram

Multiplexers are used to select the data search area, and to

allow horizontal movement for the execution of 17 SADs in

parallel. Fig. 13 depicts the multiplexer’s block.

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:2, No:10, 2008

2239

Fig. 13 Block of the multiplexers

F1 to F8 represent the pixels generated by the various

memories of the search area and will be organized 2 by 2.

This block consists of 16 multiplexers as shown in fig. 13. S1

to S16 represent the outputs of multiplexers, and correspond

to the 16 horizontal movements (in the first horizontal

movement we don’t use any multiplexer). The Flip-Flop block

allows during the processing of 289 SADs to read the

different memories only one time and pass various data to

each PE in order to compute the corresponding SAD.

D. SAD calculation

Processing elements block represented in fig. 12 is

composed by 1156 inputs for the search area data (X) and

1156 inputs for the current MB data (Y). This block allows

the computation of 289 SADs in a mixed mode: parallel and

pipeline. It is possible to combine 4 processors elements (PE)

in one engine in order to compute SAD 16x16 as shown on

fig. 14.

Fig. 14 Proposed SAD 16x16 diagram

Each PEi allows the computation of a SAD 16x4. The

parallel adder performs the sum of 4 SADs 16x4 values for a

given SAD 16x16. That’s why we dispose of 1156 inputs

(4*289) for both search area and current MB. Since we use 4

PEs to compute 289 SADs. Fig. 15 represents the internal

structure of each PE. Our proposed algorithm allows the

computation of 16x16 SAD in 64 cycles instead of 256 cycles

for the existing architectures. Table 4 represents the necessary

method for computing 289 SADs in mixed mode: parallel and

pipeline.

Fig. 15 Processor Element

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS

In the previous section, we present an overview of all

architecture. These architectures are described with VHDL

language. Result of synthesis on the “STRATIXII family –

EP2S130F1020C4” component is presented in the following

table:

TABLE V

RESULT OF SYNTHESIS

Resources Avail Used Utilization

Input/output 743 76 10%

Logic ports 106032 70004 66%

Memory Bits 6747840 10240 <1%

The maximum clock frequency is 89 MHz. The

experimental results show that just 140 cycles is necessary to

compute the final motion vector. With this result, we can

execute 160M pixels/sec which is suited to process HTDV

(1920x1088@60Hz) video sequences. The table 6 and 7

resumes the functional parameter and synthesis results for all

presented architectures respectively. Form these tables, our

pipelined FPGA architecture takes the minimum execution

time for compute the motion vector.

V. CONCLUSION

In this paper, we have proposed the motion estimation

architecture. Our pipelined architecture benefits from several

PE engines executing in parallel and pipeline mode. This will

solve the real time constraint and enable a better efficiency in

HTDV video coding. It has been proved through our study

that FPGA is an ultimate solution for the design of a motion

estimation algorithm based on FSBM conception through the

hardware description language (VHDL).

ACKNOWLEDGMENT

We would like to thank the reviewers and the editor for

their valuable and fruitful comments and suggestions which

contributed to greatly improve the quality of the original

version of this paper.

REFERENCES

[1] G. Robert, “Représentation et codage de séquences vidéo par

hybridation de fractales et d’éléments finis,” Thèse / PhD, INPG

Grenoble, 07 December 2000.

[2] S. Roux, “Adéquation algorithme – architecture pour le traitement

multimédia embarqué,” Thèse / PhD, 22 January 2002, TIMA, Institut

National Polytechnique de Grenoble - INPG.

[3] S. Wong, B. Stougie, S. Cotofana, “An Investigation on FPGA based

SAD Hardware Implementations,” in Proceedings of the 13th Annual

Workshop on Circuits, Systems and Signal Processing (ProRISC2002),

pp. 568-573, Veldhoven, The Netherlands, November 2002.

[4] Ja-Ling Wu, “Motion Estimation for Video Coding Standards,”

Department of Computer Science and Information Engineering, National

Taiwan University.

[5] A. Ben Atitallah, P. Kadionik, N. Masmoudi, H. Levi “HW/SW FPGA

Architecture for a Flexible Motion Estimation,” IEEE ICECS '07,

Marrakech, Morocco, 11-14, December 2007.

[6] J. Zhang, Y. He, S. Yang, and Y. Zhong, “Performance and Complexity

Joint Optimization for H.264 Video Coding,” Proceedings of the 2003

International Symposium on Circuits and Systems, Vol. 2. (2003) 888–

891.

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:2, No:10, 2008

2240

[7] C. Zhu, X. Lin, and L. P. Chau, “ Hexagon-Based Search Pattern for

Fast Block Motion Estimation ,” IEEE Trans. On Circuits And Systs.

For Video Technology, vol. 12, pp. 349-355, May 2002.

[8] J. Y. Tham, S. Ranganath, M. Ranganath, and A. A. Kassim, “A novel

unrestricted center-biased diamond search algorithm for block motion

estimation ,” IEEE Trans. Circuits Syst. Video Technol., vol. 8, pp. 369–

377, Aug. 1998.

[9] L. K. Liu and E. Feig, “A block-based gradient descent search algorithm

for block motion estimation in video coding,” IEEE Trans. Circuits Syst.

Video Technol., vol. 6, no. 4, pp. 419–423, Aug. 1996.

[10] A. Ben Atitallah, P. Kadionik, F. Ghozzi, P. Nouel, N. Masmoudi, Ph.

Marchegay, “Optimization and implementation on FPGA of the

DCT/IDCT algorithm ,” IEEE ICASSP '06, Toulouse, France, 14-19 Mai

2006.

[11] T. Komarek, P. Pirsch, “Array architectures for block matching

algorithms,” IEEE Transactions on Circuits and Systems, Vol. 36, No.

10, October 1989.

[12] K. M. Yang, M. T. Sun, L. Wu, “A family of vlsi designs for the motion

compensation block-matching algorithm,” IEEE Transactions on

Circuits and Systems, Vol. 36, No. 10, October 1989.

[13] C. H. Hsieh et al., “Vlsi architecture for block-matching motion

estimation algorithm,” IEEE Transactions on Circuits and Systems for

video technology, Vol. 2, No. 2, June 1992

[14] F. M. Yang, S. Wolter, R. Laur., “Parallel implementation of a block-

matching algorithm for hdtv motion estimation,” Workshop on Design

Methodologies for Microelectronicx and Signal Processing, pp. 73-80.

October 1993.

[15] Y. S. Jehng, L. G. Chen, T. D. Chiueh, “An efficient and simple vlsi tree

architecture for motion estimation Algorithms,” IEEE Transactions on

signal processing, Vol. 41, No. 2, October 1993.

[16] H. Yeo et al., “A novel modular systolic array architecture for full-search

block matching motion estimation,” IEEE Transactions on Circuits and

Systems for video technology, Vol. No. 5, October 1995.

TABLE I

 DATA MEMORIES STRUCTURE FOR SEARCH AREA

Memory F1 Memory F2 Memory F3 Memory F4 Memory F5 Memory F6 Memory F7 Memory F8

F(0,0) F(1,0) F(2,0) F(3,0) F(16,0) F(17,0) F(18,0) F(19,0)

F(4,0) F(5,0) F(6,0) F(7,0) F(20,0) F(21,0) F(22,0) F(23,0)

F(8,0) F(9,0) F(10,0) F(11,0) F(24,0) F(25,0) F(26,0) F(27,0)

F(12,0) F(13,0) F(14,0) F(15,0) F(28,0) F(29,0) F(30,0) F(31,0)

F(0,1) F(1,1) F(2,1) F(3,1) F(16,1) F(17,1) F(18,1) F(19,1)

…. …. …. …. …. …. …. ….

F(0,2) F(1,2) F(2,2) F(3,2) F(16,2) F(17,2) F(18,2) F(19,2)

…. …. …. …. …. …. …. ….

…. …. …. …. …. …. …. ….

F(12,15) F(13,15) F(14,15) F(15,15) F(28,15) F(29,15) F(30,15) F(31,15)

F(0,16) F(1,16) F(2,16) F(3,16) F(16,16) F(17,16) F(18,16) F(19,16)

…. …. …. …. …. …. …. ….

F(12,31) F(13,31) F(14,31) F(15,31) F(28,31) F(29,31) F(30,31) F(31,31)

TABLE II

 DATA MEMORIES STRUCTURE FOR CURRENT MB

Memory R1 Memory R2 Memory R3 Memory R4

R(0,0) R(1,0) R(2,0) R(3,0)

R(4,0) R(5,0) R(6,0) R(7,0)

R(8,0) R(9,0) R(10,0) R(11,0)

R(12,0) R(13,0) R(14,0) R(15,0)

R(0,1) R(1,1) R(2,1) R(3,1)

……. …… ……. …..

R(0,2) R(1,2) R(2,2) R(3,2)

….. ….. …… ….

….. …. ….. …..

R(12,14) R(13,14) R(14,14) R(15,14)

R(0,15) R(1,15) R(2,15) R(3,15)

….. ….. ….. …..

R(12,15) R(13,15) R(14,15) R(15,15)

TABLE III

MEMORIES ADDRESS GENERATOR

T Current MB memory Search area memory

1+(4*0) R(0,0) R(1,0) R(2,0) R(3,0) F(0,0) F(1,0) F(2,0) F(3,0)

2+(4*0) R(4,0) R(5,0) R(6,0) R(7,0) F(4,0) F(5,0) F(6,0) F(7,0)

3+(4*0) R(8,0) R(9,0) R(10,0) R(11,0) F(8,0) F(9,0) F(10,0) F(11,0)

4+(4*0) R(12,0) R(13,0) R(14,0) R(15,0) F(12,0) F(13,0) F(14,0) F(15,0)

1+(4*1) R(0,1) R(1,1) R(2,1) R(3,1) F(0,1) F(1,1) F(2,1) F(3,1) F(16,0) F(17,0) F(18,0) F(19,0)

2+(4*1) R(4,1) R(5,1) R(6,1) R(7,1) F(4,1) F(5,1) F(6,1) F(7,1) F(20,0) F(21,0) F(22,0) F(23,0)

…. …. …. …. …. …. …. …. …. …. …. …. ….

1+(4*2) R(0,2) R(1,2) R(2,2) R(3,2) F(0,2) F(1,2) F(2,2) F(3,2) F(16,1) F(17,1) F(18,1) F(19,1)

2+(4*2) R(4,1) R(5,1) R(6,1) R(7,1) F(4,1) F(5,1) F(6,1) F(7,1) F(20,1) F(21,1) F(22,1) F(23,1)

…. …. …. …. …. …. …. …. …. …. …. …. ….

…. …. …. …. …. …. …. …. …. …. …. …. ….

1+(4*15

)

R(0,15) R(1,15) R(2,15) R(3,15) F(0,15) F(1,15) F(2,15) F(3,15) F(16,14

)

F(17,14

)

F(18,14

)

F(19,14)

2+(4*15

)

R(4,15) R(5,15) R(6,15) R(7,15) F(4,15) F(5,15) F(6,15) F(7,15) F(20,14

)

F(21,14

)

F(22,14

)

F(23,14)

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:2, No:10, 2008

2241

3+(4*15

)

R(8,15) R(9,15) R(10,15

)

R11,15) F(8,15) F(9,15) F(10,15

)

F(11,15

)

F(24,15

)

F(25,15

)

F(26,15

)

F(27,15)

4+(4*15

)

R12,15

)

R(13,15

)

R(14,15

)

R(15,15

)

F(12,15

)

F(13,15

)

F(14,15

)

F(15,15

)

F(28,15

)

F(29,15

)

F(30,15

)

F(31,15)

1+(4*16

)

F(0,16) F(1,16) F(2,16) F(3,16) F(16,15

)

F(17,15

)

F(18,15

)

F(19,15)

…. …. …. …. …. …. …. …. ….

4+(4*30

)

F(12,30

)

F(13,30

)

F(14,30

)

F(15,30

)

F(28,29

)

F(29,29

)

F(30,29

)

F(31,29)

1+(4*31

)

F(0,31) F(1,31) F(2,31) F(3,31) F(16,30

)

F(17,30

)

F(18,30

)

F(19,30)

…. …. …. …. ….

1+(4*32

)

F(16,31

)

F(17,31

)

F(18,30

)

F(19,31)

2+(4*32

)

F(20,31

)

F(21,31

)

F(22,31

)

F(23,31)

3+(4*32

)

F(24,31

)

F(25,31

)

F(26,31

)

F(27,31)

4+(4*32

)

F(28,31

)

F(29,31

)

F(30,31

)

F(31,31)

TABLE IV

ARCHITECTURE OPERATION

Clock

cycle
SAD0 SAD1 SAD2 SAD3 SAD4 SAD287 SAD288

1+(4*0)

R(0,0)-F(0,0)

R(1,0)-F(1,0)

R(2,0)-F(2,0)

R(3,0)-F(3,0)

2+(4*0)

R(4,0)-F(4,0)

R(5,0)-F(5,0)

R(6,0)-F(6,0)

R(7,0)-F(7,0)

R(0,0)-F(1,0)

R(1,0)-F(2,0)

R(2,0)-F(3,0)

R(3,0)-F(4,0)

R(0,0)-F(2,0)

R(1,0)-F(3,0)

R(2,0)-F(4,0)

R(3,0)-F(5,0)

R(0,0)-F(3,0)

R(1,0)-F(4,0)

R(2,0)-F(5,0)

R(3,0)-F(6,0)

R(0,0)-F(4,0)

R(1,0)-F(5,0)

R(2,0)-F(6,0)

R(3,0)-F(7,0)

3+(4*0)

R(8,0)-F(8,0)

R(9,0)-F(9,0)

R(10,0)-F(10,0)

R(11,0)-F(11,0)

R(4,0)-F(5,0)

R(5,0)-F(6,0)

R(6,0)-F(7,0)

R(7,0)-F(8,0)

R(4,0)-F(6,0)

R(5,0)-F(7,0)

R(6,0)-F(8,0)

R(7,0)-F(9,0)

R(4,0)-F(7,0)

R(5,0)-F(8,0)

R(6,0)-F(9,0)

R(7,0)-F(10,0)

R(4,0)-F(8,0)

R(5,0)-F(9,0)

R(6,0)-F(10,0)

R(7,0)-F(11,0)

4+(4*0)

R(12,0)-F(12,0)

R(13,0)-F(13,0)

R(14,0)-F(14,0)

R(15,0)-F(15,0)

R(8,0)-F(9,0)

R(9,0)-F(10,0)

R(10,0)-F(11,0)

R(11,0)-F(12,0)

R(8,0)-F(10,0)

R(9,0)-F(11,0)

R(10,0)-F(12,0)

R(11,0)-F(13,0)

R(8,0)-F(11,0)

R(9,0)-F(12,0)

R(10,0)-F(13,0)

R(11,0)-F(14,0)

R(8,0)-F(12,0)

R(9,0)-F(13,0)

R(10,0)-F(14,0)

R(11,0)-F(15,0)

1+(4*1)

R(0,1)-F(0,1)

R(1,1)-F(1,1)

R(2,1)-F(2,1)

R(3,1)-F(3,1)

R(12,0)-F(13,0)

R(13,0)-F(14,0)

R(14,0)-F(15,0)

R(15,0)-F(16,0)

R(12,0)-F(14,0)

R(13,0)-F(15,0)

R(14,0)-F(16,0)

R(15,0)-F(17,0)

R(12,0)-F(15,0)

R(13,0)-F(16,0)

R(14,0)-F(17,0)

R(15,0)-F(18,0)

R(12,0)-F(16,0)

R(13,0)-F(17,0)

R(14,0)-F(18,0)

R(15,0)-F(19,0)

2+(4*1)

R(4,1)-F(4,1)

R(5,1)-F(5,1)

R(6,1)-F(6,1)

R(7,1)-F(7,1)

R(0,1)-F(1,1)

R(1,1)-F(2,1)

R(2,1)-F(3,1)

R(3,1)-F(4,1)

R(0,1)-F(2,1)

R(1,1)-F(3,1)

R(2,1)-F(4,1)

R(3,1)-F(5,1)

R(0,1)-F(3,1)

R(1,1)-F(4,1)

R(2,1)-F(5,1)

R(3,1)-F(6,1)

R(0,1)-F(4,1)

R(1,1)-F(5,1)

R(2,1)-F(6,1)

R(3,1)-F(7,1)

1+(4*2)

R(0,2)-F(0,2)

R(1,2)-F(1,2)

R(2,2)-F(2,2)

R(3,2)-F(3,2)

R(12,1)-F(13,1)

R(13,1)-F(14,1)

R(14,1)-F(15,1)

R(15,1)-F(16,1)

R(12,1)-F(14,1)

R(13,1)-F(15,1)

R(14,1)-F(16,1)

R(15,1)-F(17,1)

R(12,1)-F(15,1)

R(13,1)-F(16,1)

R(14,1)-F(17,1)

R(15,1)-F(18,1)

R(12,1)-F(16,1)

R(13,1)-F(17,1)

R(14,1)-F(18,1)

R(15,1)-F(19,1)

2+(4*2)

R(4,2)-F(4,2)

R(5,2)-F(5,2)

R(6,2)-F(6,2)

R(7,2)-F(7,2)

R(0,2)-F(1,2)

R(1,2)-F(2,2)

R(2,2)-F(3,2)

R(3,2)-F(4,2)

R(0,2)-F(2,2)

R(1,2)-F(3,2)

R(2,2)-F(4,2)

R(3,2)-F(5,2)

R(0,2)-F(3,2)

R(1,2)-F(4,2)

R(2,2)-F(5,2)

R(3,2)-F(6,2)

R(0,2)-F(4,2)

R(1,2)-F(5,2)

R(2,2)-F(6,2)

R(3,2)-F(7,2)

4+(4*15)

R(12,15)-

F(12,15)

R(13,15)-

F(13,15)

R(14,15)-

F(14,15)

R(15,15)-

F(15,15)

R(8,15)-F(9,15)

R(9,15)-F(10,15)

R(10,15)-

F(11,15)

R(11,15)-

F(12,15)

R(8,15)-F(10,15)

R(9,15)-F(11,15)

R(10,15)-

F(12,15)

R(12,15)-

F(13,15)

R(8,15)-F(11,15)

R(9,15)-F(12,15)

R(10,15)-

F(13,15)

R(11,15)-

F(14,15)

R(8,15)-F(12,15)

R(9,15)-F(13,15)

R(10,15)-

F(14,15)

R(11,15)-

F(15,15)

1+(4*16)

R(12,15)-

F(13,15)

R(13,15)-

F(14,15)

R(14,15)-

F(15,15)

R(15,15)-

F(16,15)

R(12,15)-

F(14,15)

R(13,15)-

F(15,15)

R(14,15)-

F(16,15)

R(15,15)-

F(17,15)

R(12,15)-

F(15,15)

R(13,15)-

F(16,15)

R(14,15)-

F(17,15)

R(15,15)-

F(18,15)

R(12,15)-

F(16,15)

R(13,15)-

F(17,15)

R(14,15)-

F(18,15)

R(15,15)-

F(19,15)

1+(4*19) R(0,0)-F(15,16) R(0,0)-F(16,16)

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:2, No:10, 2008

2242

R(1,0)-F(16,16)

R(2,0)-F(17,16)

R(3,0)-F(18,16)

R(1,0)-F(17,16)

R(2,0)-F(18,16)

R(3,0)-F(19,16)

4+(4*34)

R(12,15)-

F(27,31)

R(13,15)-

F(28,31)

R(14,15)-

F(29,31)

R(15,15)-

F(30,31)

R(12,15)-F(28,31)

R(13,15)-F(29,31)

R(14,15)-F(30,31)

R(15,15)-F(31,31)

4+(4*34)

R(12,15)-

F(27,31)

R(13,15)-

F(28,31)

R(14,15)-

F(29,31)

R(15,15)-

F(30,31)

R(12,15)-F(28,31)

R(13,15)-F(29,31)

R(14,15)-F(30,31)

R(15,15)-F(31,31)

TABLE VI

FUNCTIONAL RESULTS FOR DIFFERENT ARCHITECTURES

N=16 et P=8 AB1 AB2 AS1 AS2 Heish
K. M.

Yang

F. M.

Yang
Jehng Yeo

Proposed

Architecture

Processor element number 16 256 17 272 256 17 289 512 289 289

Architecture topology 1-D 2-D 1-D 2-D 1-D 1-D 2-D 2-D 2-D 2-D

Input port number for search

window
16 16 1 32 1 2 2 256 2 8

Input port number for MB 16 - 1 16 1 1 1 1 1 4

Clock cycles number for

compute the motion vector
9250 579 8722 577 1028 4370 534 290 547 140

TABLE VII

SYNTHESIS RESULTS FOR ALL ARCHITECTURES

N=16 et

P=8
AB1 AB2 AS1 AS2 Heish

K. M.

Yang

F. M.

Yang
Jehng Yeo

Proposed

Architecture

Logic

element

number

5153 17179 2068 20548 14010 1654 26799 69917 15866 70004

Pins

number
62 62 62 62 62 62 52 62 62 76

Memory

bits

number

10240 10240 10240 10240 - 10240 - - - 10240

Maximum

frequency

(Mhz)

142.51 115.97 111.17 160.62 128.09 134.86 96.64 50.97 70.01 89

Latency

time
2.6 0.922 2.173 2.593 2.41 0.973 8.844 10.278 8.717 7

Execution

time (ns) 64909.85 4993.639 78456.563 3594.995 8028.006 32404.523 5534.676 5705.878 7399.781 1579.432

Hassen Loukil received electrical engineering degree from the National

School of Engineering-Sfax (ENIS) in 2004. His received his MS degree in

electronic engineering from the National School of Engineering-Sfax (ENIS)

in 2005. He is currently researcher in the Laboratory of Electronics and

Information Technology and an assistant at the University of Sfax, Tunisia.

His research interests include signal and image processing, hardware

implementation using FPGA, embedded systems technology.

Nouri Masmoudi received electrical engineering degree from the Faculty of

Sciences and Techniques-Sfax, Tunisia, in 1982, the DEA degree from the

National Institute of Applied Sciences-Lyon and University Claude Bernard-

Lyon, France in 1982. From 1986 to 1990, he prepared his thesis at the

laboratory of Power Electronics (LEP) at the National school Engineering of

Sfax (ENIS). He received his PhD degree at the National school Engineering

of Tunis (ENIT), Tunisia in 1990. From 1990 to 2000, he was an assistant

professor at the electrical engineering department-ENIS. Since 2000, he has

been an associate professor and head of the group ‘Circuits and Systems’ in

the Laboratory of Electronics and Information Technology. Since 2003, He is

responsible for the Electronic Master Program at ENIS. His research activities

have been devoted to several topics: design, telecommunication, embedded

systems and information technology, Video Coding (Motion Estimation,

Mode Decision, Image Interpolation, and Denoising.

