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A Performance Comparison of Golay and
Reed-Muller Coded OFDM Signal for

Peak-to-Average Power Ratio Reduction
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Abstract—Multicarrier transmission system such as Orthogonal
Frequency Division Multiplexing (OFDM) is a promising technique
for high bit rate transmission in wireless communication systems.
OFDM is a spectrally efficient modulation technique that can achieve
high speed data transmission over multipath fading channels without
the need for powerful equalization techniques. A major drawback
of OFDM is the high Peak-to-Average Power Ratio (PAPR) of the
transmit signal which can significantly impact the performance of the
power amplifier. In this paper we have compared the PAPR reduction
performance of Golay and Reed-Muller coded OFDM signal. From
our simulation it has been found that the PAPR reduction performance
of Golay coded OFDM is better than the Reed-Muller coded OFDM
signal. Moreover, for the optimum PAPR reduction performance, code
configuration for Golay and Reed-Muller codes has been identified.

Keywords—OFDM, PAPR, Perfect Codes, Golay Codes, Reed-
Muller Codes

I. INTRODUCTION

Wireless digital communication is rapidly expanding, re-
sulting in a demand for portable wireless systems that are
reliable and have high spectral efficiency. Orthogonal Fre-
quency Division Multiplexing (OFDM) has been considered
to achieve high data rate transmission in mobile environment.
OFDM is a method of transmitting data simultaneously over
multiple, equally spaced carrier frequencies using Fourier
transform processing for modulation and demodulation [1].
Due to its robustness against the frequency-selective fading,
which causes inter symbol interference (ISI) and degrades the
performance [2], OFDM has been adopted in some wireless
standards such as Digital Audio Broadcasting (DAB), Terres-
trial Digital Video Broadcasting (DVB-T), HIPER LAN/2 and
IEEE 802.11 standard for WLAN [3] [4]. Moreover, OFDM
has been considered for fourth generation (4G) transmission
techniques [5].

Due to large number of subcarriers, OFDM systems have a
large dynamic signal range with a very high Peak-to-Average
Power Ratio (PAPR). As a result of which, the OFDM signal
will be clipped when passed through a nonlinear power am-
plifier at the transmitter end. Clipping degrades the Bit-Error-
Rate (BER) performance and causes spectral spreading [6].

Sanjay Singh is with the Department of Information and Communica-
tion Technology, Manipal Institute of Technology, Manipal, India, 576104,
(e-mail: sanjay.singh@ieee.org)

M.Sathish Kumar is with the School of Electrical Engineering, Seoul
National University, Seoul, Korea,151-742, as BK21 Research Professor,
(e-mail: mskuin@yahoo.com)

H.S Mruthyunjaya is with the Department of Electronics and Communica-
tion Engineering, Manipal Institute of Technology, Manipal, India, 576104,
(e-mail: mruthyu.hs@manipal.edu)

One way to solve this problem is to force the amplifier to work
in its linear region. But such a solution is not power efficient.
Power efficiency is necessary in wireless communication as
it provides adequate area coverage, saves power consumption
and allow small-size terminals. It is, therefore, important to
aim at power efficient operation of the power amplifier with
low back-off values and try to prevent the occurrence of signal
clipping. This can be achieved by manipulating the OFDM
signal before transmission.

To achieve the above objective, several proposals have been
suggested and studied in the literature. The clipping [7] is the
most simple technique used to reduce PAPR. However, clip-
ping causes in-band and out-of-band distortion which degrades
the performance of the system. Multiple signal representation
techniques are distortion less techniques for PAPR reduction.
One of the most widely used multiple signal representation
technique is selective mapping (SLM) [8]. Coding [9] [10] is
another distortion less technique which not only reduces the
PAPR but also corrects errors.

In this paper we have investigated the performance of Golay
and Reed-Muller codes for the reduction of PAPR of an
OFDM signal. The rest of the paper is organized as follows.
Section II describes the basic OFDM system and defines
PAPR. Section III computes the PAPR of a BPSK modulated
OFDM signal. Section IV describes about the Golay code.
Section V describe Reed-Muller code. Section VI discusses
the simulation results. Finally section VII concludes the paper.

II. OFDM AND PAPR

For our analysis emphasis is on examining the PAPR of
an OFDM signal. Therefore, the OFDM system model used
in this paper is a simplified version of the practical OFDM
model as shown in Fig.1. Specifically, we have ignored the
guard interval because it does not contribute to the PAPR [11].
Assuming that any pulse shaping in the transmitter is flat over
all of the subcarriers, and deal only with the PAPR of the
baseband signal. For one OFDM symbol with N subcarriers,
the normalized complex baseband signal can be written as:

s(t) =
1√
N

N−1∑
k=0

cke
j2πkt

T 0 ≤ t ≤ T (1)

where ck is the frequency domain information symbol mapped
to the kth subcarrier of the OFDM symbol and T is the OFDM
symbol duration. The peak-to-average power ratio (PAPR) of
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the given frequency domain samples,
c = {c0, c1, c2, · · · , cN−1} is defined as:

PAPR �
max

0 ≤ t ≤ T
|s(t)|2

E[|s(t)|2] (2)

where E[.] denotes a time averaging operator. The distribution
of PAPR values is described using the complementary cumu-
lative distribution function (CCDF). The CCDF of the PAPR
represents the probability that the PAPR of a data block exceed
a given threshold, ξ and is given [16] by

Pr(PAPR > ξ) = 1 − (1 − e−ξ)N . (3)

Fig. 1. OFDM System Transmitter and Receiver

III. PAPR ANALYSIS OF BPSK MODULATED OFDM

For the sake of simplicity we have considered BPSK mod-
ulation. PAPR analysis of BPSK modulated OFDM signal is
done to understand the reason behind high PAPR. For BPSK
modulated OFDM signal, ck ∈ {−1,+1}. Using the technique
as described in [12] and assuming T = 1.0 equation (1) can
be written as:

√
Ns(t) =

N−1∑
k=0

cke
j2πkt

N |s(t)|2 =
( N−1∑

k=0

cke
j2πkt

)2

=
(
�[ N−1∑

k=0

cke
j2πkt

])2

+
(
�[ N−1∑

k=0

cke
j2πkt

])2

=
( N−1∑

k=0

ck cos(2πkt)
)2

+
( N−1∑

k=0

ck sin(2πkt)
)2

=
N−1∑
k=0

c2k cos2(2πkt) +

+ 2
N−2∑
k=0

N−1∑
i=k+1

ckci cos(2πkt) cos(2πit) +

+
N−1∑
K=0

c2k sin2(2πkt) +

+ 2
N−2∑
k=0

N−1∑
i=k+1

ckci sin(2πkt) sin(2πit)

= N + 2
N−2∑
k=0

N−1∑
i=k+1

ckci cos(2π(i− k)t)

= N + 2P0(t) (4)

where �[x] and �[x] are the real and imaginary parts of x
respectively and the AC component of the power envelope of
the OFDM signal Po(t) is defined as:

P0(t) =
N−2∑
k=0

N−1∑
i=k+1

ckci cos(2π(i− k)t). (5)

The double summation in (5) can be replaced with a single
summation by combining each term to its harmonic and P0(t)
becomes:

P0(t) =
N−1∑
k=1

Ck cos(2πkt) (6)

which can be physically interpreted as the sum of cosine
harmonics weighted by the aperiodic autocorrelation Ck of
the frequency domain information bits, where the aperiodic
autocorrelation Ck is defined as:

Ck =
N−k−1∑

i=0

cici+k. (7)

Substituting for P0(t) from (6) in (4), the average power of
s(t) becomes:

E[|s(t)|2] = E
[
1 +

2P0(t)
N

]
= 1 +

1
N
E[2P0(t)]

= 1. (8)

As the average power of s(t) is unity, the PAPR in (2), when
considering its symmetry with respect to the half symbol time
becomes:

PAPR =
max

0 ≤ t ≤ 0.5
(
1 +

2
N
P0(t)

)
(9)

where P0(t) is given by (6). From (6), (7) and (9), it is found
that the PAPR is completely characterized by the aperiodic
autocorrelations Ck. Without any loss of generality we can
extend this analysis to other efficient modulation techniques
such as QPSK/QAM.

Example 1. For the N = 4 the aperiodic autocorrelation Ck

are given by:

C1 = c0c1 + c1c2 + c2c3

C2 = c0c2 + c1c3

C3 = c0c3.

Table.1 presents the values of Ck and the PAPR values for
the BPSK modulated OFDM signal for N = 4. From table
it is observed that there are six different sets of aperiodic
autocorrelation Ck and three different PAPR values, namely
1.77, 2.37 and 4.00. The message symbols can be grouped
according to their PAPR values.

Table.1 has motivated us to apply techniques to OFDM
signal which could reduce the aperiodic correlation among the



International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:3, No:4, 2009

1057

TABLE I
PAPR OF BPSK MODULATED OFDM SIGNAL

(Code)2 (Code)10 d1 d2 d3 PAPR
0000 0 3.0 2.0 1.0 4.00
0001 1 1.0 0.0 -1.0 1.77
0010 2 -1.0 0.0 1.0 1.77
0011 3 1.0 -2.0 -1.0 2.37
0100 4 -1.0 0.0 1.0 1.77
0101 5 -3.0 2.0 -1.0 4.00
0110 6 -1.0 -2.0 1.0 2.37
0111 7 1.0 0.0 -1.0 1.77
1000 8 1.0 0.0 -1.0 1.77
1001 9 -1.0 -2.0 1.0 2.37
1010 10 -3.0 2.0 -1.0 4.00
1011 11 -1.0 0.0 1.0 1.77
1100 12 1.0 -2.0 -1.0 2.37
1101 13 -1.0 0.0 1.0 1.77
1110 14 1.0 0.0 -1.0 1.77
1111 15 3.0 2.0 1.0 4.00

subcarriers so that PAPR is reduced. There are various method
to do this such as scrambling [15], here we have focused
only on the error control coding techniques such as Golay
and Reed-Muller codes. By employing error control coding
techniques it gives dual advantage of error control as well
as PAPR reduction. Next two sections deals with Golay and
Reed-Muller codes.

IV. GOLAY CODES

The binary form of the Golay code is one of the most
important types of linear binary block codes. It is of particular
significance since it is one of only a few examples of a
nontrivial perfect code [13] [17]. A t-error-correcting code can
correct a maximum of t errors. A perfect t-error correcting
code has the property that every word lies within a distance
of t to exactly one code word. Equivalently, the code has
dmin = 2t+1, and covering radius t, where the covering radius
r is the smallest number such that every word lies within a
distance of r to a codeword.

Theorem 1. If there is an (n, k) code with an alphabet of q
elements, and dmin = 2t+ 1, then
qn � qk

∑t
i=0

(
n
i

)
(q − 1)i.

The inequality in Theorem 1 is known as the Hamming
bound. Clearly, a code is perfect precisely when it attains
equality in the Hamming bound. Two Golay codes do attain
equality, making them perfect codes: the (23, 12) binary code
with dmin = 7, and the (11, 6) ternary code with dmin = 5.
Both codes have the largest minimum distance for any known
code with the same values of n and k.
Golay was in search of perfect code when he noticed that(
23
0

)
+

(
23
1

)
+

(
23
2

)
+

(
23
3

)
= 211 = 223−12 which indicated

the existence of a (23, 12) perfect code that could correct any
combination of three or fewer random errors in a block of
23 bits. The (23, 12) Golay code can be generated using a
method similar to CRC by using any of the following generator
polynomial

• P1(X) = X11 +X10 +X6 +X5 +X4 +X2 + 1 and
• P2(X) = X11 +X9 +X7 +X6 +X5 +X + 1

this is due to the fact that X23 + 1 = (X + 1)P1(X)P2(X).
For our analysis, we have constructed Golay codes using
Hadamard matrix, which is explained below.

A. Construction of extended binary Golay code G24

We have used the Hadamard matrix of Paley type of p = 11
and n = p + 1 = 12 for the construction of generator matrix
for the Golay code. Hadamard Paley type is a normalized
Hadamard matrix H of order n = p + 1 and H is of the
form

H =

[
1 1
1 Q− I

]
(10)

where I is a p×p identity matrix and Q is a Jacobsthal matrix.
Jacobsthal matrix Q = (qij) is a p× p matrix whose columns
and rows are labeled as 0, 1, 2, . . . , p− 1 and qij = χ(j − i).
The Legendre symbol χ(i) is defined as:

χ(i) =

⎧⎪⎨
⎪⎩

0 if i is multiple of p
1 if the rem(p | i) is a quadratic residue mod p, and
−1 if the remainder is nonresidue

For p = 11,the Jacobsthal matrix Q is as follows:

Q =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 − 1 1 1 − − − 1 −
− 0 1 − 1 1 1 − − − 1
1 − 0 1 − 1 1 1 − − −
− 1 − 0 1 − 1 1 1 − −
− − − 1 − 0 1 1 1 1 −
− − − 1 − 0 1 − 1 1 1
1 − − − 1 − 0 1 − 1 1
1 1 − − − 1 − 0 1 − 1
1 1 1 − − − 1 − 0 1 −
− 1 1 1 − − − 1 − 0 1
1 − 1 1 1 − − − 1 − 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(11)
Let Ap = Qp − Ip, where I is an identity matrix and Q

Jacobsthal matrix, then Hadamard of Paley type of order n
will be of the following from:

Hp+1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 1 . . . 1
1
1
... Ap

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
. (12)

Without losing the generality, Ap+1 can be obtained similar
to Hp+1. Now defining a code C24 ⊆ V = F 24

2 has n = 24
and dimension k = 12. Thus, its generator matrix G24 has the
form G24 = (I12, A11+1), where I12 is 12×12 identity matrix
and A12 is a Hadamard matrix of order 12 of Paley type.
Binary Golay code C23[23, 12, 7] is obtained by puncturing
any column of C24[24, 12, 8].
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V. REED-MULLER CODES

Reed-Muller codes are among the oldest and well known
codes [14]. Reed-Muller codes have many interesting prop-
erties. They form an infinite family of codes, and larger
Reed-Muller codes can be constructed from smaller ones.
This particular observation lead us to show that Reed-Muller
codes can be defined recursively. Assuming that we are
given a vector space F

2m

2 and considering the ring Rm =
F2[x0, x1, · · · , xm].

Definition 1. A Boolean monomial is an element p ∈ Rm of
the form:
p = xr0

0 x
r1
1 · · ·xrm−1

m−1

where ri ∈ N and i ∈ Zm.

A Boolean polynomial is a linear combination of Boolean
monomials.

Definition 2. Given a Boolean monomial p ∈ Rm, we say
that p is in reduced form if it is square free.

For any Boolean monomial q ∈ Rm, the reduced form q is
found by applying the following:

xixj = xjxi as Rm is a commutative ring
x2

j = xi as 0 ∗ 0 = 0 and 1 ∗ 1 = 1.

A Boolean polynomial in reduced form is simply a linear
combination of reduced-form Boolean monomials (with co-
efficients in F2).

Example 2. Suppose we have a Boolean polynomial
p = x0x

5
1x

100
2 + x15

0 x
2
2 + x1 + 1 ∈ R3 then, by applying the

rules as per definition 1 and 2, we get the reduced form, p′

as:
p′ = x0x1x2 + x0x2 + x1 + 1.

Consider the mapping ψ : Rm → F
2m

2 , defined as follows:

ψ(0) = 00 · · · 0︸ ︷︷ ︸
2m

ψ(1) = 11 · · · 1︸ ︷︷ ︸
2m

ψ(x0) = 11 · · · 1︸ ︷︷ ︸
2m−1

00 · · · 0︸ ︷︷ ︸
2m−1

ψ(x1) = 11 · · · 1︸ ︷︷ ︸
2m−2

00 · · · 0︸ ︷︷ ︸
2m−2

11 · · · 1︸ ︷︷ ︸
2m−2

00 · · · 0︸ ︷︷ ︸
2m−2

...
...

ψ(xi) = 11 · · · 1︸ ︷︷ ︸
2m−i

00 · · · 0︸ ︷︷ ︸
2m−i

· · ·

For any monomial p ∈ Rm, to calculate ψ(p), first we find
its reduced form
p′ = xi1xi2 . . . xir , then ψ(p) = ψ(xi1)∗ψ(xi2)∗· · ·∗ψ(xir ).
For the Reed-Muller code RM(r,m), the generator matrix is

defined as follows:

GRM(r,m) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ψ(1)
ψ(x0)
ψ(x1)

...
ψ(xm−1)
ψ(x0x1)
ψ(x0x− 2)

...
ψ(xm−2xm−1)
ψ(x0x1x2)

...
ψ(xm−rxm−r+1 . . . xm−1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (13)

The matrix GRM(r,m) has dimension k × n, where the code
dimension is given by k =

∑r
i=0

(
m
i

)
and n = 2m. Encoding

a message using Reed-Muller code RM(r,m) is straight
forward. Let m = (m1,m2, . . . ,mk) be a block of length
k, the encoded message Mc is given by:
Mc =

∑k
i=lmiRi, where Ri is a row of encoding matrix

GRM(r,m).

VI. SIMULATION RESULTS AND DISCUSSION

In order to evaluate and compare the PAPR reduction perfor-
mance of Golay and Reed-Muller code, we have considered
a text file modulated by 16 − QAM and 64-subcarriers are
used throughout the simulation. The transmitted signal is
oversampled by a factor of L = 4. Fig.1 shows the CCDF
vs PAPR curve of an OFDM signal, where both (23, 12)
and (24, 12) Golay coding schemes have been used to reduce
PAPR of OFDM signal. Fig.1, clearly shows that there is a
significant reduction in PAPR due to the Golay coding prior
to OFDM modulation.

Fig. 2. CCDF vs. PAPR curve for OFDM signal with Golay coding
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Fig. 3. CCDF vs. PAPR curve for OFDM signal with Reed-Muller coding

Fig.2 shows the CCDF vs PAPR curve of an OFDM signal,
where Reed-Muller coding with various configurations have
been used to reduce the PAPR of an OFDM signal. The
various configurations of Reed-Muller code used are RM(1,3),
RM(2,3), RM(1,4), RM(2,4), and RM(3,4). In Fig.2, RME
denotes Reed-Muller Encoding. From Fig.2 it can be easily
inferred that there is reduction in PAPR of an OFDM signal.
The PAPR reduction performance of various Reed-Muller
code configuration is tabulated in Table 1. For comparing
the PAPR reduction performance of Golay and Reed-Muller
coding scheme we have used a parameter called Peak-to-
Average Power Ratio Reduction Gain (PARRG), which is
defined [15] as follows:
PARRG = PAPRUncodedOFDM − PAPRCodedOFDM .
Higher the value of PARRG better the PAPR reduction per-
formance of that scheme.

TABLE II
PAPR REDUCTION PERFORMANCE OF GOLAY AND REED-MULLER

CODED OFDM SIGNAL

OFDM Signal PAPR
(dB)

PARRG(dB) Code
Rate
(k/n)

Without coding 8.8318
With (23,12) Golay Coding 5.8594 2.9171 12/23
With (24,12) Golay Coding 5.8180 2.9585 1/2
With RME r=1 and m=3 8.7857 0.0461 1/2
With RME r=2 and m=3 7.9793 0.8525 7/8
With RME r=1 and m=4 7.1959 1.6359 5/16
With RME r=2 and m=4 6.9885 1.8433 11/16

Table.1, shows the values of PAPR of an OFDM signal
for various coding schemes at CCDF = 10−2. In Table.1,
the highest PARRG obtained is 2.9171 dB and 1.8433 dB
for Golay and Reed-Muller coding schemes respectively for
comparable code rate. This shows that the PAPR reduction
performance of Golay code is higher than the Reed-Muller
code for comparable code rate. Among the two Golay coding
configuration, performance of (23,12) is better than the (24,12)
Golay coding while among the various Reed-Muller coding

configurations the RM(2,4) gives the best result from both
PARRG and code rate perspective.

VII. CONCLUSION

OFDM is a promising technique for high-speed wireless
communication systems. A major drawback of conventional
OFDM system is the high peak-to-average power ratio. In
this paper we have compared the PAPR reduction performance
of Golay and Reed-Muller coded OFDM signal. It has been
found that the PAPR reduction performance of Golay code
is higher than the Reed-Muller code for the comparable code
rate. Moreover, among the two Golay code configurations used
the performance of (23,12) Golay code is better than that of
(24,12) Golay code. For Reed-Muller code, among various
configuration considered, the PAPR reduction performance of
RM(2,4) is optimum.
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